@inproceedings{wu-etal-2025-grapheval36k,
title = "{G}raph{E}val36{K}: Benchmarking Coding and Reasoning Capabilities of Large Language Models on Graph Datasets",
author = "Wu, Qiming and
Chen, Zichen and
Corcoran, Will and
Sra, Misha and
Singh, Ambuj",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.452/",
doi = "10.18653/v1/2025.findings-naacl.452",
pages = "8095--8117",
ISBN = "979-8-89176-195-7",
abstract = "Large language models (LLMs) have achieved remarkable success in natural language processing (NLP), demonstrating significant capabilities in processing and understanding text data. However, recent studies have identified limitations in LLMs' ability to manipulate, program, and reason about structured data, especially graphs. We introduce GraphEval36K, the first comprehensive graph dataset, comprising 40 graph coding problems and 36,900 test cases to evaluate the ability of LLMs on graph problem-solving. Our dataset is categorized into eight primary and four sub-categories to ensure a thorough evaluation across different types of graphs. We benchmark eight LLMs, finding that private models outperform open-source ones, though the gap is narrowing. We also analyze the performance of LLMs across directed vs undirected graphs, different kinds of graph concepts, and network models. Furthermore, to improve the usability of our evaluation framework, we propose Structured Symbolic Decomposition (SSD), an instruction-based method designed to enhance LLM performance on complex graph tasks. Results show that SSD improves the average passing rate of GPT-4, GPT-4o, Gemini-Pro and Claude-3-Sonnet by 8.38{\%}, 6.78{\%}, 29.28{\%} and 25.28{\%}, respectively."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="wu-etal-2025-grapheval36k">
<titleInfo>
<title>GraphEval36K: Benchmarking Coding and Reasoning Capabilities of Large Language Models on Graph Datasets</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qiming</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zichen</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Will</namePart>
<namePart type="family">Corcoran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Misha</namePart>
<namePart type="family">Sra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ambuj</namePart>
<namePart type="family">Singh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Large language models (LLMs) have achieved remarkable success in natural language processing (NLP), demonstrating significant capabilities in processing and understanding text data. However, recent studies have identified limitations in LLMs’ ability to manipulate, program, and reason about structured data, especially graphs. We introduce GraphEval36K, the first comprehensive graph dataset, comprising 40 graph coding problems and 36,900 test cases to evaluate the ability of LLMs on graph problem-solving. Our dataset is categorized into eight primary and four sub-categories to ensure a thorough evaluation across different types of graphs. We benchmark eight LLMs, finding that private models outperform open-source ones, though the gap is narrowing. We also analyze the performance of LLMs across directed vs undirected graphs, different kinds of graph concepts, and network models. Furthermore, to improve the usability of our evaluation framework, we propose Structured Symbolic Decomposition (SSD), an instruction-based method designed to enhance LLM performance on complex graph tasks. Results show that SSD improves the average passing rate of GPT-4, GPT-4o, Gemini-Pro and Claude-3-Sonnet by 8.38%, 6.78%, 29.28% and 25.28%, respectively.</abstract>
<identifier type="citekey">wu-etal-2025-grapheval36k</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.452</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.452/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>8095</start>
<end>8117</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GraphEval36K: Benchmarking Coding and Reasoning Capabilities of Large Language Models on Graph Datasets
%A Wu, Qiming
%A Chen, Zichen
%A Corcoran, Will
%A Sra, Misha
%A Singh, Ambuj
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F wu-etal-2025-grapheval36k
%X Large language models (LLMs) have achieved remarkable success in natural language processing (NLP), demonstrating significant capabilities in processing and understanding text data. However, recent studies have identified limitations in LLMs’ ability to manipulate, program, and reason about structured data, especially graphs. We introduce GraphEval36K, the first comprehensive graph dataset, comprising 40 graph coding problems and 36,900 test cases to evaluate the ability of LLMs on graph problem-solving. Our dataset is categorized into eight primary and four sub-categories to ensure a thorough evaluation across different types of graphs. We benchmark eight LLMs, finding that private models outperform open-source ones, though the gap is narrowing. We also analyze the performance of LLMs across directed vs undirected graphs, different kinds of graph concepts, and network models. Furthermore, to improve the usability of our evaluation framework, we propose Structured Symbolic Decomposition (SSD), an instruction-based method designed to enhance LLM performance on complex graph tasks. Results show that SSD improves the average passing rate of GPT-4, GPT-4o, Gemini-Pro and Claude-3-Sonnet by 8.38%, 6.78%, 29.28% and 25.28%, respectively.
%R 10.18653/v1/2025.findings-naacl.452
%U https://aclanthology.org/2025.findings-naacl.452/
%U https://doi.org/10.18653/v1/2025.findings-naacl.452
%P 8095-8117
Markdown (Informal)
[GraphEval36K: Benchmarking Coding and Reasoning Capabilities of Large Language Models on Graph Datasets](https://aclanthology.org/2025.findings-naacl.452/) (Wu et al., Findings 2025)
ACL