@inproceedings{pan-etal-2025-prototype,
title = "Prototype Tuning: A Meta-Learning Approach for Few-Shot Document-Level Relation Extraction with Large Language Models",
author = "Pan, Dinghao and
Sun, Yuanyuan and
Xu, Bo and
Li, Jiru and
Yang, Zhihao and
Luo, Ling and
Lin, Hongfei and
Wang, Jian",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.62/",
doi = "10.18653/v1/2025.findings-naacl.62",
pages = "1112--1128",
ISBN = "979-8-89176-195-7",
abstract = "Few-Shot Document-Level Relation Extraction (FSDLRE) aims to develop models capable of generalizing to new categories with minimal support examples. Although Large Language Models (LLMs) demonstrate exceptional In-Context Learning (ICL) capabilities on many few-shot tasks, their performance on FSDLRE tasks remains suboptimal due to the significant gap between the task format and the intrinsic capabilities of language models, coupled with the complexity of ICL prompts for document-level text. To address these challenges, we introduce a novel meta-training approach for LLMs termed Prototype Tuning. We construct simulated episodes using data with relation types that do not overlap with the test corpus, fundamentally enhancing the ICL capabilities of LLMs in FSDLRE through meta-learning. To further enhance the effects of meta-learning, we innovatively integrate the concept of prototype into the fine-tuning process of LLMs. This involves aggregating entity pairs from support documents into prototypes within the prompts and altering the way of determining relation categories to identifying the closest prototype. Experimental results demonstrate that our LLMs trained with this approach outperform all baselines. Our proposed approach markedly improves the ICL capabilities of LLMs in FSDLRE and mitigates the impact of relation semantic discrepancies between the training corpus and the test corpus on model performance."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pan-etal-2025-prototype">
<titleInfo>
<title>Prototype Tuning: A Meta-Learning Approach for Few-Shot Document-Level Relation Extraction with Large Language Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dinghao</namePart>
<namePart type="family">Pan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanyuan</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bo</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiru</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhihao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ling</namePart>
<namePart type="family">Luo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongfei</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>Few-Shot Document-Level Relation Extraction (FSDLRE) aims to develop models capable of generalizing to new categories with minimal support examples. Although Large Language Models (LLMs) demonstrate exceptional In-Context Learning (ICL) capabilities on many few-shot tasks, their performance on FSDLRE tasks remains suboptimal due to the significant gap between the task format and the intrinsic capabilities of language models, coupled with the complexity of ICL prompts for document-level text. To address these challenges, we introduce a novel meta-training approach for LLMs termed Prototype Tuning. We construct simulated episodes using data with relation types that do not overlap with the test corpus, fundamentally enhancing the ICL capabilities of LLMs in FSDLRE through meta-learning. To further enhance the effects of meta-learning, we innovatively integrate the concept of prototype into the fine-tuning process of LLMs. This involves aggregating entity pairs from support documents into prototypes within the prompts and altering the way of determining relation categories to identifying the closest prototype. Experimental results demonstrate that our LLMs trained with this approach outperform all baselines. Our proposed approach markedly improves the ICL capabilities of LLMs in FSDLRE and mitigates the impact of relation semantic discrepancies between the training corpus and the test corpus on model performance.</abstract>
<identifier type="citekey">pan-etal-2025-prototype</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.62</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.62/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>1112</start>
<end>1128</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Prototype Tuning: A Meta-Learning Approach for Few-Shot Document-Level Relation Extraction with Large Language Models
%A Pan, Dinghao
%A Sun, Yuanyuan
%A Xu, Bo
%A Li, Jiru
%A Yang, Zhihao
%A Luo, Ling
%A Lin, Hongfei
%A Wang, Jian
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F pan-etal-2025-prototype
%X Few-Shot Document-Level Relation Extraction (FSDLRE) aims to develop models capable of generalizing to new categories with minimal support examples. Although Large Language Models (LLMs) demonstrate exceptional In-Context Learning (ICL) capabilities on many few-shot tasks, their performance on FSDLRE tasks remains suboptimal due to the significant gap between the task format and the intrinsic capabilities of language models, coupled with the complexity of ICL prompts for document-level text. To address these challenges, we introduce a novel meta-training approach for LLMs termed Prototype Tuning. We construct simulated episodes using data with relation types that do not overlap with the test corpus, fundamentally enhancing the ICL capabilities of LLMs in FSDLRE through meta-learning. To further enhance the effects of meta-learning, we innovatively integrate the concept of prototype into the fine-tuning process of LLMs. This involves aggregating entity pairs from support documents into prototypes within the prompts and altering the way of determining relation categories to identifying the closest prototype. Experimental results demonstrate that our LLMs trained with this approach outperform all baselines. Our proposed approach markedly improves the ICL capabilities of LLMs in FSDLRE and mitigates the impact of relation semantic discrepancies between the training corpus and the test corpus on model performance.
%R 10.18653/v1/2025.findings-naacl.62
%U https://aclanthology.org/2025.findings-naacl.62/
%U https://doi.org/10.18653/v1/2025.findings-naacl.62
%P 1112-1128
Markdown (Informal)
[Prototype Tuning: A Meta-Learning Approach for Few-Shot Document-Level Relation Extraction with Large Language Models](https://aclanthology.org/2025.findings-naacl.62/) (Pan et al., Findings 2025)
ACL
- Dinghao Pan, Yuanyuan Sun, Bo Xu, Jiru Li, Zhihao Yang, Ling Luo, Hongfei Lin, and Jian Wang. 2025. Prototype Tuning: A Meta-Learning Approach for Few-Shot Document-Level Relation Extraction with Large Language Models. In Findings of the Association for Computational Linguistics: NAACL 2025, pages 1112–1128, Albuquerque, New Mexico. Association for Computational Linguistics.