@inproceedings{yang-etal-2025-stephanie,
title = "Stephanie: Step-by-Step Dialogues for Mimicking Human Interactions in Social Conversations",
author = "Yang, Hao and
Lu, Hongyuan and
Zeng, Xinhua and
Liu, Yang and
Zhang, Xiang and
Yang, Haoran and
Zhang, Yumeng and
Huang, Shan and
Wei, Yiran and
Lam, Wai",
editor = "Chiruzzo, Luis and
Ritter, Alan and
Wang, Lu",
booktitle = "Findings of the Association for Computational Linguistics: NAACL 2025",
month = apr,
year = "2025",
address = "Albuquerque, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.findings-naacl.8/",
doi = "10.18653/v1/2025.findings-naacl.8",
pages = "153--166",
ISBN = "979-8-89176-195-7",
abstract = "In the rapidly evolving field of natural language processing, dialogue systems primarily employ a single-step dialogue paradigm. Although this paradigm is commonly adopted, it lacks the depth and fluidity of human interactions and does not appear natural. We introduce a novel **Step**-by-Step Dialogue Paradigm (Stephanie), designed to mimic the ongoing dynamic nature of human conversations. By employing a dual learning strategy and a further-split post-editing method, we generated and utilized a high-quality step-by-step dialogue dataset to fine-tune existing large language models, enabling them to perform step-by-step dialogues. We thoroughly present Stephanie. Tailored automatic and human evaluations are conducted to assess its effectiveness compared to the traditional single-step dialogue paradigm. We will release code, Stephanie datasets, and Stephanie LLMs to facilitate the future of chatbot eras."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yang-etal-2025-stephanie">
<titleInfo>
<title>Stephanie: Step-by-Step Dialogues for Mimicking Human Interactions in Social Conversations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyuan</namePart>
<namePart type="family">Lu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinhua</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiang</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haoran</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yumeng</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shan</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yiran</namePart>
<namePart type="family">Wei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wai</namePart>
<namePart type="family">Lam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-04</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Findings of the Association for Computational Linguistics: NAACL 2025</title>
</titleInfo>
<name type="personal">
<namePart type="given">Luis</namePart>
<namePart type="family">Chiruzzo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lu</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Albuquerque, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-195-7</identifier>
</relatedItem>
<abstract>In the rapidly evolving field of natural language processing, dialogue systems primarily employ a single-step dialogue paradigm. Although this paradigm is commonly adopted, it lacks the depth and fluidity of human interactions and does not appear natural. We introduce a novel **Step**-by-Step Dialogue Paradigm (Stephanie), designed to mimic the ongoing dynamic nature of human conversations. By employing a dual learning strategy and a further-split post-editing method, we generated and utilized a high-quality step-by-step dialogue dataset to fine-tune existing large language models, enabling them to perform step-by-step dialogues. We thoroughly present Stephanie. Tailored automatic and human evaluations are conducted to assess its effectiveness compared to the traditional single-step dialogue paradigm. We will release code, Stephanie datasets, and Stephanie LLMs to facilitate the future of chatbot eras.</abstract>
<identifier type="citekey">yang-etal-2025-stephanie</identifier>
<identifier type="doi">10.18653/v1/2025.findings-naacl.8</identifier>
<location>
<url>https://aclanthology.org/2025.findings-naacl.8/</url>
</location>
<part>
<date>2025-04</date>
<extent unit="page">
<start>153</start>
<end>166</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stephanie: Step-by-Step Dialogues for Mimicking Human Interactions in Social Conversations
%A Yang, Hao
%A Lu, Hongyuan
%A Zeng, Xinhua
%A Liu, Yang
%A Zhang, Xiang
%A Yang, Haoran
%A Zhang, Yumeng
%A Huang, Shan
%A Wei, Yiran
%A Lam, Wai
%Y Chiruzzo, Luis
%Y Ritter, Alan
%Y Wang, Lu
%S Findings of the Association for Computational Linguistics: NAACL 2025
%D 2025
%8 April
%I Association for Computational Linguistics
%C Albuquerque, New Mexico
%@ 979-8-89176-195-7
%F yang-etal-2025-stephanie
%X In the rapidly evolving field of natural language processing, dialogue systems primarily employ a single-step dialogue paradigm. Although this paradigm is commonly adopted, it lacks the depth and fluidity of human interactions and does not appear natural. We introduce a novel **Step**-by-Step Dialogue Paradigm (Stephanie), designed to mimic the ongoing dynamic nature of human conversations. By employing a dual learning strategy and a further-split post-editing method, we generated and utilized a high-quality step-by-step dialogue dataset to fine-tune existing large language models, enabling them to perform step-by-step dialogues. We thoroughly present Stephanie. Tailored automatic and human evaluations are conducted to assess its effectiveness compared to the traditional single-step dialogue paradigm. We will release code, Stephanie datasets, and Stephanie LLMs to facilitate the future of chatbot eras.
%R 10.18653/v1/2025.findings-naacl.8
%U https://aclanthology.org/2025.findings-naacl.8/
%U https://doi.org/10.18653/v1/2025.findings-naacl.8
%P 153-166
Markdown (Informal)
[Stephanie: Step-by-Step Dialogues for Mimicking Human Interactions in Social Conversations](https://aclanthology.org/2025.findings-naacl.8/) (Yang et al., Findings 2025)
ACL
- Hao Yang, Hongyuan Lu, Xinhua Zeng, Yang Liu, Xiang Zhang, Haoran Yang, Yumeng Zhang, Shan Huang, Yiran Wei, and Wai Lam. 2025. Stephanie: Step-by-Step Dialogues for Mimicking Human Interactions in Social Conversations. In Findings of the Association for Computational Linguistics: NAACL 2025, pages 153–166, Albuquerque, New Mexico. Association for Computational Linguistics.