@inproceedings{li-etal-2025-prdetect,
title = "{PRD}etect: Perturbation-Robust {LLM}-generated Text Detection Based on Syntax Tree",
author = "Li, Xiang and
Yin, Zhiyi and
Tan, Hexiang and
Jing, Shaoling and
Su, Du and
Cheng, Yi and
Shen, Huawei and
Sun, Fei",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.464/",
doi = "10.18653/v1/2025.findings-naacl.464",
pages = "8290--8301",
ISBN = "979-8-89176-195-7",
abstract = "As LLM-generated text becomes increasingly prevalent on the internet, often containing hallucinations or biases, detecting such content has emerged as a critical area of research.Recent methods have demonstrated impressive performance in detecting text generated entirely by LLMs.However, in real-world scenarios, users often introduce perturbations to the LLM-generated text, and the robustness of existing detection methods against these perturbations has not been sufficiently explored.This paper empirically investigates this challenge and finds that even minor perturbations can severely degrade the performance of current detection methods. To address this issue, we find that the syntactic tree is minimally affected by disturbances and exhibits distinct differences between human-written and LLM-generated text.Therefore, we propose a detection method based on syntactic trees, which can capture features invariant to perturbations.It demonstrates significantly improved robustness against perturbation on the HC3 and GPT-3.5-mixed datasets.Moreover, it also has the shortest time expenditure.We provide the code and data at https://github.com/thulx18/PRDetect."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2025-prdetect">
<titleInfo>
<title>PRDetect: Perturbation-Robust LLM-generated Text Detection Based on Syntax Tree</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhiyi</namePart>
<namePart type="family">Yin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hexiang</namePart>
<namePart type="family">Tan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shaoling</namePart>
<namePart type="family">Jing</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Du</namePart>
<namePart type="family">Su</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yi</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huawei</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>As LLM-generated text becomes increasingly prevalent on the internet, often containing hallucinations or biases, detecting such content has emerged as a critical area of research.Recent methods have demonstrated impressive performance in detecting text generated entirely by LLMs.However, in real-world scenarios, users often introduce perturbations to the LLM-generated text, and the robustness of existing detection methods against these perturbations has not been sufficiently explored.This paper empirically investigates this challenge and finds that even minor perturbations can severely degrade the performance of current detection methods. To address this issue, we find that the syntactic tree is minimally affected by disturbances and exhibits distinct differences between human-written and LLM-generated text.Therefore, we propose a detection method based on syntactic trees, which can capture features invariant to perturbations.It demonstrates significantly improved robustness against perturbation on the HC3 and GPT-3.5-mixed datasets.Moreover, it also has the shortest time expenditure.We provide the code and data at https://github.com/thulx18/PRDetect.</abstract>
<identifier type="citekey">li-etal-2025-prdetect</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.464</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.464/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>8290</start>
<end>8301</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T PRDetect: Perturbation-Robust LLM-generated Text Detection Based on Syntax Tree
%A Li, Xiang
%A Yin, Zhiyi
%A Tan, Hexiang
%A Jing, Shaoling
%A Su, Du
%A Cheng, Yi
%A Shen, Huawei
%A Sun, Fei
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F li-etal-2025-prdetect
%X As LLM-generated text becomes increasingly prevalent on the internet, often containing hallucinations or biases, detecting such content has emerged as a critical area of research.Recent methods have demonstrated impressive performance in detecting text generated entirely by LLMs.However, in real-world scenarios, users often introduce perturbations to the LLM-generated text, and the robustness of existing detection methods against these perturbations has not been sufficiently explored.This paper empirically investigates this challenge and finds that even minor perturbations can severely degrade the performance of current detection methods. To address this issue, we find that the syntactic tree is minimally affected by disturbances and exhibits distinct differences between human-written and LLM-generated text.Therefore, we propose a detection method based on syntactic trees, which can capture features invariant to perturbations.It demonstrates significantly improved robustness against perturbation on the HC3 and GPT-3.5-mixed datasets.Moreover, it also has the shortest time expenditure.We provide the code and data at https://github.com/thulx18/PRDetect.
%R 10.18653/v1/2025.findings-naacl.464
%U https://aclanthology.org/2025.findings-naacl.464/
%U https://doi.org/10.18653/v1/2025.findings-naacl.464
%P 8290-8301
Markdown (Informal)
[PRDetect: Perturbation-Robust LLM-generated Text Detection Based on Syntax Tree](https://aclanthology.org/2025.findings-naacl.464/) (Li et al., Findings 2025)
ACL
- Xiang Li, Zhiyi Yin, Hexiang Tan, Shaoling Jing, Du Su, Yi Cheng, Huawei Shen, and Fei Sun. 2025. PRDetect: Perturbation-Robust LLM-generated Text Detection Based on Syntax Tree. In Findings of the Association for Computational Linguistics: NAACL 2025, pages 8290–8301, Albuquerque, New Mexico. Association for Computational Linguistics.