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Abstract

Large Language Models (LLMs) have been
shown to perform well for many downstream
tasks. Transfer learning can enable LLMs to
acquire skills that were not targeted during pre-
training. In financial contexts, LLMs can some-
times beat well-established benchmarks. This
paper investigates how well LLMs perform at
forecasting corporate credit ratings. We show
that while LLMs are very good at encoding tex-
tual information, traditional methods are still
very competitive when it comes to encoding
numeric and multimodal data. For our task,
current LLMs perform worse than a more tradi-
tional XGBoost architecture that combines fun-
damental and macroeconomic data with high-
density text-based embedding features. We in-
vestigate the degree to which the text encod-
ing methodology affects performance and in-
terpretability. The dataset reconstruction and
model code from this paper is provided1.

1 Introduction

Corporate credit ratings indicate a borrower’s abil-
ity to service its debt obligations and are a forward-
looking measure of a company’s health (Baresa
et al., 2012). A company’s credit rating is sig-
nificant since it affects the cost of raising capital,
which in turn could finance future infrastructure
to increase revenue or profitability. An optimistic
rating can result in a virtuous cycle whereby it is
easier to raise money and grow the business (Cho
et al., 2020), and a pessimistic rating can result in a
vicious cycle in which competition can grow faster
due to cheaper debt obligations. Knowing which
cycle a company may enter can be advantageous to
investors. Many major funds are also not allowed
to own sub-prime assets, which makes forecasting
a drop in credit rating very important so that the
fund has more time to divest from the asset, which
could result in a higher close price.

1https://github.com/FelixDrinkall/credit-ratings-project

Figure 1: Example of the best-performing feature - high-
density clustering (Drinkall et al., 2022). Each dot rep-
resents a sentence, and the colored areas representing
high-density regions of the embedding space.

Recently, there has been a surge of interest in
text-based forecasting (Xu and Cohen, 2018; Yang
et al., 2020; Nie et al., 2024). One reason for this
trend is the progress that has been made in text
modelling in general (Zoph et al., 2022; Touvron
et al., 2023). Given that financial news is often
first disseminated through written or spoken com-
munications (Boulland et al., 2016), rather than in
numeric or tabular formats, there has been a hope
that important information can be included in mod-
els sooner than was possible without using linguis-
tic information. Another reason is that language
can provide relevant context and forward-looking
information, whereas financial numeric reporting
alone is inherently retrospective. Contained within
a company’s filings, text can provide insights about
the future strategic direction of the company as
well as historical information.

The majority of text-based forecasting research
has been focused on short text sequences, draw-
ing primarily from sources such as social media
(Xu and Cohen, 2018), news articles (Zhang et al.,
2018), and analyst recommendations (Rekabsaz
et al., 2017). In contrast, many fundamental fi-
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nancial documents, such as company filings, earn-
ings call transcripts, and patents, are very long.
Considering that the shorter texts often serve as
summaries, reflections or commentaries on the de-
tailed primary sources and that speed of informa-
tion acquisition is essential in finance (Rzayev et al.,
2023), there must be more focus on text-based fore-
casting for longer text sequences. This paper evalu-
ates the most effective ways to model longer text
sequences within a text-based forecasting task.

Linked to the recent progress of LLMs, there has
been growing interest in applying these models in a
variety of downstream applications (Kaddour et al.,
2023). It has been shown that as generative LLMs
scale, they acquire abilities that were not present in
smaller LLM variants (Zoph et al., 2022), such as
modular arithmetic (Srivastava et al., 2023), NLU
(Hendrycks et al., 2021), commonsense reasoning
(Lin et al., 2022), fact-checking (Rae et al., 2022)
and so on. These abilities have been impressive,
but it is best not to be over-optimistic. The lack of
training data transparency associated with some of
the best-performing LLMs means that we cannot
be certain whether some of the performance gains
are due to the memorisation of benchmarks being
in the training datasets (Bender et al., 2021; Sainz
et al., 2023; Xu et al., 2024; Balloccu et al., 2024).
Generative LLMs also seem to have a mediocre
understanding of concepts like negation and com-
plex logical reasoning (Kassner and Schütze, 2020;
Lorge and Pierrehumbert, 2023; Huang and Chang,
2023; Truong et al., 2023). These limitations in the
capabilities of LLMs could prove to be very con-
sequential in financial contexts. In this paper, we
test generative LLMs on a complex linguistic task,
which has never been fully solved by human ex-
perts: credit rating forecasting. We show that while
LLMs encode text-based information very well,
they are not good at incorporating numeric infor-
mation, and underperform a boosting-tree baseline.

The contributions of this paper are as follows:

• We show that generative LLMs are poor at
encoding numerical information, and under-
perform traditional methods.

• To our knowledge, this is the first use of mod-
ern language modelling techniques in a credit
rating forecasting task.

• A financial dataset that can be reproduced with
an academic WRDS licence.

• A benchmark of techniques for encoding long-
sequence text in a forecasting task.

2 Related Work

2.1 Text-based forecasting

2.1.1 Encoding Text for Forecasting
The predominant approach in text-based forecast-
ing has focused on the extraction of interpretable
features like sentiment and uncertainty scores
(Song and Shin, 2019; An et al., 2023). Rule-based
sentiment using diverse lexicons has dominated
the literature (Mohammad, 2020; Kalamara et al.,
2022; Barbaglia et al., 2023). Lexicons tailored
to specific domains generally surpass broader lexi-
cons in predictive tasks (Loughran and McDonald,
2011; Li et al., 2014). Nevertheless, lexicons over-
look contextual nuance and inadequately address
common linguistic phenomena like negation. To
mitigate these limitations, efforts have been made
to integrate more sophisticated sentiment classi-
fiers (An et al., 2023; Ayyappa et al., 2023). How-
ever, sentiment presupposes that important infor-
mation can be encapsulated within a single dimen-
sion. To avoid an overly simple and prescriptive
feature set, unsupervised methods have been used
in feature exploration: TF-IDF (Jones, 1972), La-
tent Dirichlet Allocation (LDA) (Wang et al., 2017;
Kanungsukkasem and Leelanupab, 2019). How-
ever, the arrival of contemporary topic models has
gradually eclipsed LDA, fostering the adoption of
transformer-derived topic models into forecasting
tasks (Drinkall et al., 2022).

Recently, some studies have used the representa-
tions from encoder-based LLMs as features for text-
based forecasting. LLMs exploit high-dimensional
embeddings to capture the linguistic meaning of
words (Devlin et al., 2019; Radford et al., 2019)
and sentences (Reimers and Gurevych, 2019), with
representation dimensionality ranging from 384
(Wang et al., 2020) to 5192 (Touvron et al., 2023).
Such dimensionality poses challenges when used
with smaller datasets. Nonetheless, there has been
some success in incorporating these methods into
text-based forecasting (Sawhney et al., 2020; Lee
et al., 2023). However, the effectiveness of LLMs
is often hampered by their limited context windows.
Recent advancements have seen an increase in con-
text window sizes, thanks in part to better GPU
infrastructure making it computationally feasible,
the implementation of attention sparsification tech-
niques (Tay et al., 2022), and positional encoding
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hacks (Chen et al., 2023). There are also methods
that combine the use of transformer-based LLMs
with feature-based methods, such as topic clusters
(Grootendorst, 2022; Drinkall et al., 2022), or emo-
tions (Liapis and Kotsiantis, 2023).

2.1.2 Generative Multimodal Forecasting
In addition to the adoption of encoder-based LLMs
like BERT (Devlin et al., 2019), generative LLMs
have been used in text-based forecasting tasks.
Generative LLMs use masked-self attention to
model text in an autoregressive manner. The GPT
(Radford et al., 2019) and Llama (Touvron et al.,
2023) model families are part of the generative
model class. LLMs have been used as a backbone
model for generative time-series forecasting mod-
els (Cao et al., 2023; Chang et al., 2023; Zhou et al.,
2024; Liu et al., 2024), showing that an adapted
generative language model can forecast weather,
electricity and several other domains without rely-
ing on traditional text inputs. Liu et al. 2024 used
eight text-based frames in order to create a general
time-series modal that could be applied to several
domains, and in so doing encoded both text and
numerical information in a GPT-2-small model to
generate the predicted time-series.

Beyond the use of text-based frames in genera-
tive forecasting tasks, GPT4MTS (Lee et al., 2023)
encoded both news and time-series information
before passing the concatenated input sequence
through a pre-trained GPT-2 model. FinMA (Xie
et al., 2024) and PromptCast (Xue and Salim, 2024)
evaluated the performance of LLMs on stock move-
ment prediction by converting the time-series in-
formation into natural language and prompting the
language model for the predicted direction. Yu
et al. 2023 takes this further by passing exclusively
text information into the prompt for a financial
forecasting task. There has been little comparison
between these generative methods and the more
traditional discriminative methods when applied to
multimodal information.

2.2 Credit Rating Prediction

Research in Credit Rating Prediction (CRP) has
tended to focus on predicting the absolute credit
rating at time t = 0 given the feature set Ft=0 (Li
et al., 2023; Galil et al., 2023; Tavakoli et al., 2023).
This approach takes the perspective of the rating
agencies and is useful for identifying anomalies
where the existing credit rating classification ap-
pears to be implausible or inconsistent with cur-

rent financial indicators (Lokanan et al., 2019).
However, predicting the absolute rating level is
more simple and not as useful as predicting a fu-
ture change. There is some limited research on
Credit Rating Forecasting (CRF), where the tar-
get is the movement direction of the credit rating
at time t = 1. This task takes the perspective of
the investor seeking to predict whether an asset is
likely to be classified as more or less risky in the
next time period, and is the task outlined in this
paper.

There have been some attempts to incorporate
linguistic information into both corporate risk (Fei
et al., 2015; Cao et al., 2024) and default predic-
tion (Mai et al., 2019; Stevenson et al., 2021).
Some papers have shown how text can help im-
prove consumer credit lending (Hurley and Ade-
bayo, 2016; Babaei and Giudici, 2024). There has
also been some attempts to include textual data in
CRP and CRF tasks (Chen and Chen, 2022; Muñoz-
Izquierdo et al., 2022; Tavakoli et al., 2023). The
majority of the existing literature uses lexicons,
keywords or sentiment to encode the text (Kogan
et al., 2009; Fei et al., 2015; Mai et al., 2019;
Muñoz-Izquierdo et al., 2022; Chen and Chen,
2022). There have been some studies that have uti-
lized encoder-based LLM representations (Steven-
son et al., 2021; Tavakoli et al., 2023; Cao et al.,
2024). There has been some work exploring how
well generative models perform at assessing credit
lending applications (Babaei and Giudici, 2024),
and value at risk in general (Cao et al., 2024), but
there has been no work benchmarking how well
modern generative LLMs perform on a CRF task.
Understanding generative LLMs’ relative strengths
relative to more traditional methods is an important
contribution to the existing literature.

3 Dataset

In part due to the lack of large open-source or read-
ily available datasets with temporal metadata, most
of the financial text-based forecasting studies have
either focused on expensive proprietary datasets, or
datasets spanning 2-3 years (Xu and Cohen, 2018;
Soun et al., 2022), making results hard to replicate
and potentially biased to a specific time. While
temporal bias in language-based tasks is hard to
avoid due to limited historical data (Drinkall et al.,
2024), we aim to reduce this by using a dataset
spanning 23 years, increasing the models’ expo-
sure to different economic contexts. The cost and
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lack of transparency of large datasets have hindered
progress in the field and made it harder to build on
promising work due to the difficulty of replicating
results. As such, all data used in this paper is either
open source or available with a WRDS subscription
to enable effective dataset reconstruction. The data
used in this paper is from US-based companies.

3.0.1 Credit ratings (C)
For the credit ratings, we used the Compustat Cap-
ital IQ dataset2, using Standard & Poors’ (S&P)
ratings. These ratings cover the period from 1978
to 2017. S&P routinely assesses and assigns credit
ratings to companies. Our paper predicts changes
to the long-term credit ratings. Notably, we incor-
porate historical ratings from preceding quarters
into our prediction models, acknowledging the dis-
tinct implications of a top-rated company (AAA)
being downgraded compared to a lower-rated one
(CC) experiencing a similar decline.

3.0.2 SEC filings
This paper uses 10-Q and 10-K filings available in
the SEC’s EDGAR database3 to provide both tex-
tual context. They were chosen for their consistent
structure which aids homogenous feature extrac-
tion. While most of the content in these filings
is comprised of indexing, tables, and introductory
text, we’re interested in the parts that offer insights
into a company’s future financial health. As such,
we’ve focused on the Management’s Discussion
and Analysis of Financial Condition and Results of
Operations (MDA) section. We extract the MDA
sections from all SEC filings - using the SEC-API4 -
for which we had credit rating data, spanning from
Q1-1994 to Q2-2017. The API returns cleaned
text, but we clean the text further by removing the
remaining HTML, links and excessive spaces.

3.0.3 Fundamental data (F)
S&P emphasizes two components in their credit
rating methodology: the financial and business risk
profiles (Gillmor, 2015). While the text from the
MDA section provides some insight into the qual-
itative business risk profile, numerical fundamen-
tal data is important to assess the financial health
of a company. For the fundamental data, we use
the Compustat Quarterly Fundamentals dataset5.
The variables selected are outlined in Appendix

2Credit Ratings: https://tinyurl.com/r4urtkc5
3Filings Database: https://tinyurl.com/3rdn7hrx
4Filings API: https://sec-api.io/
5Fundamental Data:https://tinyurl.com/4ca8ddst

C. These variables were consistently reported for
all the companies under consideration. Ideally, we
would incorporate a broader range of fundamen-
tal variables, but expanding the variable set would
result in fewer samples with complete data, thus
limiting the scope of our analysis.

3.0.4 Macroeconomic data (M)
Adverse events in the world economy can also im-
pact a company’s ability to repay its debt. Many
external forces can affect a company’s future cred-
itworthiness, however, we have identified three key
areas from prior research in the area (Carling et al.,
2007; Taylor et al., 2021): labour statistics, interest
rates and foreign exchange data. For the labour
statistics, we used the Bureau of Labour Statistics
dataset6. For the interest rate and foreign exchange
data, we used the Federal Reserve Bank Reports7,8.

3.1 Dataset Construction

To maintain consistent periodicity in SEC filings,
all data is aligned quarterly. The dataset spans
from Q1 1994, when the SEC began electronic
processing of filings, to Q2 2017, the last period
with credit rating data from Compustat Capital IQ.
Companies with incomplete records were excluded.
As a result, when the number of lagged quarters
used in the task is increased, the number of valid
samples diminishes. This reduction is due to the
lower probability of having complete data across
many consecutive quarters, compared to when only
the most recent quarter is considered.

Credit rating data is highly imbalanced, with
93.4% of companies maintaining the same score.
While oversampling techniques like SMOTE
(Chawla et al., 2002) are common for credit rat-
ing prediction (Pamuk and Schumann, 2023; Wang,
2022; Zhao et al., 2024), their application to text
embeddings lacks consensus. To address this, we
balanced the classes, reducing the dataset size.
Training data spans Q1 1994 to Q4 2012, valida-
tion from Q1 2013 to Q4 2014, and testing from Q1
2015 to Q4 2016. The dataset was made from 23
years and the size is representative of many other
tasks in NLP (Table 4).

The MDA section of an SEC Filing, despite only
constituting a small part of the filing, is still very
long. The average MDA section in our task is
13,267 tokens long using a BPE tokenizer (Sen-

6Labour Statistics: https://tinyurl.com/y94d52xk
7Interest Rate Data: https://tinyurl.com/46aw6mu2
8Foreign Exchange Data: https://tinyurl.com/a38rmzd8
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nrich et al., 2016). As such, when a model was not
able to encode all of the tokens, only the first part
of the text was encoded.

4 Methodology

We deploy two frameworks to test different archi-
tectural methodologies on this task. The same data
are provided to each of the frameworks. The first
framework is a feature-based discriminative ap-
proach that uses a more traditional boosting-tree
model and tests the different ways to encode the
textual data. The second uses generative LLMs and
prompting to output one of a fixed list of labels
through a greedy search algorithm (App. A).

4.1 Task Description

The objective is to predict the credit rating, R̂t, at
time t. The function can be represented as follows:

R̂t = f
(
Tt−1, Tt−2, . . . , Tt−p;

Rt−1, Rt−2, . . . , Rt−p;

Nt−1, Nt−2, . . . , Nt−p

)
Here, Tt−i represents the text data, Rt−i represents
the historical credit rating data, Nt−i represents the
numeric data - both fundamental and macroeco-
nomic. i varies from 1 to p, with p indicating the
number of past quarters considered (1 to 4 quarters
in this study). Furthermore, f is the predictive func-
tion to convert the input data into an estimate. An
ablation study is conducted to evaluate the impact
of different data types on the prediction accuracy.
In this study, the function f is tested under vari-
ous configurations: using only text data Tt−i, using
combinations of historical ratings Rt−j , and nu-
meric data Nt−k. This approach helps to determine
the relative importance of each type of data.

4.2 Boosting-Tree Baseline

To test the abilities of generative LLMs, it is nec-
essary to benchmark the performance against a
relatively well-understood and robust algorithm.
We select XGBoost (Chen and Guestrin, 2016), a
model that has been widely adopted in many do-
mains (Talukder et al., 2023; Dong et al., 2023;
Joshi et al., 2024). The supervised model takes as
input the normalized fundamental, macroeconomic
and text data, and outputs the most likely label. We
describe other more complex neural network archi-
tectures that failed to learn this task in Appendix
D. Due to the restricted dataset size, the models

outlined in the Appendix were unable to learn the
task before overfitting the training dataset.

4.3 Text Encoders
To test and identify which of the traditional en-
coders performs best we trialled a series of standard
methodologies.

The Loughran McDonald Lexicon (LM)
(Loughran and McDonald, 2011) is widely recog-
nized in finance. Given its prevalence, it is crucial
to compare its effectiveness with more advanced
methods. The lexicon classifies words into four
domains: Positivity, Negativity, Litigiousness, and
Uncertainty. However, the simple language mod-
elling technique classifies phrases like "The debt
increased last quarter" as neutral. The LM text rep-
resentation in this work is the document word count
from each sentiment, normalized by the maximum
value in the training set.

Latent Dirichlet Allocation (LDA) is a widely-
used topic modeling method that identifies latent
topics within text (Blei et al., 2003). It operates by
assuming that each document is a mixture of top-
ics and that each topic is a distribution over words.
Despite advancements in topic modeling, LDA re-
mains a reliable baseline for evaluating newer mod-
els. In this paper, the features represent texts as
probability distributions over 25 topics, with each
dimension indicating the likelihood of the text be-
longing to a specific topic.

High-density Embedding Clusters (HEC) lever-
age the natural language understanding of LLMs
but reduce the dimensionality of the input feature.
HEC provides a good basis for topic modelling (Sia
et al., 2020; Grootendorst, 2022). Sentence embed-
dings have also been used to discern domain type
from text (Aharoni and Goldberg, 2020). Drinkall
et al. 2022 extended this work to generate features
from clusters of sentence embeddings in a COVID-
19 caseload prediction task. For this task, each sen-
tence of each filing in the training set was encoded
into embeddings space using a all-mpnet-base-v2
(Reimers and Gurevych, 2019), the dimensional-
ity was then reduced using UMAP (McInnes et al.,
2020), and the HDBSCAN clustering algorithm
(Campello et al., 2013) was used for form 100 dis-
tinct clusters. An example of the cluster features
is displayed in Figure 1. Then each filing in the
train, validation and test set was split into sentences
and then transformed into the embedding space de-
scribed above. The overall text representation was
the average of the representations of each sentence,
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and the representation of each sentence was the
probability distribution that the sentence belonged
to each of the 100 clusters.

To understand the extent to which emotion
scores play a significant role in forecasting the next
credit rating. We used a DistilRoBERTa model
(EDRoBERTa) that had been fine-tuned on an emo-
tion classification task (Hartmann, 2022). The SEC
Filings are then chunked into 512 token sequences
and classified according to the probability that that
chunk can be associated with each emotion. The
average across all chunks is taken as the final text
representation of each filing.

We also trialled a pooled MP-NET representa-
tion (Song et al., 2020) by chunking the text into
512 token segments and averaging over the pooled
representation of each chunk. In well-established
benchmarks (Muennighoff et al., 2023), MP-NET
embeddings have performed strongly for their size
and provide a baseline comparison to the HEC fea-
tures derived from the MP-NET model.

4.4 Generative Framework
Given recent advancements in generative LLMs,
we evaluate whether these models can identify
changes in a company’s perceived risk and deter-
mine the best methodology for achieving high per-
formance. This approach differs from other text
encoding methods discussed earlier, as numerical
data is converted into text format for the model to
process using prompts. The prompts used in the
following section are included in the Appendix E,
and follow the best practice from existing litera-
ture (OpenAI, 2024; Lin et al., 2024). Sui et al.
(2024) showed that contextual information about
the tabular features enables a 0-shot framework to
outperform 1-shot prompting methodology.

While LLMs perform very well in 0-shot settings
(Kojima et al., 2023), there is significant evidence
that shows that LLMs perform better in a k-shot
setting (Clark et al., 2018); the ARC benchmark
uses 25-shot prompts in the Eleuther AI evaluation
harness (Gao et al., 2023). The problem with de-
ploying a k-shot framework in this setting is that the
SEC Filings are very long (13,267 tokens). Despite
the increase in the context-window length of some
newer LLMs, many new models are capped at 8192
tokens or below (Wang and Komatsuzaki, 2021;
Jiang et al., 2023; Touvron et al., 2023; Grattafiori
et al., 2024), and some other studies have shown
performance deterioration as the input sequence
increases (Li et al., 2024). Fitting several examples

of the task in the input sequence is impossible for
many of the data samples, which means that k-shot
performance is not reported for this task.

We tested several models9 using the prompting
structure laid out in Appendix E. The models pro-
vide a good representation of the current state-of-
the-art (Chiang et al., 2024).

4.4.1 LoRA Adaptation
To adapt the LLMs we use LoRA (Low Rank
Adaptation) (Hu et al., 2021) fine-tuning. This tech-
nique involves optimizing the rank-decomposition
matrices, A & B, of the change in model weights
(∆W ), where W

′
are the new model weights and

W are the pre-trained weights.

W
′
= W +∆W (1)

= W +BA (2)

The advantage is that it requires a lot less mem-
ory to fine-tune a model and in contrast to some
parameter-efficient fine-tuning methods, adaptation
can take place through the entire model stack.

5 Results

The results from the XGBoost baseline are outlined
in Table 1. It is clear that there is some information
in the text since almost all text encoding methods
perform above chance. However, none of the in-
dividual text feature sets outperform the numeric

9gpt-3.5-turbo-0125, gpt-4-turbo-2024-04-09 and gpt-4o-
2024-05-13, Llama-3 8B

Data Features Av. Quarters
1 2 3 4

N
M + F + C 52.8 48.3 53.3 54.0 55.7

C 44.7 41.9 43.6 46.5 46.7

A

LM 50.6 46.8 51.2 52.1 52.4
LDA 50.9 50.3 52.3 50.8 50.2
HEC 53.6 50.7 54.6 54.1 56.0

EDRoBERTa 52.8 48.2 52.9 55.4 54.8
MP-NET 51.0 46.8 52.5 56.1 48.4

T

LM 34.4 36.6 33.4 30.9 36.8
LDA 34.8 36.6 35.0 30.3 37.1
HEC 38.1 39.8 38.0 38.9 35.8

EDRoBERTa 36.0 36.8 35.8 36.2 35.2
MP-NET 35.9 32.4 35.0 39.9 36.3

Table 1: The accuracy using the XGBoost model across
different feature sets and text encoding methods. N
refers to instances where only numeric information is
used. T refers to text-based data types. A indicates
all data types combined (M + F + C + T ). Bold indi-
cates the best results for each of the data configurations;
underline indicates the best results across all configura-
tions.
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Model Features Average Quarters Feature Importances

1 2 3 4 M F T

XGBoost

N 52.8 48.3 53.3 54.0 55.7 0.659 0.341 -
AHEC 53.9 50.7 54.6 54.1 56.0 0.117 0.188 0.695
THEC 38.1 39.8 38.0 38.9 35.8 - - -

N+TGPT-4o Est. 53.8 52.7 50.9 54.0 57.3 0.588 0.302 0.101
NXGB Est. +T 51.8 53.7 51.2 50.8 51.3 0.573 0.427

GPT-4o

N 31.4 33.7 31.6 31.1 29.3 - - -
A 40.2 43.9 40.3 38.8 37.9 - - -
T 49.6 49.3 52.2 52.4 44.6 - - -

T+NXGB Est. 32.3 33.9 30.8 36.7 27.7 - - -

XGBoost-N ∪ GPT-4o-T 69.9 70.5 73.2 71.5 64.3 - - -

Table 2: Accuracy across different model and data configurations. The notation is consistent to Table 1. Feature
importances for M,F,T are impurity scores averaged across lags. NXGB Est. and TGPT-4o Est. represent the subscript
model’s estimate and implied internal probability of that estimate using the features represented by the bold letter,
both are the probability and estimate are used as features.

Data Model Av. Quarters
1 2 3 4

N

Llama 32.3 35.1 35.8 29.0 29.3
Llama-LoRA 35.5 35.4 34.2 37.8 34.7

GPT-3.5 32.6 32.9 33.4 31.9 32.3
GPT-4 34.1 34.2 32.9 33.0 36.3

GPT-4o 31.4 33.7 31.6 31.1 29.3

A

Llama 35.5 35.4 35.8 37.0 33.9
Llama-LoRA 37.5 36.4 37.0 37.6 38.8

GPT-3.5 44.5 49.0 42.4 46.0 40.6
GPT-4 38.3 39.8 36.1 38.0 39.3

GPT-4o 40.2 43.9 40.3 38.8 37.9

T

Llama 35.6 35.4 36.1 37.0 33.9
Llama-LoRA 37.0 38.1 36.8 37.1 35.9

GPT-3.5 46.4 47.3 47.5 45.5 45.2
GPT-4 48.5 47.8 48.5 50.3 48.1

GPT-4o 49.6 49.3 52.2 52.4 44.6

Table 3: Accuracy using the generative models. The
notation is consistent to Table 1. All models are tested
in 0-shot besides Llama-3 8B which is fine-tuned using
LoRA.

baselines, indicating that fundamental and macroe-
conomic variables are more critical for prediction.
Combining features yields a performance boost,
particularly when HEC features are integrated with
numerical data.

Table 3 highlights intriguing behavior in genera-
tive models. With a zero-shot prompt, performance
using only numerical data is near random. Interest-
ingly, GPT-class models perform better using text
alone than with all data types, suggesting that nu-
merical information may hinder their predictive ac-
curacy. GPT-3.5, despite being older, achieves the
best performance with all features. It also appears
that LoRA enables better relative performance on
numerical data - Llama-3 8B LoRA is the best-
performing model on entirely numerical informa-

tion and is the only model with no performance
degradation when all features are considered as op-
posed to just text. Overall, generative models excel
at decoding text data for this task.

Table 2 takes the best-performing text features
from the XGBoost framework, HEC, and provides
a comparison to the best-performing generative
model, GPT-4o. Interestingly, GPT-4o utilises the
text alone much better than any of the encoder-
based methods, but when all feature-types are con-
sidered the XGBoost-HEC configuration is the best-
performing methodology.

In addition, the models pick up on different sig-
nals. The final row of Table 2 shows that the
proportion of samples where at least one of the
XGBoost-N and GPT-4o-T is correct (69.87) is
significantly higher than any of the individual mod-
els. As a result, we provide comparisons where the
estimate and class probability of the XGBoost-N
and GPT-4o-T are included in the prompt or fea-
ture set. Both the estimate and the probability that
each model assigns to the estimate are used in the
prompt or as features. The combination methods all
underperform the XGBoost-AHEC configuration,
but this performance gap provides an opportunity
for future research on ensembling methods.

6 Interpretability

One of the disadvantages of generative LLMs is
that, to a large degree, they are black boxes. While
some work has successfully used attention weights
and internal model states to analyse generated
prompts (Serrano and Smith, 2019; Wang et al.,
2022), this is not a mature research area. Much
of the mechanistic interpretability literature has



125

focused on toy models (Elhage et al., 2021), and
while there has been some progress made on ex-
tracting features from larger models using sparse
autoencoders (Templeton et al., 2024), the field is
still very far from completely solving interpretabil-
ity within LLMs. In the absence of a complete so-
lution, it is worth acknowledging the interpretable
features that traditional methods use. Regulation in
major economies increasingly emphasizes explain-
ability alongside performance (European Commis-
sion, 2020; US Congress, 2022; UK Secretary
of State for DCMS, 2022). The XGBoost-AHEC
framework not only achieves the best performance
among the models in this paper but also enables
users to interpret its decisions. This section pro-
vides an example of how we can use this framework
to understand the reasons behind decisions.

The most obvious advantage of a feature-based
system is that important features can be identified.
Table 2 provides an example of feature importance
that can be used to infer the modality preference of
model configurations. It is possible to conduct even
more granular feature analysis by looking at the
contribution of individual features. Figure 2 shows
the partial dependence plot of some of the individ-
ual text features on the "Up" and "Down" classes.
From the plot in Figure 2a we can infer that as rat-
ings are discussed more in a company’s filing, there
is a reduced chance of the the credit rating being
upgraded. We can also infer from Figure 2b that
as companies talk about receivables - the money
owed to the company - there is a reduced chance of
the credit rating being downgraded. Both provide
valuable insights and are examples of how a tradi-
tional feature-based methodology can be leveraged
for increased interpretability.

7 Conclusion

The paper shows that while LLMs are good at en-
coding textual data and inferring signals that tradi-
tional methods cannot pick up on when combined
with numerical data in the prompt there is perfor-
mance deterioration. The other advantage is that
traditional methods offer increased interpretability
and a better understanding of the mechanisms be-
hind certain predictions. In addition, traditional
approaches don’t suffer to the same extent from
complications associated with training data con-
tamination and memorization (Ozdayi et al., 2023;
Lu et al., 2024) since the models used for the tradi-
tional features are much smaller than the generative

(a) PDP of "rating_sp_ratings_moodys" cluster & "Up" class.

(b) PDP of "receivables_percent_owned_offs" cluster &
"Down" class.

Figure 2: Partial Dependence Plots (PDP) of text-based
features against different target classes.

models and memorisation in LLMs exhibits scal-
ing law behaviour. While it is not impossible that
the text data used in this paper was included in
the training of the studied LLMs, any potential
influence would likely have a greater impact on
generative models, thereby reinforcing the findings
of this paper.

There has been some work jointly encoding text
using generative LLMs with time-series informa-
tion (Liu et al., 2024), but more work needs to be
done to determine the best methodology for com-
bining long text sequences with numerical informa-
tion while utilizing the benefits of generative LLM
natural language understanding. This paper shows
that combining multimodal information within the
prompt is not sufficient.
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8 Limitations

The task above uses a balanced dataset, which is
good for testing the different methodologies’ abil-
ity to discern the signals that are predictive of a rise
or fall in credit ratings, but is poor for assessing
how good the models would be in a real-world con-
text where almost all of the ratings stay the same.
Despite the data being taken from across all US
equities over a 23-year time period, the balanced
dataset is relatively small, with only 3441 samples
for the Lag 1 configuration and 2142 samples for
the Lag 4 configuration. There are plenty of promi-
nent datasets that are smaller, but the size reduces
the scope for complex and specialized models to
be deployed on this task in favour of more robust,
simple models.

Another limitation is that the text used in this
paper is produced by the companies themselves,
who the goal of conveying a positive viewpoint to
investors. More objective publication venues may
produce different insights about the future direction
of a company.

We also assume that the credit rating methodol-
ogy remains the same between the train and test
sets. This is an assumption that is made by the rest
of the literature, and our training set is spread over
an 18 year period, however it does not rule out the
possibility that the results are only valid over the
time period that was tested. Due to the size of the
dataset we were restricted from using a masked
temporal cross-validation evaluation framework,
which would have left insufficient data for training
for some years.

The LoRA fine-tuning methodology outlined in
this paper is a parameter-efficient technique and
has been shown to be competitive in a variety of
settings (Hu et al., 2021), but can be outperformed
in some tasks by full fine-tuning and other adapter-
based methods (Xu et al., 2023). We compared the
performance of the LoRA implementation in this
paper to that of QLoRA (Dettmers et al., 2023),
which produced marginally worse results. How-
ever, it is possible that other fine-tuning techniques
would have produced better results. Further to this,
it is possible that if a better model than Llama-3 8B
had been fine-tuned we would have seen even better
results from the generative LLMs. The computa-
tional constraints placed on us are not dissimilar
to those that other researchers face, which makes
the results in this paper valid while perhaps not
exhaustive.
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A Greedy Decoding

Generative models can produce unpredictable out-
puts (Fadaee and Monz, 2020; Stureborg et al.,
2024), which necessitates the use of constrained
generation when an LLM forms part of a larger
architecture. For the purposes of this work, we use
a greedy search to infer the probability of one of
the following labels appearing next in the sequence:
"up", "down" or "same".

B Dataset Size

The size of each of the dataset splits are outlined in
Table 4.

# Quarters Train Val Test
1 2,642 389 410
2 1,748 374 377
3 1,595 351 376
4 1,445 325 372

Table 4: Dataset sizes

C Fundamental Data

The fundamental variables considered are outlined
in Table 5.

Variable Type Description
niq Float Net Income (Loss)
ltq Float Liabilities - Total
piq Float Pretax Income
atq Float Assets - Total

ggroup Char GIC Groups
gind Char GIC Industries

gsector Char GIC Sectors
gsubind Char GIC Sub-Industries

Table 5: Description of Variables

D Neural Network Implementations

We also tested some more complex neural network
(NN) approaches, which had underwhelming re-
sults. The Hierarchical Credit Rating (HierCR)
model is a framework that models the filings hi-
erarchically. The challenge with using LLMs to
encode the filings is the limited context window
of encoder-based LLMs. There have been many
different solutions to this problem, including sparse
attention mechanisms (Beltagy et al., 2020), chunk-
ing (Sawhney et al., 2020), and feature-based ex-
traction like the methods above (Loughran and

McDonald, 2011; Drinkall et al., 2022). Our NN
solution to this problem is to split the filing up
into sentences and pass the sentence embeddings
through an all-mpnet-base-v2 encoder to produce
embeddings for the textual data. The text encoder
replicates the structure in (Sawhney et al., 2020),
the only material difference is that filing sentences
substitute the social media posts in the first layer
of the text-encoder. The text, macro and funda-
mental vectors across the previous quarter(s) are
combined using a GRU layer (Chung et al., 2014),
the outputs are then passed through an attention
layer to create a representation for each data type.
These representations are combined using a bilinear
transformation, which is passed through 3 linear
layers followed by a ReLU (Agarap, 2019) acti-
vation function. Dropout is applied in the final
linear-layer classification module.

Model Av. Quarter

1 2 3 4

SA-LF 40.62 39.87 40.05 41.17 41.39
SA-EF 43.41 41.24 40.97 45.31 46.11
HierCR 35.02 33.58 32.89 35.62 37.98

Table 6: Accuracy for more complex NN approaches
using all data types (M+F+T).

The other two architectures are Shared Attention
Late Fusion (SA-LF) and Shared Attention Early
Fusion (SA-EF). Both architectures only consider
the first 512 tokens of each filing. The difference
between the two architectures is when the attention
layer is applied. For the SA-EF the model attends to
all feature types together, whereas the SA-LF only
combines the representations after the attention
layer is applied to the individual data types. The
final representation is the passed through the same
linear-layer classification module as the HierCR.
For all of the architectures above, we trained the
model for 200 epochs with a patience value of 20
epochs.

The results from these models are poor in com-
parison to the more simple XGBoost models. This
could be due to the size of the dataset, which does
not provide the model enough data to train on with-
out overfitting the training data. Complex models
with many parameters require more data to fit prop-
erly. Given that the dataset is the largest balanced
and complete dataset possible to make using US
data, and that the size of the dataset considered in
this paper is representative of a large number of
other tasks, the results from this paper represent a
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significant contribution for dealing with problems
of this nature.

E Prompts

To encode the numerical and textual information
into text form, we used the prompting structure
outlined below. When the ablation study was
carried out the prompt and data included was
adjusted accordingly.

### System: You are trying to work out
whether a company’s credit rating is likely to
go up, down, or stay the same given its recent
credit ratings. Predict the likely movement in a
company’s credit rating for the next quarter, using
historical credit ratings, quantitative financial
data and macroeconomic data. The numeric data
has been normalized and appears in order with the
most recent first.
### Credit Rating Explanation:
Credit ratings use the following scale, in order of
increasing risk: ’AAA’, ’AA+’, ’AA’, ’AA-’, ’A+’,

’A’, ’A-’, ’BBB+’, ’BBB’, ’BBB-’, ’BB+’, ’BB’,
’BB-’, ’B+’, ’B’, ’B-’, ’CCC’, ’CCC-’, ’CC’, ’C’,
’SD’
### Fundamental Financial Indicators Defined:
...
### Macroeconomic Variables Defined:
...
### User:
Your task is to classify the company into one of the
following classes: "down", "same", "up". "down"
means that you think the credit rating will go
down in the next quarter, meaning the company is
perceived as more risky. "same" means that you
think the credit rating will stay the same in the
next quarter. "up" means that you think the credit
rating will go up in the next quarter, meaning the
company is perceived as less risky. Please respond
with a single label that you think fits the company
best.
Classify the following numerical data:"""

E.1 Credit Rating Ranking

One potential problem with the prompt outlined
in Appendix E is that the LLM may find it hard
to correctly understand the ranking structure of
credit ratings, which would limit the ability of an
LLM to perform well on this task. To probe the
LLMs ability to understand the relative rank of
credit ratings we created the following prompt:

"""Two credit ratings will be given, the task
is to determine which is higher on the following
scale, which is ordered in descending order:

’AAA’, ’AA+’, ’AA’, ’AA-’, ’A+’, ’A’, ’A-’,
’BBB+’, ’BBB’, ’BBB-’, ’BB+’, ’BB’, ’BB-’, ’B+’,
’B’, ’B-’, ’CCC’, ’CCC-’, ’CC’, ’C’, ’SD’.

Please answer with the higher rating e.g.
AAA vs. SD Answer: AAA.
«rating_X» vs. «rating_Y» Answer:"""

The performance on this task across all rat-
ing combinations when prompting GPT-4o was
99.52%. The only mistake was between C and CC.
This high performance displays a very good under-
standing of the credit rating scale and justifies the
setup of our prompt.

F S&P Credit Rating Definitions

S&P’s definitions for each of the credit rating cate-
gories are outlined in Table 7.
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Category Definition

AAA
An obligation rated ’AAA’ has the highest rating assigned by S&P Global Ratings. The
obligor’s capacity to meet its financial commitment on the obligation is extremely strong.

AA
An obligation rated ’AA’ differs from the highest-rated obligations only to a small degree.
The obligor’s capacity to meet its financial commitment on the obligation is very strong.

A
An obligation rated ’A’ is somewhat more susceptible to the adverse effects of changes in
circumstances and economic conditions than obligations in higher-rated categories. However,
the obligor’s capacity to meet its financial commitment on the obligation is still strong.

BBB
An obligation rated ’BBB’ exhibits adequate protection parameters. However, adverse
conditions or changing circumstances are likely to lead to a weakened capacity of the
obligor to meet its financial commitment on the obligation.

BB; B; CCC;
CC; and C

Obligations rated ’BB’, ’B’, ’CCC’, ’CC’, and ’C’ are regarded as having significant
speculative characteristics. ’BB’ indicates the least degree of speculation and ’C’ the highest.
While such obligations will likely have some quality and protective characteristics, these
may be outweighed by large uncertainties or major exposures to adverse conditions.

BB

An obligation rated ’BB’ is less vulnerable to nonpayment than other speculative issues.
However, it faces major uncertainties or exposure to adverse business, financial, or economic
conditions which could lead to the obligor’s inadequate capacity to meet its financial
commitment on the obligation.

B

An obligation rated ’B’ is more vulnerable to nonpayment than obligations rated ’BB’, but
the obligor currently has the capacity to meet its financial commitment on the obligation.
Adverse business, financial, or economic conditions will likely impair the obligor’s capacity
or willingness to meet its financial commitment on the obligation.

CCC

An obligation rated ’CCC’ is currently vulnerable to nonpayment, and is dependent upon
favorable business, financial, and economic conditions for the obligor to meet its financial
commitment on the obligation. In the event of adverse business, financial, or economic
conditions, the obligor is not likely to have the capacity to meet its financial commitment on
the obligation.

CC
An obligation rated ’CC’ is currently highly vulnerable to nonpayment. The ’CC’ rating is
used when a default has not yet occurred, but S&P Global Ratings expects default to be a
virtual certainty, regardless of the anticipated time to default.

C
An obligation rated ’C’ is currently highly vulnerable to nonpayment, and the obligation is
expected to have lower relative seniority or lower ultimate recovery compared to obligations
that are rated higher.

SD

An obligation rated ’SD’ is in default or in breach of an imputed promise. For non-hybrid
capital instruments, the ’SD’ rating category is used when payments on an obligation are not
made on the date due, unless S&P Global Ratings believes that such payments will be made
within five business days in the absence of a stated grace period or within the earlier of the
stated grace period or 30 calendar days.

NR
This indicates that no rating has been requested, or that there is insufficient information on
which to base a rating, or that S&P Global Ratings does not rate a particular obligation as a
matter of policy.

Table 7: S&P Global Ratings Definitions (S&P-Global, 2016)
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