@inproceedings{zuhri-etal-2025-mlkv,
title = "{MLKV}: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding",
author = "Zuhri, Zayd Muhammad Kawakibi and
Adilazuarda, Muhammad Farid and
Purwarianti, Ayu and
Aji, Alham Fikri",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.305/",
doi = "10.18653/v1/2025.findings-naacl.305",
pages = "5516--5525",
ISBN = "979-8-89176-195-7",
abstract = "Auto-regressive inference of transformers benefit greatly from Key-Value (KV) caching, but can lead to major memory bottlenecks as model size, batch size, and sequence length grow at scale. We introduce Multi-Layer Key-Value (MLKV) sharing, a novel approach extending KV sharing across transformer layers to reduce memory usage beyond what was possible with Multi-Query Attention (MQA) and Grouped-Query Attention (GQA). Evaluations on various NLP benchmarks and inference metrics using uptrained Pythia-160M variants demonstrate that MLKV significantly reduces memory usage with minimal performance loss, reducing KV cache size down to a factor of 6x compared to MQA. These results highlight MLKV{'}s potential for efficient deployment of transformer models at scale."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zuhri-etal-2025-mlkv">
<titleInfo>
<title>MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zayd</namePart>
<namePart type="given">Muhammad</namePart>
<namePart type="given">Kawakibi</namePart>
<namePart type="family">Zuhri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Muhammad</namePart>
<namePart type="given">Farid</namePart>
<namePart type="family">Adilazuarda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ayu</namePart>
<namePart type="family">Purwarianti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alham</namePart>
<namePart type="given">Fikri</namePart>
<namePart type="family">Aji</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Auto-regressive inference of transformers benefit greatly from Key-Value (KV) caching, but can lead to major memory bottlenecks as model size, batch size, and sequence length grow at scale. We introduce Multi-Layer Key-Value (MLKV) sharing, a novel approach extending KV sharing across transformer layers to reduce memory usage beyond what was possible with Multi-Query Attention (MQA) and Grouped-Query Attention (GQA). Evaluations on various NLP benchmarks and inference metrics using uptrained Pythia-160M variants demonstrate that MLKV significantly reduces memory usage with minimal performance loss, reducing KV cache size down to a factor of 6x compared to MQA. These results highlight MLKV’s potential for efficient deployment of transformer models at scale.</abstract>
<identifier type="citekey">zuhri-etal-2025-mlkv</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.305</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.305/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>5516</start>
<end>5525</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding
%A Zuhri, Zayd Muhammad Kawakibi
%A Adilazuarda, Muhammad Farid
%A Purwarianti, Ayu
%A Aji, Alham Fikri
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F zuhri-etal-2025-mlkv
%X Auto-regressive inference of transformers benefit greatly from Key-Value (KV) caching, but can lead to major memory bottlenecks as model size, batch size, and sequence length grow at scale. We introduce Multi-Layer Key-Value (MLKV) sharing, a novel approach extending KV sharing across transformer layers to reduce memory usage beyond what was possible with Multi-Query Attention (MQA) and Grouped-Query Attention (GQA). Evaluations on various NLP benchmarks and inference metrics using uptrained Pythia-160M variants demonstrate that MLKV significantly reduces memory usage with minimal performance loss, reducing KV cache size down to a factor of 6x compared to MQA. These results highlight MLKV’s potential for efficient deployment of transformer models at scale.
%R 10.18653/v1/2025.findings-naacl.305
%U https://aclanthology.org/2025.findings-naacl.305/
%U https://doi.org/10.18653/v1/2025.findings-naacl.305
%P 5516-5525
Markdown (Informal)
[MLKV: Multi-Layer Key-Value Heads for Memory Efficient Transformer Decoding](https://aclanthology.org/2025.findings-naacl.305/) (Zuhri et al., Findings 2025)
ACL