@inproceedings{lalai-etal-2025-intentions,
title = "From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models",
author = "Lalai, Harsh Nishant and
Anantha Ramakrishnan, Aashish and
Shah, Raj Sanjay and
Lee, Dongwon",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.343/",
doi = "10.18653/v1/2025.findings-naacl.343",
pages = "6147--6160",
ISBN = "979-8-89176-195-7",
abstract = "With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques through a comprehensive survey of the research literature. Our work has two key advantages: (1) We analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, and watermarking addition and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research protecting text authorship. This extensive coverage and detailed analysis sets our work apart, outlining the evolving landscape of text watermarking in Language Models."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lalai-etal-2025-intentions">
<titleInfo>
<title>From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Harsh</namePart>
<namePart type="given">Nishant</namePart>
<namePart type="family">Lalai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aashish</namePart>
<namePart type="family">Anantha Ramakrishnan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raj</namePart>
<namePart type="given">Sanjay</namePart>
<namePart type="family">Shah</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dongwon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques through a comprehensive survey of the research literature. Our work has two key advantages: (1) We analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, and watermarking addition and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research protecting text authorship. This extensive coverage and detailed analysis sets our work apart, outlining the evolving landscape of text watermarking in Language Models.</abstract>
<identifier type="citekey">lalai-etal-2025-intentions</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.343</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.343/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>6147</start>
<end>6160</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models
%A Lalai, Harsh Nishant
%A Anantha Ramakrishnan, Aashish
%A Shah, Raj Sanjay
%A Lee, Dongwon
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F lalai-etal-2025-intentions
%X With the rapid growth of Large Language Models (LLMs), safeguarding textual content against unauthorized use is crucial. Watermarking offers a vital solution, protecting both - LLM-generated and plain text sources. This paper presents a unified overview of different perspectives behind designing watermarking techniques through a comprehensive survey of the research literature. Our work has two key advantages: (1) We analyze research based on the specific intentions behind different watermarking techniques, evaluation datasets used, and watermarking addition and removal methods to construct a cohesive taxonomy. (2) We highlight the gaps and open challenges in text watermarking to promote research protecting text authorship. This extensive coverage and detailed analysis sets our work apart, outlining the evolving landscape of text watermarking in Language Models.
%R 10.18653/v1/2025.findings-naacl.343
%U https://aclanthology.org/2025.findings-naacl.343/
%U https://doi.org/10.18653/v1/2025.findings-naacl.343
%P 6147-6160
Markdown (Informal)
[From Intentions to Techniques: A Comprehensive Taxonomy and Challenges in Text Watermarking for Large Language Models](https://aclanthology.org/2025.findings-naacl.343/) (Lalai et al., Findings 2025)
ACL