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Abstract

This paper addresses causality detection in fi-
nancial documents for the Spanish subtask of
the FinCausal 2025 challenge. The task in-
volved identifying cause-effect relationships
using an extractive question-answering frame-
work. We compared span extraction and gener-
ative approaches, with the latter demonstrating
superior performance. Our best model, Super-
LeNIA, achieved a Semantic Answer Similarity
(SAS) score of 0.979 and an Exact Match score
of 0.816 on the blind test set.

1 Introduction

Understanding causality in financial documents
is crucial for informed decision-making, as it in-
volves identifying true cause-and-effect relation-
ships beyond surface-level correlations. By de-
tecting these, organizations can uncover risks, en-
hance audit compliance, and gain insights into mar-
ket trends for more effective strategies. In previ-
ous editions of FinCausal (Moreno-Sandoval et al.,
2023; Mariko et al., 2022, 2021, 2020), participants
identified cause-and-effect spans within causal sen-
tences, typically using pre-trained BERT transform-
ers in a BIO token classification setup. For exam-
ple, the top-ranked team in the 2023 FinCausal
Spanish Subtask, BBVA AI (Algarra and Muelas,
2023), adapted BIO tagging to label each span as C
(cause), E (effect), or N (none) and used RoBERTa
Base BNE transformer (Gutiérrez-Fandiño et al.,
2022).

This edition of FinCausal (Moreno-Sandoval
et al., 2025) framed the task as an extractive
question-answering problem, where a question
based on the cause or effect had to be answered by
extracting the relevant part of the relationship. This
change allowed the task to be approached either as
an extractive question-answering task using span
extraction (Keskar et al., 2019), or as a generative
task by fine-tuning large language models (LLMs).

The challenge included both Spanish and English
subtasks, with this paper focusing on the Span-
ish subtask. We initially tested both approaches
using baseline models: the pre-trained RoBERTa
Base BNE (Gutiérrez-Fandiño et al., 2022) and
our custom LeNIA model (Serrano, 2024b) based
on Qwen2 (Yang et al., 2024). Our tests showed
that the generative approach performed better, and
after further experiments with various LLMs, a pri-
vate model achieved a Semantic Answer Similarity
(SAS) (Risch et al., 2021) of 0.979 and an Exact
Match score of 0.816 in the blind test. This paper
outlines the complete process from start to finish.

2 Methodology

2.1 Dataset

The training dataset consisted of 2000 data points
extracted from a corpus of Spanish financial an-
nual reports from 2014 to 2018. It contained four
columns: ID, Text, Question, and Answer. The
dataset was divided into two subsets: train and test,
containing 1600, and 400 data points, respectively.

ID: 3873
Text: Durante el verano, tanto los índices
en Europa como en Estados Unidos se
vieron severamente castigados a raíz de
las dudas sobre el crecimiento económico
global.
Question: ¿Cuál es la razón de que los
índices en Europa y Estados Unidos se
vieran severamente castigados durante el
verano?
Answer: las dudas sobre el crecimiento
económico global

Figure 1: Example Data Point in the Spanish Subtask

The example data point shown in Figure 1
demonstrates how questions and answers are for-
mulated: in this case, the question is focused on the
effect, and the answer extracts the cause. In other
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instances, the roles are reversed, with the question
focused on the cause and the answer providing
the corresponding effect. The question is always
paraphrased from the context, while the answer is
directly extracted from it.

The lower quartile for the word count in the
answer was 12, while the upper quartile was 27,
indicating answers are relatively short. The max
words in an answer was 105, meaning that for most
models a max new tokens of 256 would be enough
during inference.

2.2 Text pre-processing

To prepare the dataset for training, both span ex-
traction and text generation require distinct formats
for fine-tuning.

We adapted the SQuAD (Rajpurkar et al., 2016)
format for span extraction, keeping the original
columns with slight modifications: id, context,
question, and answers. The answers field contains
the answer_start (the start position of the answer
in the context) and the corresponding text. A minor
issue was found in 36 data points, where answers
didn’t exactly match the context due to discrepan-
cies like extra words, grammatical variations, or
whitespace differences. To address this, we used
Algorithm 1 to extract the closest matching answer,
as described in the model inference section.

As for the generative task, we adapted the dataset
to fit a conversational format designed for large lan-
guage models. The conversational format included
a brief system message explaining the task, which
sets the assistant’s behavior.

2.3 Baseline Models

The baseline models for this study were selected
based on their proven effectiveness in Spanish
language tasks. RoBERTa Base BNE (Gutiérrez-
Fandiño et al., 2022) has demonstrated strong per-
formance across various Spanish tasks and per-
formed well in the previous FinCausal edition. Le-
NIA, a generative model, is relatively small for
its type, yet it has consistently outperformed other
models of similar or greater size across several
Spanish language tasks.

RoBERTa Base BNE

The RoBERTa Base BNE (Gutiérrez-Fandiño et al.,
2022) model is based upon the original RoBERTa
base model (Liu et al., 2019) and has been

pre-trained on the largest available Spanish cor-
pus. The version used for our baseline was the
RoBERTa Base BNE fine-tuned on the SQAC
dataset (Gutiérrez-Fandiño et al., 2022) which is a
dataset for Spanish Question Answering based on
the SQuAD format (Rajpurkar et al., 2016). The
model size is 125 M parameters.

LeNIA

The LeNIA Model (Serrano, 2024b) is our pub-
lic model built on the Qwen2 architecture (Yang
et al., 2024). It was pre-trained using a corpus
of supervised Spanish tasks formatted as FLAN-
style instructions (Wei et al., 2022). Subsequent
fine-tuning was performed on a variety of Spanish
instruction-following datasets and enhanced with a
mix of public and proprietary data from Lenguaje-
Natural.AI. The model size is 1.5 B parameters.

Fine-Tuning Models

Hyperparameter Roberta BNE LeNIA
Learning Rate 3e-05 5e-05
Epochs 1 1
Batch Size 16 8

Table 1: Hyperparameters for fine-tuning baseline mod-
els.

For Roberta Base BNE, standard fine-tuning
techniques with Transformers library (Wolf et al.,
2020) were employed for a span extraction task,
with the dataset formatted according to the SQuAD
format as described in Section 2.2. It was trained
in ~2 minutes on a Colab instance with an NVIDIA
T4 GPU (16 GB VRAM).

For LeNIA, given its larger size, QLoRA
(Dettmers et al., 2023) was employed to efficiently
fine-tune the model for the generative task, utiliz-
ing a chat-based dataset format as described in Sec-
tion 2.2. The fine-tuning process was conducted us-
ing the AutoTransformers library (Serrano, 2024a),
which integrates functionalities from both Trans-
formers (Wolf et al., 2020) and PEFT (Mangrulkar
et al., 2022) libraries, enabling seamless imple-
mentation of QLoRA. The following parameters
were used in the QLoRA configuration for target-
ing all linear modules: rank r = 128, α = 32,
LoRA dropout of 0.1, and 4-bit quantization. It
was trained in ~15 minutes on a Colab instance
with an NVIDIA L4 GPU (24 GB VRAM).
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Some of the relevant hyperparameters for fine-
tuning each model are summarized in Table 1.
These choices were based on prior experience with
similar tasks and model architectures. For instance,
a single epoch was selected for both models, as
question answering models typically exhibit signs
of overfitting after just one epoch of training.

Baseline Results

Model SAS Exact Match
Roberta Base BNE 0.820 0.256
LeNIA 0.917 0.553

Table 2: Baseline models results on the test set.

The results presented in Table 2 clearly show
that the generative approach to question answering
for financial causality significantly outperformed
the span extraction approach. Specifically, the gen-
erative model achieved an improvement of 0.097 in
Semantic Answer Similarity (SAS) and a substan-
tial increase of 0.297 in Exact Match on our test
set.

Initial Inference Experiments
Despite achieving a high score, we noticed that our
LeNIA model did not always extract the answer
directly from the text. Specifically, 72 out of 400
predicted answers were not found in the context,
usually due to minor changes in words. To improve
results before experimenting with new models, we
implemented two strategies. First, we adjusted the
temperature at inference to 0.1 to reduce random-
ness in the predictions.

Algorithm 1 Find Closest Answer in Context
Input: Context ctx, Predicted answer ans
if ans is in ctx then

return ans
else

Define n as word count in ans
Generate n-grams from ctx
Use RapidFuzz to match ans with ctx n-
grams
return best match based on similarity score

end if

Secondly, we used Algorithm 1, which uses Poly-
Fuzz library (Grootendorst, 2020), to find the clos-
est match for the predicted answer when it is not
directly present in the context.

Strategy SAS Exact Match
Temp (0.1) 0.964 0.753
Temp (0.1) + Alg. 1 0.964 0.775

Table 3: LeNIA results on test set with inference strate-
gies.

Implementing these two strategies, the results
for LeNIA improved, as shown in Table 3. With
these two simple adjustments, the SAS improved
by 0.047, while the Exact Match increased by a
significant 0.223. These results highlight two key
insights: first, that selecting the right inference pa-
rameters can have a substantial impact, and second,
that ensuring the answer is directly extracted from
the context is crucial for achieving a high Exact
Match.

2.4 Intermediate Models

Building on these insights, a range of model ar-
chitectures with varying sizes was explored. For
illustrative purposes, only three distinct models,
including the best one, each with distinct architec-
tures, sizes, along with their performance will be
discussed: LeNIA ( 2.3 ), Llama 3.2 Instruct and
SuperLeNIA (a private model).

Llama 3.2-3B Instruct

The Llama 3.2-3B Instruct model is built on the
Llama 3 architecture (Dubey et al., 2024) and fine-
tuned for multilingual dialogue tasks. Pretrained
on a mix of publicly available data, it supports mul-
tiple languages, including Spanish. The model size
is 3.21 B parameters. This section omits the 8B pa-
rameter Llama 3.2 version as it did not achieve the
best performance compared to models of similar
size.

SuperLeNIA

The SuperLeNIA model is based on a combination
of publicly available multilingual models ranging
from 7B to 8B parameters. Just like the public
LeNIA, it was pre-trained using a corpus of su-
pervised Spanish tasks formatted as FLAN-style
instructions (Wei et al., 2022) and fine-tuning was
performed on a variety of Spanish instruction-
following datasets and enhanced with a mix of
public and proprietary data from LenguajeNatu-
ral.AI. According to internal evaluations, Super-
LeNIA outperforms GPT-4o and GPT-4 Turbo in
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various Spanish tasks, thus, making it a suitable
choice.

Fine-tuning

For the fine-tuning process, the same methodology
was applied to both Llama 3.2 and SuperLeNIA,
utilizing a generative task framework with QLoRA.
The configurations used for fine-tuning these mod-
els were consistent with those detailed for LeNIA
(2.3).

Llama 3.2 was trained in ~20 minutes on a Colab
instance with an NVIDIA L4 GPU (24 GB VRAM).
The SuperLeNIA model was trained in ~10 minutes
on a cloud instance with an NVIDIA H100 GPU
(80 GB VRAM).

Inference Hyperparameter Tuning

As noted in section 2.3, the inference parameters
proved to be important. To improve performance,
each model was hyper-tuned during inference, us-
ing the Optuna (Akiba et al., 2019) framework,
with the following hyper-parameters:

• Temperature: Controls the model’s output ran-
domness, with higher temperatures yielding
more diverse responses and lower tempera-
tures making it more deterministic.

• Top p: Refers to nucleus sampling (Holtzman
et al., 2020), where the model selects from the
smallest set of top probabilities whose cumu-
lative sum is greater than or equal to ‘p‘.

• Min p: Sets a minimum threshold for the prob-
ability of the next token.

In each iteration, Optuna employs Bayesian op-
timization, specifically the tree-structured Parzen
estimator (TPE) (Bergstra et al., 2011), to select a
new set of hyperparameters. For efficient inference,
vLLM (Kwon et al., 2023) was employed, enabling
the models to generate 10 predictions per sample
in each iteration. The prediction with the highest
cumulative log probability was then selected and
processed using Algorithm 1.

Model Temperature Top P Min P SAS Exact Match
LeNIA 0.35 0.92 0.10 0.964 0.775
Llama 3.2 0.06 0.87 0.19 0.968 0.800
SuperLeNIA 0.56 0.74 0.01 0.978 0.835

Table 4: Intermediate model results with hyperparame-
ter tuning.

As presented in Table 4, LeNIA demonstrated
no improvement with Hyperparameter Tuning as
compared to results on Table 3, while Llama 3.2
achieved a slightly better performance than LeNIA
across both metrics. SuperLeNIA outperformed
both models, exceeding their scores by a margin
of at least 0.01 across both metrics. Thus, Super-
LeNIA was chosen as the final model. As observed,
the temperature for our best-performing model was
not particularly low. This could indicate that a
more deterministic inference approach may have
occasionally restricted the generation of alterna-
tive sequences that aligned more closely with the
correct answer or that the hyperparameter search
wasn’t exhaustive enough. Future work should con-
sider conducting a more comprehensive parameter
search.

2.5 Error Analysis

All models exhibited similar types of errors at in-
ference. They frequently produced overly long
responses ( 75% or more of the context), indicating
difficulty in discerning the most relevant informa-
tion. Minor phrasing differences like adding unnec-
essary introductory words (e.g., starting with "a la"
instead of just "la") occurred often, impacting exact
matches despite their small differences. Addition-
ally, overly short responses, though less common,
occasionally missed essential context. These issues
significantly affected exact match scores but had a
less pronounced impact on SAS.

3 Results

The blind test set, used for submitting predictions
for evaluation in the FinCausal 2025 Competition,
consisted of 500 data points. The SuperLeNIA
model achieved a SAS score of 0.979, attaining
3rd place among participating teams. Additionally,
it attained an Exact Match score of 0.816, ranking
4th in this metric.

4 Conclusion

This paper presented a comprehensive approach
to addressing the FinCausal 2025 Spanish subtask,
which required extracting causality relationships in
financial texts using a question-answering frame-
work. By focusing on financial causality, this work
highlights how LLMs can potentially play a role
in understanding cause-effect relationships within
financial contexts, enabling more accurate analysis
and decision-making.
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We explored multiple model architectures, fine-
tuning methodologies, and inference optimization
strategies. Our experiments demonstrated the effec-
tiveness of generative models over span extraction
models, with the SuperLeNIA model achieving the
highest performance among the models evaluated.
The results emphasize the importance of model
selection, inference hyperparameter tuning, and
text-processing techniques in QA tasks.

Future works could explore the integration of
the model into a retrieval-augmented generation
(RAG) system. Making it useful for uncovering
root causes of risks, improving audit compliance,
and providing deeper insights into market trends
through its ability to extract causality.

5 Limitations

This study has several limitations that require at-
tention. First, the methods developed are primar-
ily tailored to Spanish financial documents, which
may limit their effectiveness in other languages
with different syntactic structures or more complex
morphology.

Additionally, the approach may not generalize
well to all types of financial documents or causality
relationships. Financial documents can vary widely
depending on the industry, region, or specific finan-
cial context, and the model may need further fine-
tuning or domain adaptation to handle the nuances
of different financial contexts. The temporal limita-
tion is also a factor, as financial trends, regulations,
and language usage may have evolved after 2018,
potentially affecting the model’s applicability to
more recent documents.

Moreover, the context and answers were rela-
tively short, but as document length increases, cap-
turing and extracting causal relationships over ex-
tended contexts may become challenging. This
issue may require additional pre-processing and
testing the models capabilities of processing longer
texts.
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