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Abstract
Over the last few years, there has been great
interest in applying large language models
(LLMs) to problems in the finance industry, and
the field needs a robust LLM benchmark to sup-
port this work. Current financial LLM bench-
marks contain simple tasks which are not rep-
resentative of real use cases and have test sets
with licences that do not allow commercial use.
In response, we release AVENIBENCH, a per-
missively licensed benchmark that tests a group
of six key finance-related skills: tabular reason-
ing, numerical reasoning, question answering,
long context modelling, summarisation and di-
alogue. We refactor the test sets to ensure that
metrics are comparable, providing a unified
framework. Furthermore, AVENIBENCH intro-
duces two task difficulty modes, easy and hard,
enabling scalable evaluation based on real-
world deployment needs. We use our bench-
mark to evaluate a diverse set of 20 widely used
LLMs, from small open-weight models to pro-
prietary systems like GPT-4. This evaluation
initiates our public leaderboard, providing valu-
able insights for future academic research and
commercial development.1

1 Introduction

Large language models (LLMs) have the potential
to automate and enhance labour-intensive processes
across a wide range of industries. Finance, as a ser-
vice industry, is a key sector where LLMs can have
a significant impact, due to its large user base (e.g.
commercial banking), opportunities for profitabil-
ity (e.g. investment decisions), and stringent regula-
tory requirements (e.g. privacy and fairness). Due
to the complicated nature of many financial tasks,
and the high risks associated with making errors,
LLMs developed for the finance domain must be
rigorously evaluated prior to deployment. To sup-
port this, a number of benchmarks have been pro-
posed, including FinBen (Xie et al., 2024), FLUE

1https://huggingface.co/aveni-ai

Figure 1: Overview of current capabilities of LLMs
on AVENIBENCH. We pick a representative language
model for each group/type. See more fine-grained anal-
ysis in Table 3.

(Shah et al., 2022), BizBench (Koncel-Kedziorski
et al., 2023), InsightBench (Sahu et al., 2024), and
UCFE (Yang et al., 2024).

We find that whilst many existing benchmarks
provide good coverage of financial natural lan-
guage processing (FinNLP) tasks, they are limited
in their usefulness for evaluating real-world com-
mercial LLM systems. Specifically, these bench-
marks 1) typically adopt a wide range of multiple
pre-existing NLP and machine learning datasets
with little thought as to their suitability for LLMs
(e.g. named entity recognition or sentiment anal-
ysis); 2) provide limited insight into the difficulty
of tasks or examples; 3) have inconsistent score
ranges across diverse test sets; and 4) often include
data under restrictive licences making them unfit
for commercial purposes, which undermines their
value as financial LLMs are going to be heavily
used by industry (Li et al., 2023; Nie et al., 2024).

In this paper, we directly address each of these
limitations by re-examining existing financial test
sets, making appropriate modifications, and filter-
ing out those with a restrictive licence. Our contri-
butions are as follows:

mailto:mateusz@aveni.ai
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• We introduce AVENIBENCH, an open and
fully permissive benchmark for evaluating
LLMs in the finance domain.

• We format existing datasets and adapt them
in order to unify metrics. Thanks to this,
each dataset has a corresponding and easy-to-
compare leading metric, and a ranking-based
aggregation.

• Some existing benchmarks proved to be ei-
ther too easy or too difficult. Considering the
scarcity of evaluation resources, we craft easy
and hard modes that can be chosen based on
a downstream use case.

• We evaluate 20 models, from efficient 1B
LLMs to large closed-source systems like
GPT-4 to present a full picture of performance
on AVENIBENCH and a starting point for our
leaderboard.

2 Related Work

FinBen (Xie et al., 2024) is the most extensive
among the existing benchmarks in the FinNLP do-
main. It contains an impressive number of 36 tasks;
however, we note that (1) not all of them are suited
or formatted for LLMs and (2) the majority of the
tasks are released with non-permissive licences.
Moreover, due to the extensive number of tasks
covered, the datasets have been adapted for LLMs
but not revisited on an individual task basis.

Other comprehensive finance benchmarks in-
clude FLUE (Shah et al., 2022) which contains clas-
sification, information extraction, and question an-
swering in the finance domain, as well as BizBench
(Koncel-Kedziorski et al., 2023) which includes
program synthesis to test reasoning in business and
finance scenarios. Some other efforts target more
specialised capabilities. FinBench (Yin et al., 2023)
focuses on financial risks: credit card default, loan
default, credit card fraud, and customer churn –
tasks which involve processing large amounts of
numerical data but little text data, and we argue
are not well suited to LLMs. InsightBench (Sahu
et al., 2024) evaluates LLM agents’ data analytics
in various business use cases. UCFE (Yang et al.,
2024) is a multi-turn finance dialogue benchmark
covering 17 task types, which is tailored to four dis-
tinct user groups: analysts, financial professionals,
regulatory professionals, and the general public.

There is also a range of emerging datasets that
focus on tabular data and mathematical reasoning

– tasks that we also include in our benchmark. In
particular, we highlight FinanceMATH (Zhao et al.,
2024) a knowledge-intensive financial math reason-
ing QA dataset, and TableBench (Wu et al., 2024)
a tabular QA dataset, for which financial reports
make up a third of the data.

3 Benchmark

3.1 Datasets

In AVENIBENCH we include eight datasets that rep-
resent a group of six finance-relevant skills: Tabu-
lar Reasoning (TR), Numerical Reasoning (NR),
Question Answering (QA), Long Context (LC)
Modelling, Summarisation (Sum) and Dialogue
(D). Each of the datasets covers at least one of
the skills and has a permissive licence that allows
for commercial use. Table 1 provides statistics on
the number of evaluation examples for each of the
datasets (post-filtering, details Section 3.2).

Banking77 [D] (Casanueva et al., 2020) is a
fine-grained intent detection dataset for the bank-
ing domain, designed to evaluate the classification
of user intents in a task-oriented dialogue (ToD)
setting.

NLU++ [D] (Casanueva et al., 2022) presents
two challenging and realistic ToD tasks for the
banking and hotel domains: multiple-intent detec-
tion (identifying multiple intents in a single utter-
ance) and slot labelling (identifying slot values in
the utterance). We use exclusively the multi-intent
detection task within the banking subset.

FinQA [QA] (Chen et al., 2021) is a QA dataset
designed to evaluate numerical reasoning over fi-
nancial reports, with questions written by experts.

ConvFinQA [QA] (Chen et al., 2022) extends
FinQA to construct a multi-turn question answering
dataset framed in a conversational setting.

ECTSum [Sum] (Mukherjee et al., 2022) is a
long-document summarisation dataset for the spe-
cific task of bullet point summarisation of Earnings
Calls transcripts. We include the extractive subset.

MultiHiertt [LC, NR, TR] (Zhao et al., 2022) is
a QA dataset designed to assess numerical reason-
ing over long unstructured financial texts contain-
ing multiple tables, many of which are hierarchical.

TAT-QA [NR, TR] (Zhu et al., 2021) is a QA
dataset combining text and tabular data extracted
from financial reports, again requiring numerical
reasoning. Unlike in MultiHiertt, most tables in
TAT-QA have a flat structure.
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Dataset Test Size Licence

Banking77 3,080 CC BY 4.0
NLU++EASY 496 CC BY 4.0
NLU++HARD 496 CC BY 4.0
FinQA (from ConvFinQA) 530 MIT
ConvFinQA 1,483 MIT
ECTSum 495 GPL 3.0
MultiHierttEASY 150 MIT
MultiHierttHARD 1,007 MIT
TAT-QA 1,663 CC BY 4.0
TAT-HQA 824 Apache 2.0

Table 1: Benchmark details: evaluation examples per
dataset & mode, and corresponding licence.

TAT-HQA [NR, TR] (Li et al., 2022) is a modi-
fied version of TAT-QA, where hypothetical facts
are added to each question, overriding the facts
presented in the report.

For the NLU++ and MultiHiertt datasets, we
provide two modes, EASY and HARD, representing
different levels of task complexity. The adaptation
of the datasets is described in Section 3.2.1.

3.2 Metrics & Filtering

The selected datasets, in their initial form, have var-
ious metrics proposed in their reference implemen-
tation. However, we discovered multiple problems
with using them directly to evaluate LLMs.

Firstly, when a dataset was built for BERT-based
models (Devlin et al., 2019), the original evaluation
regime had to be adapted. Such a change requires
a modification of the dataset, which in turn impacts
the metric. For example, the reference NLU++ is
a multi-label dataset and the benchmark metric is
F1. While we could query an LLM about each
label in a binary manner (and keep F1), it would
be inefficient. Therefore, we sampled distractors
(more in Section 3.2.1) and cast the dataset as a
multiple-choice question answering (MQA) style
evaluation using accuracy instead of F1 as with
MQA we eliminate the problem of class imbalance.

Secondly, we found that tasks using multiple
metrics – e.g. MultiHiertt used both F1 and exact
match – could easily be simplified. Reducing the
dataset to have only numerical answers resulted
in discarding just a few samples (e.g. the Multi-
Hiertt dev size was slimmed from 1,044 to 1,007).
This approach allows us to reduce the evaluation
complexity and compare results exclusively on the
numerical identity of reference and prediction.

Based on these findings, we map the datasets to
unify and simplify the metrics, limiting the evalua-

Dataset Metric

Banking77 Accuracy
NLU++ Accuracy
FinQA NI
ConvFinQA NI
ECTSum RougeL
MultiHiertt NI
TAT-QA LM
TAT-HQA LM

Table 2: Metrics derived for each dataset in the bench-
mark. NI stands for numerical identity accuracy and
LM stands for list match accuracy.

tion in AVENIBENCH to the following metrics:

• Accuracy: for MQA-style benchmarks.

• Numerical identity accuracy: compare num-
bers. We include a simple post-processing
step to handle special signs (e.g. percentage
or currency) and use numeric-based instead of
string-matching comparison.

• List match accuracy: compare a list of pos-
sible answers (invariant to order). For such
tasks, the model is expected to produce a list
of answers.

• RougeL: for summarisation tasks (Lin, 2004).

Table 2 presents the metric used for each of the
datasets in AVENIBENCH.

3.2.1 Adapting the Difficulty Ratio
Evaluation benchmarks in the financial domain are
scarce; therefore, it is crucial to make use of all
available resources. By default, a benchmark might
be either too easy or too difficult, depending on the
evaluated model size. To make use of all available
data for different LLM parameter budget buckets,
we split two datasets into EASY and HARD.

The NLU++ dataset with a typical number of dis-
tractors was too easy for bigger models, reaching
over 90% for larger Qwen 2.5 models or Llama-
3.1 70B. Therefore, to increase difficulty, we not
only increased the number of distractors but also
allowed them to have different lengths. The last
modification allowed for a distractor to include (or
be) a subset of correct labels.

On the other hand, MultiHiertt was too chal-
lenging for smaller models (e.g. OLMo 1B has
a performance lower than 1%) as the dataset re-
quires long context handling, having a range of 2-7
tables per query. We extracted an easier subset,
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Model Param.
Banking77 NLU++ FinQA ConvFinQA ECTSum MultiHiertt TAT-QA TAT-HQA AVG Borda Count

(0-shot) EASY HARD (0-shot) (0-shot) (0-shot) EASY HARD (4-shot) (4-shot) Score Rank
(0-shot) (0-shot) (2-shot) (0-shot)

Proprietary LLMs
GPT-4o - 96.43 97.59 94.18 16.98 61.43 25.75 27.33 22.84 41.37 48.06 53.20 189 1
GPT-4o-mini - 94.94 97.04 91.04 10.57 55.83 22.41 15.33 9.43 31.45 22.57 45.06 153 4

Open-weight LLMs
Qwen 2.5 72B 95.27 97.85 33.02 13.58 55.43 24.61 24.00 16.48 39.63 30.95 43.08 177 2
Qwen 2.5 32B 94.81 96.51 22.04 10.94 55.36 25.16 23.33 13.21 33.19 23.67 39.82 164 3
Llama 3.1 70B 82.11 94.35 17.79 5.47 48.42 20.99 24.00 10.63 35.84 25.85 36.54 148 5
Gemma 2 27B 76.91 94.89 17.34 4.15 47.40 21.84 9.33 7.65 33.01 10.44 32.30 127 6
Qwen 2.5 7B 88.74 89.52 14.87 2.83 43.02 24.44 13.33 7.75 18.82 8.86 31.22 119 7
Mistral Nemo 12B 41.59 82.26 9.95 3.40 41.27 22.86 20.00 7.75 26.70 11.04 26.68 114 8
Mixtral v0.1 8x7B 52.89 88.98 17.11 3.77 43.83 18.32 18.00 5.06 28.80 9.22 28.60 109 9
Gemma 2 9B 57.36 87.36 11.97 5.09 44.37 23.30 0.00 6.45 25.86 9.34 27.11 107 10
Llama 3.1 8B 45.63 63.71 7.03 2.08 39.65 19.67 14.00 5.36 23.93 6.31 22.74 87 11
IBM Granite 3.0 8B 74.46 58.33 4.34 1.51 29.74 25.04 4.00 1.29 20.02 4.13 22.29 74 12
Qwen 2.5 1.5B 82.07 76.88 11.51 0.19 29.00 21.71 6.67 2.38 13.41 4.73 24.86 72 13
Mistral v0.3 7B 27.52 41.40 0.00 0.94 37.09 22.69 1.33 4.17 18.52 5.70 15.94 63 14
IBM Granite 3.0 2B 32.03 63.97 6.37 0.19 21.51 23.27 2.67 0.99 14.97 4.25 17.02 55 15
SmolLM2 1.7B 29.80 28.23 0.00 0.00 25.76 15.99 9.33 4.57 13.95 4.37 13.20 48 16
Gemma 2 2B 27.74 12.90 0.00 0.57 31.56 20.93 0.67 3.97 12.87 3.64 11.49 42 17
Llama 3.2 1B 22.11 9.14 0.00 0.00 23.40 15.08 7.33 3.48 10.22 2.43 9.32 29 18
OLMo 7B 21.14 5.11 0.00 0.00 18.81 16.07 4.00 1.79 8.90 4.49 8.03 26 19
OLMo 1.5B 20.02 16.67 0.00 0.19 3.10 17.19 4.00 0.40 9.68 1.09 7.23 23 20

Table 3: Leaderboard of the evaluated LLMs. The final ranking was established using Borda Count.

which one could expect smaller models to handle,
although it is still challenging considering other
skills required to solve this dataset: NR and TR.
The derived setups are as follows:

• NLU++EASY: 4 options, each of the 3 distrac-
tors has the same length as an answer.

• NLU++HARD: 10 options, each of the 9 dis-
tractors has a length between 1 and the length
of answers.

• MultiHierttEASY: a subset of queries with
at most 3 tables and length of max 4,096
tokens (as per Mistral-7B-v0.3). Addition-
ally, this mode has a few-shot setup (con-
stant examples—2 shortest from the training
dataset to reduce long context problems that
small models might encounter).

• MultiHierttHARD: zero-shot, has all the sam-
ples that might require extremely long context
reasoning over multiple tables.

4 Leaderboard

We present the evaluation results on AVENIBENCH

in Table 3. We evaluate the models using the
lm-eval-harness (Gao et al., 2024), which pro-
vides a standardised framework for querying LLMs
for MQA and generation-based tasks. The scores
are normalised following the normalisation of the
OpenLLM Leaderboard.2 To avoid problems with

2Details: OpenLLM Leaderboard documentation

balancing different metrics and handling perfor-
mance outliers, instead of a naive arithmetic aver-
age over the scores, we rank the models using a
task-level Borda Count method (Colombo et al.,
2022). The Borda Count method assigns points per
rank position in each task and, based on the final
sum of points, establishes the ranking.

We benchmark 18 open-weight base LLMs and
include GPT-4o and GPT-4o-mini for reference.
GPT models are instruction-tuned, so we require a
direct answer via a system prompt. For a detailed
list of evaluated models, see Table 4 in Appendix
A. Among open-weight LLMs, the Qwen family
outperform the field at all different sizes. The 32B
and 1.5B are competitive or even better against big-
ger models, as Qwen 2.5 32B outperforms Llama
3.1 70B and Qwen 2.5 1.5B has an impressive per-
formance when compared against many models in
the 7-9B parameter range.

5 Conclusion and Future Work

In summary, we scrutinised existing FinNLP test
sets, modified and adapted data, tasks, and metrics,
and finally presented a permissive AVENIBENCH.
To ensure that it continues to be useful to the
community, we aim to regularly review, adjust (if
necessary), and incorporate new tests as they be-
come available. We plan to ingest AVENIBENCH

into lm-eval-harness to facilitate public contri-
butions that could extend the leaderboard to support
missing multilingual and multi-modal evaluations.

https://hf.co/docs/leaderboards/open_llm_leaderboard/normalization
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Limitations

AVENIBENCH is based on existing datasets which
cover a range of tasks that are relevant to the eval-
uation of finance LLMs. Whilst the six skill cate-
gories in our benchmark cover many of the central
tasks that an LLM might be expected to perform,
this coverage is far from exhaustive owing to the
limited availability of datasets with permissive li-
cences.

We have focused solely on the inclusion of En-
glish datasets. Although suitable datasets likely
exist in other languages, in our review of available
datasets the majority that we found were only avail-
able for English. Additionally, in the current state,
we restrict the benchmark to text-only tasks, which
is a limitation considering the growing popularity
of multi-modal LLMs (Bai et al., 2023; Chen et al.,
2024; Steiner et al., 2024).
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A Evaluation details

Table 4 lists the evaluated LLMs, with references
to their technical details and specific versions.

The GPT-4o models are instruction-tuned as
opposed to foundation models, so we have pro-
vided a system-level prompt requiring that it gen-
erates an answer directly. Moreover, as the API
does not return probabilities of prompt tokens (re-
quired for the default MQA configuration as by
lm-eval-harness), we converted the MQA tasks
configuration to generate an answer letter.

Model Source/Version Reference

GPT4o gpt-4o-2024-08-06 Achiam et al. (2023)
GPT4o-mini gpt-4o-mini-2024-07-18 Achiam et al. (2023)
Qwen 2.5 72B Qwen/Qwen2.5-72B Qwen Team (2024)
Qwen 2.5 32B Qwen/Qwen2.5-32B Qwen Team (2024)
Qwen 2.5 32B Qwen/Qwen2.5-7B Qwen Team (2024)
Qwen 2.5 7B Qwen/Qwen2.5-1.5B Qwen Team (2024)
Llama 3.2 1B meta-llama/Llama-3.2-1B Dubey et al. (2024)
Llama 3.1 70B meta-llama/Llama-3.1-70B Dubey et al. (2024)
Llama 3.1 8B meta-llama/Llama-3.1-8B Dubey et al. (2024)
Gemma 2 27B google/gemma-2-27b Gemma Team et al. (2024)
Gemma 2 9B google/gemma-2-9b Gemma Team et al. (2024)
Gemma 2 2B google/gemma-2-2b Gemma Team et al. (2024)
IBM Granite 3.0 8B ibm-granite/granite-3.0-8b-base Granite Team (2024)
IBM Granite 3.0 2B ibm-granite/granite-3.0-2b-base Granite Team (2024)
Mixtral v0.1 8x7B mistralai/Mixtral-8x7B-v0.1 Jiang et al. (2024)
Mistral Nemo 12B mistralai/Mistral-Nemo-Base-2407 Mistral AI Team (2024)
Mistral v0.3 7B mistralai/Mistral-7B-v0.3 Jiang et al. (2023)
SmolLM2 HuggingFaceTB/SmolLM2-1.7B Allal et al. (2024)
OLMo 7B allenai/OLMo-7B-hf Groeneveld et al. (2024)
OLMo 1.5B allenai/OLMo-1B-0724-hf Groeneveld et al. (2024)

Table 4: Evaluated LLM details.
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