@inproceedings{tang-etal-2025-nota,
title = "{NOTA}: Multimodal Music Notation Understanding for Visual Large Language Model",
author = "Tang, Mingni and
Li, Jiajia and
Yang, Lu and
Zhang, Zhiqiang and
Tian, Jinhao and
Li, Zuchao and
Zhang, Lefei and
Wang, Ping",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.399/",
doi = "10.18653/v1/2025.findings-naacl.399",
pages = "7160--7173",
ISBN = "979-8-89176-195-7",
abstract = "Symbolic music is represented in two distinct forms: two-dimensional, visually intuitive score images, and one-dimensional, standardized text annotation sequences. While large language models have shown extraordinary potential in music, current research has primarily focused on unimodal symbol sequence text. Existing general-domain visual language models still lack the ability of music notation understanding. Recognizing this gap, we propose NOTA, the first large-scale comprehensive multimodal music notation dataset. It consists of 1,019,237 records, from 3 regions of the world, and contains 3 tasks. Based on the dataset, we trained NotaGPT, a music notation visual large language model. Specifically, we involve a pre-alignment training phase for cross-modal alignment between the musical notes depicted in music score images and their textual representation in ABC notation. Subsequent training phases focus on foundational music information extraction, followed by training on music score notation analysis. Experimental results demonstrate that our NotaGPT-7B achieves significant improvement on music understanding, showcasing the effectiveness of NOTA and the training pipeline."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tang-etal-2025-nota">
<titleInfo>
<title>NOTA: Multimodal Music Notation Understanding for Visual Large Language Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mingni</namePart>
<namePart type="family">Tang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiajia</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiqiang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinhao</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zuchao</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lefei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ping</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Symbolic music is represented in two distinct forms: two-dimensional, visually intuitive score images, and one-dimensional, standardized text annotation sequences. While large language models have shown extraordinary potential in music, current research has primarily focused on unimodal symbol sequence text. Existing general-domain visual language models still lack the ability of music notation understanding. Recognizing this gap, we propose NOTA, the first large-scale comprehensive multimodal music notation dataset. It consists of 1,019,237 records, from 3 regions of the world, and contains 3 tasks. Based on the dataset, we trained NotaGPT, a music notation visual large language model. Specifically, we involve a pre-alignment training phase for cross-modal alignment between the musical notes depicted in music score images and their textual representation in ABC notation. Subsequent training phases focus on foundational music information extraction, followed by training on music score notation analysis. Experimental results demonstrate that our NotaGPT-7B achieves significant improvement on music understanding, showcasing the effectiveness of NOTA and the training pipeline.</abstract>
<identifier type="citekey">tang-etal-2025-nota</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.399</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.399/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>7160</start>
<end>7173</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T NOTA: Multimodal Music Notation Understanding for Visual Large Language Model
%A Tang, Mingni
%A Li, Jiajia
%A Yang, Lu
%A Zhang, Zhiqiang
%A Tian, Jinhao
%A Li, Zuchao
%A Zhang, Lefei
%A Wang, Ping
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F tang-etal-2025-nota
%X Symbolic music is represented in two distinct forms: two-dimensional, visually intuitive score images, and one-dimensional, standardized text annotation sequences. While large language models have shown extraordinary potential in music, current research has primarily focused on unimodal symbol sequence text. Existing general-domain visual language models still lack the ability of music notation understanding. Recognizing this gap, we propose NOTA, the first large-scale comprehensive multimodal music notation dataset. It consists of 1,019,237 records, from 3 regions of the world, and contains 3 tasks. Based on the dataset, we trained NotaGPT, a music notation visual large language model. Specifically, we involve a pre-alignment training phase for cross-modal alignment between the musical notes depicted in music score images and their textual representation in ABC notation. Subsequent training phases focus on foundational music information extraction, followed by training on music score notation analysis. Experimental results demonstrate that our NotaGPT-7B achieves significant improvement on music understanding, showcasing the effectiveness of NOTA and the training pipeline.
%R 10.18653/v1/2025.findings-naacl.399
%U https://aclanthology.org/2025.findings-naacl.399/
%U https://doi.org/10.18653/v1/2025.findings-naacl.399
%P 7160-7173
Markdown (Informal)
[NOTA: Multimodal Music Notation Understanding for Visual Large Language Model](https://aclanthology.org/2025.findings-naacl.399/) (Tang et al., Findings 2025)
ACL
- Mingni Tang, Jiajia Li, Lu Yang, Zhiqiang Zhang, Jinhao Tian, Zuchao Li, Lefei Zhang, and Ping Wang. 2025. NOTA: Multimodal Music Notation Understanding for Visual Large Language Model. In Findings of the Association for Computational Linguistics: NAACL 2025, pages 7160–7173, Albuquerque, New Mexico. Association for Computational Linguistics.