@inproceedings{shengbinyue-etal-2025-multi,
title = "Multi-Agent Simulator Drives Language Models for Legal Intensive Interaction",
author = "Yue, Shengbin and
Huang, Ting and
Jia, Zheng and
Wang, Siyuan and
Liu, Shujun and
Song, Yun and
Huang, Xuanjing and
Wei, Zhongyu",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.365/",
doi = "10.18653/v1/2025.findings-naacl.365",
pages = "6537--6570",
ISBN = "979-8-89176-195-7",
abstract = "Large Language Models (LLMs) have significantly advanced legal intelligence, but the scarcity of scenario data impedes the progress toward interactive legal scenarios. This paper introduces a Multi-agent Legal Simulation Driver (MASER) to scalably generate synthetic data by simulating interactive legal scenarios. Leveraging real-legal case sources, MASER ensures the consistency of legal attributes between participants and introduces a supervisory mechanism to align participants' characters and behaviors as well as addressing distractions. A Multi-stage Interactive Legal Evaluation (MILE) benchmark is further constructed to evaluate LLMs' performance in dynamic legal scenarios. Extensive experiments confirm the effectiveness of our framework."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shengbinyue-etal-2025-multi">
<titleInfo>
<title>Multi-Agent Simulator Drives Language Models for Legal Intensive Interaction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shengbin</namePart>
<namePart type="family">Yue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zheng</namePart>
<namePart type="family">Jia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siyuan</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shujun</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yun</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xuanjing</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhongyu</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) have significantly advanced legal intelligence, but the scarcity of scenario data impedes the progress toward interactive legal scenarios. This paper introduces a Multi-agent Legal Simulation Driver (MASER) to scalably generate synthetic data by simulating interactive legal scenarios. Leveraging real-legal case sources, MASER ensures the consistency of legal attributes between participants and introduces a supervisory mechanism to align participants’ characters and behaviors as well as addressing distractions. A Multi-stage Interactive Legal Evaluation (MILE) benchmark is further constructed to evaluate LLMs’ performance in dynamic legal scenarios. Extensive experiments confirm the effectiveness of our framework.</abstract>
<identifier type="citekey">shengbinyue-etal-2025-multi</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.365</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.365/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>6537</start>
<end>6570</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Agent Simulator Drives Language Models for Legal Intensive Interaction
%A Yue, Shengbin
%A Huang, Ting
%A Jia, Zheng
%A Wang, Siyuan
%A Liu, Shujun
%A Song, Yun
%A Huang, Xuanjing
%A Wei, Zhongyu
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F shengbinyue-etal-2025-multi
%X Large Language Models (LLMs) have significantly advanced legal intelligence, but the scarcity of scenario data impedes the progress toward interactive legal scenarios. This paper introduces a Multi-agent Legal Simulation Driver (MASER) to scalably generate synthetic data by simulating interactive legal scenarios. Leveraging real-legal case sources, MASER ensures the consistency of legal attributes between participants and introduces a supervisory mechanism to align participants’ characters and behaviors as well as addressing distractions. A Multi-stage Interactive Legal Evaluation (MILE) benchmark is further constructed to evaluate LLMs’ performance in dynamic legal scenarios. Extensive experiments confirm the effectiveness of our framework.
%R 10.18653/v1/2025.findings-naacl.365
%U https://aclanthology.org/2025.findings-naacl.365/
%U https://doi.org/10.18653/v1/2025.findings-naacl.365
%P 6537-6570
Markdown (Informal)
[Multi-Agent Simulator Drives Language Models for Legal Intensive Interaction](https://aclanthology.org/2025.findings-naacl.365/) (Yue et al., Findings 2025)
ACL
- Shengbin Yue, Ting Huang, Zheng Jia, Siyuan Wang, Shujun Liu, Yun Song, Xuanjing Huang, and Zhongyu Wei. 2025. Multi-Agent Simulator Drives Language Models for Legal Intensive Interaction. In Findings of the Association for Computational Linguistics: NAACL 2025, pages 6537–6570, Albuquerque, New Mexico. Association for Computational Linguistics.