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Abstract

The detection of financial misinformation
(FMD) is a growing challenge. In this pa-
per, we investigate how task structuring and
metadata integration impact the performance of
large language models (LLMs) on FMD tasks.
We compare two approaches: predicting the la-
bel before generating an explanation, and gen-
erating the explanation first. Our results re-
veal that prediction-first models achieve higher
F1 scores. We also assess the effect of aux-
iliary metadata, which surprisingly degraded
performance despite its correlation with the la-
bels. Our findings highlight the importance of
task order and the need to carefully consider
whether to use metadata in limited data settings.

1 Introduction

Recently, Large Language Models (LLMs) (Sanh
et al., 2021; Brown et al., 2020; Achiam et al.,
2023; Scao et al., 2022; Touvron et al., 2023) has
been transforming finance sectors with their adap-
tation (Shah et al., 2022; Wu et al., 2023; Xie et al.,
2023; Kawamura et al., 2024). At the same time,
there is a growing need to automate the detection
of misinformation in finance, where misinforma-
tion can lead to market manipulation and instabil-
ity (Rangapur et al., 2023b; Mohankumar et al.,
2023; Chung et al., 2022; Liu et al., 2024).

In this paper, we present our approach to the Fi-
nancial Misinformation Detection (FMD) shared
task at COLING 2025, where we developed mod-
els capable of both classifying financial claims and
generating explanations for the predictions. Our
experiments revealed two key insights: (1) classi-
fying claim labels prior to generating explanations
significantly improved classification performance
in F1 score, challenging the common practice of
generating reasoning as a precursor to prediction,
such as in Chain of Thought prompting; and (2)
incorporating auxiliary metadata, such as summary
fields, unexpectedly degraded model performance,

Figure 1: Overview

despite the strong correlation of this metadata with
the labels. This finding challenges conventional
assumptions about feature engineering, in tasks
requiring nuanced reasoning with limited data.

2 Related Studies

The growing interest in fact-checking spans vari-
ous domains, from addressing misinformation re-
lated to COVID-19 (Saakyan et al., 2021), to verify-
ing health-related claims (Sarrouti et al., 2021), to
checking scientific assertions (Wadden et al., 2020),
and even to creating large-scale, multi-domain
datasets such as FEVER (Thorne et al., 2018). In
the financial domain, the detection of misinforma-
tion has emerged as an important focus. For exam-
ple, Rangapur et al., 2023a introduced the Fin-Fact
dataset, specifically designed to address the gap in
domain-specific fact-checking resources for finan-
cial misinformation.

Earlier research in financial misinformation de-
tection primarily utilized traditional NLP tech-
niques, including RoBERTa (Liu et al., 2019),
LSTM-based models, and custom neural architec-
tures (Kamal et al., 2023; Chung et al., 2022; Mo-
hankumar et al., 2023). With increasing evalua-
tions of LLMs in fields like the legal domain (Stern
et al., 2024), there is a growing need for similar as-
sessments in financial misinformation detection.
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Recent advancements, particularly the work by
Liu et al., 2024, have leveraged domain-specific
fine-tuning for LLMs. Their fine-tuned version
of llama3.1-8b1 outperformed leading zero-shot
models, such as Mistral-7b-Instruct (Jiang
et al., 2023) and Gemma-instruct-7b (Mesnard
et al., 2024), highlighting the benefits of fine-tuning
LLMs over general-purpose models in financial
misinformation detection.

3 Task and Dataset

3.1 Task Description
The Financial Misinformation Detection (FMD)
task is a multitask learning challenge where
models classify financial claims into three cate-
gories—True, False, or Not Enough Information
(NEI)—and generate explanations for their classi-
fications. This dual objective emphasizes accurate
classification and the interpretability of the model’s
predictions, ensuring they are substantiated by rel-
evant financial evidence. Task organizers encour-
age fine-tuning large language models (LLMs) and
prompt engineering.

3.2 Dataset
Participants were provided with 1,953 labeled train-
ing examples and 1,304 test examples from the Fin-
Fact dataset (Rangapur et al., 2023a)2, which in-
cludes fields such as claim, label (True, False, NEI),
explanation, and justification. The label indicates
the veracity of the claim, while the explanation pro-
vides a free-form textual rationale supporting the
assigned label. Justifications offer additional argu-
ments in favor of the claims. To further enrich this
context, additional metadata—such as the posting
date, image, and sci_digest summaries (i.e., brief
claim overviews)—were included. However, some
metadata fields, like sci_digest, were not always
available and could be empty. A baseline prompt
was also provided by the organizers to guide ini-
tial model development3 (Appendix A). Table 1
presents sample entries from the dataset.

3.3 Data Exploration
To gain deeper insights into the dataset, we con-
ducted an exploratory analysis of the provided
metadata fields. One notable finding emerged:

1https://www.llama.com/
2https://huggingface.co/datasets/lzw1008/

COLING25-FMD/tree/main
3https://github.com/lzw108/COLING25-FMD/blob/

main/practice_data_preprocess.ipynb

Figure 2: Relationship between label and whether sci_digest
is empty

cases where the sci_digest field was absent were
highly correlated with the True label (339 out of
364 instances). Building on this observation, we de-
veloped a heuristic: if the sci_digest field is empty,
the label is predicted as True; otherwise, the label is
predicted as False. Applied to the training data, the
heuristic achieved an F1 of 62.1%, surpassing the
random baseline’s 34.2%, showcasing the potential
of metadata-driven approaches (Appendix C).

We examined other metadata, such as image
metadata availability, but sci_digest showed the
strongest label correlation. Its binary nature suited
simple feature engineering, while richer metadata
like temporal or visual data is left for future work.

However, the availability of the sci_digest field
should not determine a claim’s veracity. Whether
the field is present or empty—merely reflecting
data collection artifacts—does not provide mean-
ingful insight into the claim’s truth. For exam-
ple, reasoning that a claim is True because the
sci_digest field is empty is a superficial pattern, not
a valid explanation. The heuristic’s success stems
from this pattern, not from any real contribution to
misinformation detection.

4 Approach

Our approach optimized financial misinformation
detection by developing prompts tailored to two
key factors: (1) subtask order, comparing whether
classifying a financial claim (True/False/NEI) be-
fore generating an explanation yields better perfor-
mance than the reverse, and (2) the potential ben-
efits of leveraging auxiliary metadata, particularly
the availability of sci_digest field, which showed
strong label correlations.

https://www.llama.com/
https://huggingface.co/datasets/lzw1008/COLING25-FMD/tree/main
https://huggingface.co/datasets/lzw1008/COLING25-FMD/tree/main
https://github.com/lzw108/COLING25-FMD/blob/main/practice_data_preprocess.ipynb
https://github.com/lzw108/COLING25-FMD/blob/main/practice_data_preprocess.ipynb
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Table 1: Examples of claims, labels, and corresponding explanations from the Fin-Fact dataset.

Label Claim Explanation

True Tax rates were significantly
higher in the ’40s, the ’50s, and
the ’60s.

Today, tax rates range from 10 percent for lower incomes to 35 percent for the highest incomes.
(See a chart of tax rates over timefrom the Tax Foundation here.)

False Texas this fiscal year will have
more money in reserve than the
other 49 states combined.

In the Feb. 25, 2015 interview,which we caught online, Patrick said: We are in the best financial
shape of any state in the country. Well have about $11 billion or so in our rainy day fund by the
end of our fiscal year. ...

NEI Beto O’Rourke’s ’Reality
Check’ can be paraphrased as
"A thorough evaluation of the
facts by Beto O’Rourke."

One such meme, entitled "’Beto’ Reality Check," was shared widely on Facebook in August
2018:A spokesperson for O’Rourke’s campaign described the meme as "factually incorrect in
countless ways" and largely referred us to several existing news reports about the allegations.
The following is our breakdown of the five sections contained in the meme.O’Rourke adopted
the name "Beto" to appeal to Latino voters:...

To evaluate these aspects, we fine-tuned
Llama-3.2-1B-Instruct4. We hypothesized that
in a complex task with limited training data, such
as the FMD, both subtask order and metadata inclu-
sion could significantly impact model performance.

4.1 Baselines

We adopted the baseline study by Liu et al., 2024,
which evaluated multiple LLMs using the challenge
organizers’ baseline prompt, including ChatGPT
(gpt-3.5-turbo) and FMDLlama (Liu et al.,
2024), a model fine-tuned for the FMD task.

4.2 Generation Order

Chain of Thought prompting, where a model gen-
erates an intermediate reasoning process before
arriving at a final answer, is a common technique
for improving model reasoning (Wei et al., 2022).
We hypothesized that generating the explanation
first, rather than producing it post hoc, could simi-
larly enhance the model’s performance. By gener-
ating the explanation upfront, the model can fully
evaluate the claim before classifying it, potentially
improving prediction accuracy as the reasoning un-
folds.

Conversely, predicting the label first may sim-
plify the task for the model. Since the labels (True,
False, NEI) are fixed, the output always begins
with one of these three options, making the task
more structured. In contrast, generating the expla-
nation first adds complexity, as the model must
not only generate coherent reasoning but also de-
termine when to stop reasoning, and transition to
classification. The label-first approach might better
optimize the classification task by making the prob-
lem straightforward for LLMs to learn, especially

4https://huggingface.co/unsloth/Llama-3.
2-1B-Instruct-bnb-4bit

Please determine whether the claim is True, False, or Not Enough Information (NEI) based on contextual
information, and provide an appropriate explanation. The answer needs to use the following format:
Prediction: [True, or False, or NEI]
Explanation: [Explain why the above prediction was made]
### Claim:
{claim}

### Contextual Information
{justification}

### Prediction:
{True, False, or NEI}

### Explanation:
{explanation}

Figure 3: Prompt for Prediction First Without Metadata

when training data is limited as in the FMD task.

4.3 Auxiliary Metadata

Incorporating auxiliary metadata that correlates
with target labels can enhance prediction accuracy
by allowing the model to exploit known patterns.
For example, our analysis of sci_digest field re-
vealed a strong correlation between its absence
and the True label. Including this metadata in the
prompt could help the model exploit these correla-
tions, improving its predictions without requiring
deep semantic understanding.

However, the presence or absence of the
sci_digest field does not provide semantic insight
into claim veracity. Its utility stems from superficial
data patterns. Large language models, designed to
reason through typical natural language inference
patterns, may struggle to leverage metadata-driven
patterns that lack explicit linguistic meaning. This
limitation could hinder the model’s ability to gen-
erate accurate predictions when relying too heavily
on metadata like whether sci_digest field is empty.

4.4 Prompt Design

To assess the impact of generation order and meta-
data inclusion, we designed prompts with varying
structures. In one version, the model predicted the
claim’s label (True/False/NEI) before generating

https://huggingface.co/unsloth/Llama-3.2-1B-Instruct-bnb-4bit
https://huggingface.co/unsloth/Llama-3.2-1B-Instruct-bnb-4bit
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Classification Explanation
Model Overall Score Micro-F1 ROUGE-1 ROUGE-2 ROUGE-L

Baselines
ChatGPT (gpt-3.5-turbo) 0.5152 0.7634 0.267 0.102 0.1662
FMDLlama 0.6089 0.7616 0.4563 0.3536 0.3817

Ours
Prediction First (No Metadata) 0.6285 0.7357 0.5213 0.4487 0.4683
Explanation First (No Metadata) 0.5631 0.6063 0.5200 0.4501 0.4667
Prediction First (With Metadata) 0.5914 0.6969 0.4860 0.4150 0.4340
Explanation First (With Metadata) 0.5086 0.4972 0.5199 0.4495 0.4669

Table 2: Performance of different models and prompt configurations on the public test set of the FMD task. Results for the
private test set, where only one model was allowed for evaluation, are detailed in Appendix D.

Please determine whether the claim is True, False, or Not Enough Information (NEI) based on contextual
information, and provide an appropriate explanation. The answer needs to use the following format:
Explanation: [Explain why the above prediction was made]
Prediction: [True, or False, or NEI]
### Claim:
{claim}

### Contextual Information
{justification}

### sci_digest is empty:
{True or False}

### Explanation:
{explanation}

### Prediction:
{True, False, or NEI}

Figure 4: Prompt for Explanation First With Metadata

an explanation, while in another, the explanation
was generated first. Additionally, we evaluated
the influence of metadata by creating two types of
prompts: one that incorporated the sci_digest field
and another that excluded it. Figure 3 illustrates
the Prediction First approach without Metadata,
while Figure 4 showcases the Explanation First ap-
proach with Metadata, including the handling of
the sci_digest field.

4.5 Model Fine-tuning
We finetuned Llama-3.2-1B-Instruct in 4 bit us-
ing Unsloth5. We trained a model per prompt tem-
plate for three epochs, and they all had the best val-
idation loss at the end of three epochs. The detailed
hyperparameters can be found in the Appendix B.

5 Results

Table 2 presents the performance on the public test
set of different models and prompt configurations
across key metrics: micro-F1-score, ROUGE-1,
ROUGE-2, and ROUGE-L (Lin, 2004). The over-
all score for this task was computed as average
of F1 and ROUGE-1. Out best model (Overall
Score: 0.6285) outperformed both ChatGPT (Over-
all Score: 0.5152) and FMDLamma (Overall Score:
0.6089). More importantly, the results highlight

5https://unsloth.ai/

the impact of task order (classification prediction
before explanation vs. explanation before classifi-
cation prediction) and the inclusion of metadata on
model performance.

Our findings indicate that models predicting
the label before generating an explanation achieve
higher F1 scores. Prediction First without Metadata
(Micro-F1: 0.7357) performed better than Explana-
tion First without Metadata (Micro-F1: 0.6063) by
0.1294. Additionally, Prediction First with Meta-
data (Micro-F1: 0.6969) performed better than Ex-
planation First with Metadata (Micro-F1: 0.4972)
by 0.1997. This supports the hypothesis that begin-
ning with the more constrained task of classifica-
tion leads to better overall performance in financial
misinformation detection.

Including whether sci_digest is empty (meta-
data) consistently lowered F1 scores, suggesting
that while metadata correlates with labels, it may
hinder model performance. Specifically, the inclu-
sion of metadata reduced the F1 score by 0.0388 in
the Prediction First approach and by 0.1091 in the
Explanation First approach. This implies that meta-
data may need to offer more than surface-level cor-
relations to be effective in enhancing the model’s
reasoning process

6 Conclusion

Our results demonstrate that predicting the label
before generating an explanation improves classi-
fication performance in financial misinformation
detection, as evidenced by F1 score. This con-
trasts with conventional approaches that prioritize
reasoning-first strategies. Additionally, the inclu-
sion of auxiliary metadata, such as the sci_digest
field, despite its high correlation with the labels,
hindered model performance. This finding chal-
lenges conventional assumptions regarding the ben-
efits of metadata for prediction tasks, especially in
cases where the metadata lacks semantic richness.

https://unsloth.ai/
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A Baseline Prompt

Please determine whether the claim is True, False, or Not Enough Information (NEI) based on contextual
information, and provide an appropriate explanation. The answer needs to use the following format:
Explanation: [Explain why the above prediction was made]
Prediction: [True, or False, or NEI]
Claim:
{claim}

Contextual Information
{justification}

Prediction:
{True, False, or NEI}

Explanation:
{explanation}

Figure 5: Prompt given by an organizer

B Fine-tuning Hyperparameter

We fine-tuned our models on one V100 GPU using
the following hyperparameters: a per-device batch
size of 8 and a gradient accumulation of 4 steps,
resulting in an effective batch size of 32. The model
was trained for 3 epochs with a linear learning
rate scheduler initialized at 2e-4. We employed
AdamW with 8-bit optimizers to reduce memory
consumption and set the weight decay to 0.01.

Warmup was applied for the first 5 steps to stabi-
lize training. FP16 precision was used. To ensure
reproducibility, we used a random seed of 3407.

C Heuristic Performance in Training Set

D Leaderboard Results
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Strategy Accuracy Precision Recall F1
Predict True if sci_digest empty 0.621 0.593 0.621 0.621
Random Baseline 0.342 0.382 0.342 0.342

Table 3: Performance comparison between heuristic strategy and random baseline.

Classification Explanation
Model Overall Score Micro-F1 ROUGE-1 ROUGE-2 ROUGE-L

Baselines
ChatGPT (gpt-3.5-turbo) 0.4813 0.7012 0.2614 0.0994 0.1632
FMDLlama 0.5842 0.7182 0.4502 0.3464 0.3743

Ours
Prediction First (No Metadata) 0.5813 0.6448 0.5178 0.4428 0.4607

Table 4: Performance of different models on the private test set of the FMD task. Results for the other three prompt configurations
are not reported, as only one final model could be submitted for evaluation on the private split, which determined the final
competition rankings.
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