@inproceedings{lee-etal-2025-inference,
title = "Inference Scaling for Bridging Retrieval and Augmented Generation",
author = "Lee, Youngwon and
Hwang, Seung-won and
Campos, Daniel F and
Grali{\'n}ski, Filip and
Yao, Zhewei and
He, Yuxiong",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.409/",
doi = "10.18653/v1/2025.findings-naacl.409",
pages = "7324--7339",
ISBN = "979-8-89176-195-7",
abstract = "Retrieval-augmented generation (RAG) has emerged as a popular approach to steering the output of a large language model (LLM) by incorporating retrieved contexts as inputs. However, existing work observed the generator bias, such that improving the retrieval results may negatively affect the outcome. In this work, we show such bias can be mitigated, from inference scaling, aggregating inference calls from the permuted order of retrieved contexts. The proposed Mixture-of-Intervention (MoI) explicitly models the debiased utility of each passage with multiple forward passes to construct a new ranking. We also show that MoI can leverage the retriever{'}s prior knowledge to reduce the computational cost by minimizing the number of permutations considered and lowering the cost per LLM call. We showcase the effectiveness of MoI on diverse RAG tasks, improving ROUGE-L on MS MARCO and EM on HotpotQA benchmarks by {\textasciitilde}7 points."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lee-etal-2025-inference">
<titleInfo>
<title>Inference Scaling for Bridging Retrieval and Augmented Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Youngwon</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Seung-won</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Campos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Filip</namePart>
<namePart type="family">Graliński</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhewei</namePart>
<namePart type="family">Yao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuxiong</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Retrieval-augmented generation (RAG) has emerged as a popular approach to steering the output of a large language model (LLM) by incorporating retrieved contexts as inputs. However, existing work observed the generator bias, such that improving the retrieval results may negatively affect the outcome. In this work, we show such bias can be mitigated, from inference scaling, aggregating inference calls from the permuted order of retrieved contexts. The proposed Mixture-of-Intervention (MoI) explicitly models the debiased utility of each passage with multiple forward passes to construct a new ranking. We also show that MoI can leverage the retriever’s prior knowledge to reduce the computational cost by minimizing the number of permutations considered and lowering the cost per LLM call. We showcase the effectiveness of MoI on diverse RAG tasks, improving ROUGE-L on MS MARCO and EM on HotpotQA benchmarks by ~7 points.</abstract>
<identifier type="citekey">lee-etal-2025-inference</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.409</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.409/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>7324</start>
<end>7339</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Inference Scaling for Bridging Retrieval and Augmented Generation
%A Lee, Youngwon
%A Hwang, Seung-won
%A Campos, Daniel F.
%A Graliński, Filip
%A Yao, Zhewei
%A He, Yuxiong
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F lee-etal-2025-inference
%X Retrieval-augmented generation (RAG) has emerged as a popular approach to steering the output of a large language model (LLM) by incorporating retrieved contexts as inputs. However, existing work observed the generator bias, such that improving the retrieval results may negatively affect the outcome. In this work, we show such bias can be mitigated, from inference scaling, aggregating inference calls from the permuted order of retrieved contexts. The proposed Mixture-of-Intervention (MoI) explicitly models the debiased utility of each passage with multiple forward passes to construct a new ranking. We also show that MoI can leverage the retriever’s prior knowledge to reduce the computational cost by minimizing the number of permutations considered and lowering the cost per LLM call. We showcase the effectiveness of MoI on diverse RAG tasks, improving ROUGE-L on MS MARCO and EM on HotpotQA benchmarks by ~7 points.
%R 10.18653/v1/2025.findings-naacl.409
%U https://aclanthology.org/2025.findings-naacl.409/
%U https://doi.org/10.18653/v1/2025.findings-naacl.409
%P 7324-7339
Markdown (Informal)
[Inference Scaling for Bridging Retrieval and Augmented Generation](https://aclanthology.org/2025.findings-naacl.409/) (Lee et al., Findings 2025)
ACL