@inproceedings{xu-etal-2025-constraining,
title = "Constraining Sequential Model Editing with Editing Anchor Compression",
author = "Xu, Hao-Xiang and
Ma, Jun-Yu and
Ling, Zhen-Hua and
Zhang, Ningyu and
Gu, Jia-Chen",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.304/",
doi = "10.18653/v1/2025.findings-naacl.304",
pages = "5499--5515",
ISBN = "979-8-89176-195-7",
abstract = "Large language models (LLMs) struggle with hallucinations due to false or outdated knowledge. Given the high resource demands of retraining these models, there is an increasing focus on developing model editing. However, the general abilities of LLMs across downstream tasks are prone to significant degradation during sequential editing. This paper statistically observes that the parameter matrix after editing exhibits a significant deviation compared to its previous state as the number of edits increases. This serious deviation affects the original knowledge associations within LLMs and leads to the degradation of their general abilities. To this end, a framework termed Editing Anchor Compression (EAC) is proposed to constrain the deviation of the parameter matrix during sequential editing. It compresses the editing information by selecting editing anchors that are important in encoding new relations without deviating too much from the original matrix, thereby preserving the general abilities. Experiments of applying EAC to two popular editing methods on three LLMs across four tasks are conducted. Evaluation results show that EAC effectively minimizes unreasonable deviations caused by model editing, preserving over 70{\%} of the general abilities while better retaining the editing knowledge compared to the original counterpart methods."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2025-constraining">
<titleInfo>
<title>Constraining Sequential Model Editing with Editing Anchor Compression</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hao-Xiang</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jun-Yu</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhen-Hua</namePart>
<namePart type="family">Ling</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ningyu</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jia-Chen</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Large language models (LLMs) struggle with hallucinations due to false or outdated knowledge. Given the high resource demands of retraining these models, there is an increasing focus on developing model editing. However, the general abilities of LLMs across downstream tasks are prone to significant degradation during sequential editing. This paper statistically observes that the parameter matrix after editing exhibits a significant deviation compared to its previous state as the number of edits increases. This serious deviation affects the original knowledge associations within LLMs and leads to the degradation of their general abilities. To this end, a framework termed Editing Anchor Compression (EAC) is proposed to constrain the deviation of the parameter matrix during sequential editing. It compresses the editing information by selecting editing anchors that are important in encoding new relations without deviating too much from the original matrix, thereby preserving the general abilities. Experiments of applying EAC to two popular editing methods on three LLMs across four tasks are conducted. Evaluation results show that EAC effectively minimizes unreasonable deviations caused by model editing, preserving over 70% of the general abilities while better retaining the editing knowledge compared to the original counterpart methods.</abstract>
<identifier type="citekey">xu-etal-2025-constraining</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.304</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.304/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>5499</start>
<end>5515</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Constraining Sequential Model Editing with Editing Anchor Compression
%A Xu, Hao-Xiang
%A Ma, Jun-Yu
%A Ling, Zhen-Hua
%A Zhang, Ningyu
%A Gu, Jia-Chen
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F xu-etal-2025-constraining
%X Large language models (LLMs) struggle with hallucinations due to false or outdated knowledge. Given the high resource demands of retraining these models, there is an increasing focus on developing model editing. However, the general abilities of LLMs across downstream tasks are prone to significant degradation during sequential editing. This paper statistically observes that the parameter matrix after editing exhibits a significant deviation compared to its previous state as the number of edits increases. This serious deviation affects the original knowledge associations within LLMs and leads to the degradation of their general abilities. To this end, a framework termed Editing Anchor Compression (EAC) is proposed to constrain the deviation of the parameter matrix during sequential editing. It compresses the editing information by selecting editing anchors that are important in encoding new relations without deviating too much from the original matrix, thereby preserving the general abilities. Experiments of applying EAC to two popular editing methods on three LLMs across four tasks are conducted. Evaluation results show that EAC effectively minimizes unreasonable deviations caused by model editing, preserving over 70% of the general abilities while better retaining the editing knowledge compared to the original counterpart methods.
%R 10.18653/v1/2025.findings-naacl.304
%U https://aclanthology.org/2025.findings-naacl.304/
%U https://doi.org/10.18653/v1/2025.findings-naacl.304
%P 5499-5515
Markdown (Informal)
[Constraining Sequential Model Editing with Editing Anchor Compression](https://aclanthology.org/2025.findings-naacl.304/) (Xu et al., Findings 2025)
ACL