@inproceedings{bismay-etal-2025-reasoningrec,
title = "{R}easoning{R}ec: Bridging Personalized Recommendations and Human-Interpretable Explanations through {LLM} Reasoning",
author = "Bismay, Millennium and
Dong, Xiangjue and
Caverlee, James",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.454/",
pages = "8132--8148",
ISBN = "979-8-89176-195-7",
abstract = "This paper presents ReasoningRec, a reasoning-based recommendation framework that leverages Large Language Models (LLMs) to bridge the gap between recommendations and human-interpretable explanations. In contrast to conventional recommendation systems that rely on implicit user-item interactions, ReasoningRec employs LLMs to model users and items, focusing on preferences, aversions, and explanatory reasoning. The framework utilizes a larger LLM to generate synthetic explanations for user preferences, subsequently used to fine-tune a smaller LLM for enhanced recommendation accuracy and human-interpretable explanation. Our experimental study investigates the impact of reasoning and contextual information on personalized recommendations, revealing that the quality of contextual and personalized data significantly influences the LLM`s capacity to generate plausible explanations. Empirical evaluations demonstrate that ReasoningRec surpasses state-of-the-art methods by up to 12.5{\%} in recommendation prediction while concurrently providing human-intelligible explanations."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bismay-etal-2025-reasoningrec">
<titleInfo>
<title>ReasoningRec: Bridging Personalized Recommendations and Human-Interpretable Explanations through LLM Reasoning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Millennium</namePart>
<namePart type="family">Bismay</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiangjue</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Caverlee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>This paper presents ReasoningRec, a reasoning-based recommendation framework that leverages Large Language Models (LLMs) to bridge the gap between recommendations and human-interpretable explanations. In contrast to conventional recommendation systems that rely on implicit user-item interactions, ReasoningRec employs LLMs to model users and items, focusing on preferences, aversions, and explanatory reasoning. The framework utilizes a larger LLM to generate synthetic explanations for user preferences, subsequently used to fine-tune a smaller LLM for enhanced recommendation accuracy and human-interpretable explanation. Our experimental study investigates the impact of reasoning and contextual information on personalized recommendations, revealing that the quality of contextual and personalized data significantly influences the LLM‘s capacity to generate plausible explanations. Empirical evaluations demonstrate that ReasoningRec surpasses state-of-the-art methods by up to 12.5% in recommendation prediction while concurrently providing human-intelligible explanations.</abstract>
<identifier type="citekey">bismay-etal-2025-reasoningrec</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.454/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>8132</start>
<end>8148</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T ReasoningRec: Bridging Personalized Recommendations and Human-Interpretable Explanations through LLM Reasoning
%A Bismay, Millennium
%A Dong, Xiangjue
%A Caverlee, James
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F bismay-etal-2025-reasoningrec
%X This paper presents ReasoningRec, a reasoning-based recommendation framework that leverages Large Language Models (LLMs) to bridge the gap between recommendations and human-interpretable explanations. In contrast to conventional recommendation systems that rely on implicit user-item interactions, ReasoningRec employs LLMs to model users and items, focusing on preferences, aversions, and explanatory reasoning. The framework utilizes a larger LLM to generate synthetic explanations for user preferences, subsequently used to fine-tune a smaller LLM for enhanced recommendation accuracy and human-interpretable explanation. Our experimental study investigates the impact of reasoning and contextual information on personalized recommendations, revealing that the quality of contextual and personalized data significantly influences the LLM‘s capacity to generate plausible explanations. Empirical evaluations demonstrate that ReasoningRec surpasses state-of-the-art methods by up to 12.5% in recommendation prediction while concurrently providing human-intelligible explanations.
%U https://aclanthology.org/2025.findings-naacl.454/
%P 8132-8148
Markdown (Informal)
[ReasoningRec: Bridging Personalized Recommendations and Human-Interpretable Explanations through LLM Reasoning](https://aclanthology.org/2025.findings-naacl.454/) (Bismay et al., Findings 2025)
ACL