@inproceedings{chen-etal-2025-autobreach,
title = "{A}uto{B}reach: Universal and Adaptive Jailbreaking with Efficient Wordplay-Guided Optimization via Multi-{LLM}s",
author = "Chen, Jiawei and
Yang, Xiao and
Fang, Zhengwei and
Tian, Yu and
Dong, Yinpeng and
Yin, Zhaoxia and
Su, Hang",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.378/",
pages = "6777--6798",
ISBN = "979-8-89176-195-7",
abstract = "Recent studies show that large language models (LLMs) are vulnerable to jailbreak attacks, which can bypass their defense mechanisms. However, existing jailbreak research often exhibits limitations in universality, validity, and efficiency. Therefore, we rethink jailbreaking LLMs and define three key properties to guide the design of effective jailbreak methods. We introduce AutoBreach, a novel black-box approach that uses wordplay-guided mapping rule sampling to create universal adversarial prompts. By leveraging LLMs' summarization and reasoning abilities, AutoBreach minimizes manual effort. To boost jailbreak success rates, we further suggest sentence compression and chain-of-thought-based mapping rules to correct errors and wordplay misinterpretations in target LLMs. Also, we propose a two-stage mapping rule optimization that initially optimizes mapping rules before querying target LLMs to enhance efficiency. Experimental results indicate AutoBreach efficiently identifies security vulnerabilities across various LLMs (Claude-3, GPT-4, etc.), achieving an average success rate of over 80{\%} with fewer than 10 queries. Notably, the adversarial prompts generated by AutoBreach for GPT-4 can directly bypass the defenses of the advanced commercial LLM GPT o1-preview, demonstrating strong transferability and universality."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2025-autobreach">
<titleInfo>
<title>AutoBreach: Universal and Adaptive Jailbreaking with Efficient Wordplay-Guided Optimization via Multi-LLMs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiawei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhengwei</namePart>
<namePart type="family">Fang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yinpeng</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhaoxia</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hang</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Recent studies show that large language models (LLMs) are vulnerable to jailbreak attacks, which can bypass their defense mechanisms. However, existing jailbreak research often exhibits limitations in universality, validity, and efficiency. Therefore, we rethink jailbreaking LLMs and define three key properties to guide the design of effective jailbreak methods. We introduce AutoBreach, a novel black-box approach that uses wordplay-guided mapping rule sampling to create universal adversarial prompts. By leveraging LLMs’ summarization and reasoning abilities, AutoBreach minimizes manual effort. To boost jailbreak success rates, we further suggest sentence compression and chain-of-thought-based mapping rules to correct errors and wordplay misinterpretations in target LLMs. Also, we propose a two-stage mapping rule optimization that initially optimizes mapping rules before querying target LLMs to enhance efficiency. Experimental results indicate AutoBreach efficiently identifies security vulnerabilities across various LLMs (Claude-3, GPT-4, etc.), achieving an average success rate of over 80% with fewer than 10 queries. Notably, the adversarial prompts generated by AutoBreach for GPT-4 can directly bypass the defenses of the advanced commercial LLM GPT o1-preview, demonstrating strong transferability and universality.</abstract>
<identifier type="citekey">chen-etal-2025-autobreach</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.378/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>6777</start>
<end>6798</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T AutoBreach: Universal and Adaptive Jailbreaking with Efficient Wordplay-Guided Optimization via Multi-LLMs
%A Chen, Jiawei
%A Yang, Xiao
%A Fang, Zhengwei
%A Tian, Yu
%A Dong, Yinpeng
%A Yin, Zhaoxia
%A Su, Hang
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F chen-etal-2025-autobreach
%X Recent studies show that large language models (LLMs) are vulnerable to jailbreak attacks, which can bypass their defense mechanisms. However, existing jailbreak research often exhibits limitations in universality, validity, and efficiency. Therefore, we rethink jailbreaking LLMs and define three key properties to guide the design of effective jailbreak methods. We introduce AutoBreach, a novel black-box approach that uses wordplay-guided mapping rule sampling to create universal adversarial prompts. By leveraging LLMs’ summarization and reasoning abilities, AutoBreach minimizes manual effort. To boost jailbreak success rates, we further suggest sentence compression and chain-of-thought-based mapping rules to correct errors and wordplay misinterpretations in target LLMs. Also, we propose a two-stage mapping rule optimization that initially optimizes mapping rules before querying target LLMs to enhance efficiency. Experimental results indicate AutoBreach efficiently identifies security vulnerabilities across various LLMs (Claude-3, GPT-4, etc.), achieving an average success rate of over 80% with fewer than 10 queries. Notably, the adversarial prompts generated by AutoBreach for GPT-4 can directly bypass the defenses of the advanced commercial LLM GPT o1-preview, demonstrating strong transferability and universality.
%U https://aclanthology.org/2025.findings-naacl.378/
%P 6777-6798
Markdown (Informal)
[AutoBreach: Universal and Adaptive Jailbreaking with Efficient Wordplay-Guided Optimization via Multi-LLMs](https://aclanthology.org/2025.findings-naacl.378/) (Chen et al., Findings 2025)
ACL