@inproceedings{xu-etal-2025-ca,
title = "{CA}*: Addressing Evaluation Pitfalls in Computation-Aware Latency for Simultaneous Speech Translation",
author = "Xu, Xi and
Xu, Wenda and
Ouyang, Siqi and
Li, Lei",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.393/",
doi = "10.18653/v1/2025.findings-naacl.393",
pages = "7062--7067",
ISBN = "979-8-89176-195-7",
abstract = "Simultaneous speech translation (SimulST) systems must balance translation quality with response time, making latency measurement crucial for evaluating their real-world performance. However, there has been a longstanding belief that current metrics yield unrealistically high latency measurements in unsegmented streaming settings. In this paper, we investigate this phenomenon, revealing its root cause in a fundamental misconception underlying existing latency evaluation approaches. We demonstrate that this issue affects not only streaming but also segment-level latency evaluation across different metrics. Furthermore, we propose a modification to correctly measure computation-aware latency for SimulST systems, addressing the limitations present in existing metrics."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="xu-etal-2025-ca">
<titleInfo>
<title>CA*: Addressing Evaluation Pitfalls in Computation-Aware Latency for Simultaneous Speech Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xi</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wenda</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siqi</namePart>
<namePart type="family">Ouyang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lei</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Simultaneous speech translation (SimulST) systems must balance translation quality with response time, making latency measurement crucial for evaluating their real-world performance. However, there has been a longstanding belief that current metrics yield unrealistically high latency measurements in unsegmented streaming settings. In this paper, we investigate this phenomenon, revealing its root cause in a fundamental misconception underlying existing latency evaluation approaches. We demonstrate that this issue affects not only streaming but also segment-level latency evaluation across different metrics. Furthermore, we propose a modification to correctly measure computation-aware latency for SimulST systems, addressing the limitations present in existing metrics.</abstract>
<identifier type="citekey">xu-etal-2025-ca</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.393</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.393/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>7062</start>
<end>7067</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CA*: Addressing Evaluation Pitfalls in Computation-Aware Latency for Simultaneous Speech Translation
%A Xu, Xi
%A Xu, Wenda
%A Ouyang, Siqi
%A Li, Lei
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F xu-etal-2025-ca
%X Simultaneous speech translation (SimulST) systems must balance translation quality with response time, making latency measurement crucial for evaluating their real-world performance. However, there has been a longstanding belief that current metrics yield unrealistically high latency measurements in unsegmented streaming settings. In this paper, we investigate this phenomenon, revealing its root cause in a fundamental misconception underlying existing latency evaluation approaches. We demonstrate that this issue affects not only streaming but also segment-level latency evaluation across different metrics. Furthermore, we propose a modification to correctly measure computation-aware latency for SimulST systems, addressing the limitations present in existing metrics.
%R 10.18653/v1/2025.findings-naacl.393
%U https://aclanthology.org/2025.findings-naacl.393/
%U https://doi.org/10.18653/v1/2025.findings-naacl.393
%P 7062-7067
Markdown (Informal)
[CA*: Addressing Evaluation Pitfalls in Computation-Aware Latency for Simultaneous Speech Translation](https://aclanthology.org/2025.findings-naacl.393/) (Xu et al., Findings 2025)
ACL