@inproceedings{cocchieri-etal-2025-openbioner,
title = "{O}pen{B}io{NER}: Lightweight Open-Domain Biomedical Named Entity Recognition Through Entity Type Description",
author = "Cocchieri, Alessio and
Frisoni, Giacomo and
Mart{\'i}nez Galindo, Marcos and
Moro, Gianluca and
Tagliavini, Giuseppe and
Candoli, Francesco",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.47/",
doi = "10.18653/v1/2025.findings-naacl.47",
pages = "818--837",
ISBN = "979-8-89176-195-7",
abstract = "Biomedical Named Entity Recognition (BioNER) faces significant challenges in real-world applications due to limited annotated data and the constant emergence of new entity types, making zero-shot learning capabilities crucial. While Large Language Models (LLMs) possess extensive domain knowledge necessary for specialized fields like biomedicine, their computational costs often make them impractical. To address these challenges, we introduce OpenBioNER, a lightweight BERT-based cross-encoder architecture that can identify any biomedical entity using only its description, eliminating the need for retraining on new, unseen entity types. Through comprehensive evaluation on established biomedical benchmarks, we demonstrate that OpenBioNER surpasses state-of-the-art baselines, including specialized 7B NER LLMs and GPT-4o, achieving up to 10{\%} higher F1 scores while using 110M parameters only. Moreover, OpenBioNER outperforms existing small-scale models that match textual spans with entity types rather than descriptions, both in terms of accuracy and computational efficiency."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="cocchieri-etal-2025-openbioner">
<titleInfo>
<title>OpenBioNER: Lightweight Open-Domain Biomedical Named Entity Recognition Through Entity Type Description</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alessio</namePart>
<namePart type="family">Cocchieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giacomo</namePart>
<namePart type="family">Frisoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Martínez Galindo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gianluca</namePart>
<namePart type="family">Moro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Giuseppe</namePart>
<namePart type="family">Tagliavini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francesco</namePart>
<namePart type="family">Candoli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Biomedical Named Entity Recognition (BioNER) faces significant challenges in real-world applications due to limited annotated data and the constant emergence of new entity types, making zero-shot learning capabilities crucial. While Large Language Models (LLMs) possess extensive domain knowledge necessary for specialized fields like biomedicine, their computational costs often make them impractical. To address these challenges, we introduce OpenBioNER, a lightweight BERT-based cross-encoder architecture that can identify any biomedical entity using only its description, eliminating the need for retraining on new, unseen entity types. Through comprehensive evaluation on established biomedical benchmarks, we demonstrate that OpenBioNER surpasses state-of-the-art baselines, including specialized 7B NER LLMs and GPT-4o, achieving up to 10% higher F1 scores while using 110M parameters only. Moreover, OpenBioNER outperforms existing small-scale models that match textual spans with entity types rather than descriptions, both in terms of accuracy and computational efficiency.</abstract>
<identifier type="citekey">cocchieri-etal-2025-openbioner</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.47</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.47/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>818</start>
<end>837</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T OpenBioNER: Lightweight Open-Domain Biomedical Named Entity Recognition Through Entity Type Description
%A Cocchieri, Alessio
%A Frisoni, Giacomo
%A Martínez Galindo, Marcos
%A Moro, Gianluca
%A Tagliavini, Giuseppe
%A Candoli, Francesco
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F cocchieri-etal-2025-openbioner
%X Biomedical Named Entity Recognition (BioNER) faces significant challenges in real-world applications due to limited annotated data and the constant emergence of new entity types, making zero-shot learning capabilities crucial. While Large Language Models (LLMs) possess extensive domain knowledge necessary for specialized fields like biomedicine, their computational costs often make them impractical. To address these challenges, we introduce OpenBioNER, a lightweight BERT-based cross-encoder architecture that can identify any biomedical entity using only its description, eliminating the need for retraining on new, unseen entity types. Through comprehensive evaluation on established biomedical benchmarks, we demonstrate that OpenBioNER surpasses state-of-the-art baselines, including specialized 7B NER LLMs and GPT-4o, achieving up to 10% higher F1 scores while using 110M parameters only. Moreover, OpenBioNER outperforms existing small-scale models that match textual spans with entity types rather than descriptions, both in terms of accuracy and computational efficiency.
%R 10.18653/v1/2025.findings-naacl.47
%U https://aclanthology.org/2025.findings-naacl.47/
%U https://doi.org/10.18653/v1/2025.findings-naacl.47
%P 818-837
Markdown (Informal)
[OpenBioNER: Lightweight Open-Domain Biomedical Named Entity Recognition Through Entity Type Description](https://aclanthology.org/2025.findings-naacl.47/) (Cocchieri et al., Findings 2025)
ACL