@inproceedings{luo-etal-2025-faithfulpersona,
title = "{F}aithful{P}ersona: Balancing Faithfulness and Personalization in Code Explanations through Self-Critique",
author = "Luo, Zhuang and
Li, Yichuan and
Xu, Zexing and
Lee, Kyumin and
Etesami, S. Rasoul",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.53/",
doi = "10.18653/v1/2025.findings-naacl.53",
pages = "930--944",
ISBN = "979-8-89176-195-7",
abstract = "Code explanations are crucial in real-world life, from educating students to aligning technical projects with business goals. However, existing approaches face challenges balancing faithfulness to the original code and personalization for diverse user needs. This paper addresses these challenges by introducing a novel benchmark and method for generating faithful personalized code explanations. Our benchmark, FaithfulPersonaCodeX, incorporates code samples and user profiles, employing various evaluation metrics to evaluate both faithfulness and personalization. We propose DISCO, a new method that uses a self-critique mechanism and two-stage optimization to balance faithfulness and personalization in code explanations, addressing the limitations of current large language model approaches. Our proposed model, DISCO, achieves a notable 3.7{\%} improvement in Pass@5 compared to the strong baseline method, Self-Consistency, while maintaining high personalization with a 61.08{\%} win rate in the LLM-as-a-Judge evaluation, effectively balancing faithfulness and user-specific needs in code explanations."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="luo-etal-2025-faithfulpersona">
<titleInfo>
<title>FaithfulPersona: Balancing Faithfulness and Personalization in Code Explanations through Self-Critique</title>
</titleInfo>
<name type="personal">
<namePart type="given">Zhuang</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yichuan</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zexing</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kyumin</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">S</namePart>
<namePart type="given">Rasoul</namePart>
<namePart type="family">Etesami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Code explanations are crucial in real-world life, from educating students to aligning technical projects with business goals. However, existing approaches face challenges balancing faithfulness to the original code and personalization for diverse user needs. This paper addresses these challenges by introducing a novel benchmark and method for generating faithful personalized code explanations. Our benchmark, FaithfulPersonaCodeX, incorporates code samples and user profiles, employing various evaluation metrics to evaluate both faithfulness and personalization. We propose DISCO, a new method that uses a self-critique mechanism and two-stage optimization to balance faithfulness and personalization in code explanations, addressing the limitations of current large language model approaches. Our proposed model, DISCO, achieves a notable 3.7% improvement in Pass@5 compared to the strong baseline method, Self-Consistency, while maintaining high personalization with a 61.08% win rate in the LLM-as-a-Judge evaluation, effectively balancing faithfulness and user-specific needs in code explanations.</abstract>
<identifier type="citekey">luo-etal-2025-faithfulpersona</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.53</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.53/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>930</start>
<end>944</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T FaithfulPersona: Balancing Faithfulness and Personalization in Code Explanations through Self-Critique
%A Luo, Zhuang
%A Li, Yichuan
%A Xu, Zexing
%A Lee, Kyumin
%A Etesami, S. Rasoul
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F luo-etal-2025-faithfulpersona
%X Code explanations are crucial in real-world life, from educating students to aligning technical projects with business goals. However, existing approaches face challenges balancing faithfulness to the original code and personalization for diverse user needs. This paper addresses these challenges by introducing a novel benchmark and method for generating faithful personalized code explanations. Our benchmark, FaithfulPersonaCodeX, incorporates code samples and user profiles, employing various evaluation metrics to evaluate both faithfulness and personalization. We propose DISCO, a new method that uses a self-critique mechanism and two-stage optimization to balance faithfulness and personalization in code explanations, addressing the limitations of current large language model approaches. Our proposed model, DISCO, achieves a notable 3.7% improvement in Pass@5 compared to the strong baseline method, Self-Consistency, while maintaining high personalization with a 61.08% win rate in the LLM-as-a-Judge evaluation, effectively balancing faithfulness and user-specific needs in code explanations.
%R 10.18653/v1/2025.findings-naacl.53
%U https://aclanthology.org/2025.findings-naacl.53/
%U https://doi.org/10.18653/v1/2025.findings-naacl.53
%P 930-944
Markdown (Informal)
[FaithfulPersona: Balancing Faithfulness and Personalization in Code Explanations through Self-Critique](https://aclanthology.org/2025.findings-naacl.53/) (Luo et al., Findings 2025)
ACL