
Proceedings of the Joint Workshop of the 9th FinNLP, the 6th FNP, and the 1st LLMFinLegal, pages 63–75
January 19–20, 2025. ©2025 Association for Computational Linguistics

63

Evaluating Financial Literacy of Large Language Models through Domain
Specific Languages for Plain Text Accounting

Alexei Figueroa1, Paul Grundmann1, Julius Freidank1,2, Alexander Löser1,
Wolfgang Nejdl3,

1Berlin University of Applied Sciences (BHT)
2Humboldt University Berlin

3Leibniz University Hannover
Correspondence: afigueroa@bht-berlin.de

Abstract

Large language models (LLMs) have proven
highly effective for a wide range of tasks, in-
cluding code generation. Recently, advance-
ments in their capabilities have shown promise
in areas like mathematical reasoning, chain-
of-thought processes and self-reflection. How-
ever, their effectiveness in domains requiring
nuanced understanding of financial contexts,
such as accounting, remains unclear. In this
study, we evaluate how well LLMs perform in
generating code for domain-specific languages
(DSLs) in accounting, using Beancount as a
case study. We create a set of tasks based on
common financial ratios, to evaluate the numer-
acy and financial literacy of LLMs. Our find-
ings reveal that while LLMs are state-of-the art
in generative tasks, they struggle severely with
accounting, often producing inaccurate calcu-
lations and misinterpreting financial scenarios.
We characterize these shortcomings through a
comprehensive evaluation, shedding light on
the limitations of LLMs in understanding and
handling money-related tasks.

1 Introduction

In recent years, natural language processing meth-
ods and transformer models have seen significant
improvements in text, language and coding related
tasks. Especially the release of the pre-trained large
language model GPT-3 (Brown et al., 2020) and its
derivative ChatGPT (Schulman et al., 2022) to the
general public have generated considerable public
interest. Large language models (LLMs) have the
ability to understand and generate text in a wide
spectrum of disciplines and tasks, and are also able
to generate code. These properties are leveraged
across several industries to automate e.g., customer
support and content creation. Although these mod-
els have had a significant impact, they are not suffi-
ciently studied in the accounting practice, despite
their potential to enable process automation.

Accounting in digital business practice. In con-
temporary business, enterprise resource planning
(ERP) systems are a commonplace phenomenon,
providing the foundation for a multitude of organi-
sational functions and decision-making processes.
ERP software typically supports a plethora of busi-
ness dimensions, including human resource man-
agement or supply chain management among oth-
ers. These systems provide a centralized platform
for managing operations, offering features like an-
alytics and automation to improve production and
decision-making. Accounting plays a pivotal role
in the functioning of ERPs, serving as a fundamen-
tal pillar upon which various business segments
are constructed. It is responsible for ensuring the
accuracy of financial data and the monitoring of
budgetary allocations throughout the whole eco-
nomic activity of a company. However, ERP sys-
tems can be rigid and complex, requiring human
training and often leading to a bottleneck in user in-
teraction, hindering efficiency and accessibility. In
this work we aim to evaluate whether open-weight
LLMs can accurately and efficiently perform ac-
counting tasks using plain text accounting domain
specific languages (DSLs). We investigate their
ability to understand financial ratios, by generating
accounting scenarios that affect them, e.g., selling
a property to increase the Current Ratio (CuR).

LLMs for plain text accounting. We find in
the DSLs of plain text accounting (PTA) the ideal
target for LLMs to interface with financial trans-
actional data. PTA is an accounting paradigm
to record transactions in a human readable for-
mat with DSLs like Ledger (Wiegley, 2023),
hledger (Michael, 2023) or Beancount (Blais,
2023). These languages are strictly compiled and
incorporate double-entry accounting principles that
can partially categorize the error classes of trans-
actions generated by LLMs. We create two tasks
for LLMs to generate scenarios motivated by the

mailto:afigueroa@bht-berlin.de

64

semantics of common financial ratios (e.g., Cur-
rent Ratio). These quantities are generally used
by financial practitioners to assess the economic
state of a company and are a good proxy for fi-
nancial literacy. Furthermore, with these scenarios,
we also explore the capabilities of LLMs to gener-
ate corresponding transactions using a DSL, which
we evaluate with a compiler. We subsample and
thoroughly examine the results of the generation
with the help of experts in the field. In our evalu-
ation LLMs generally show significant problems
regarding financial literacy and numeracy by exten-
sion. We characterize these essential deficiencies
through six financial scenario error classes, and six
transaction error classes. Our contributions can be
summarized as follows:

• To our knowledge, we present the first analy-
sis of the performance of LLMs in financial
transaction generation.

• We create two novel tasks probing financial
literacy of LLMs motivated by financial ratios.

• We provide an in-depth error analysis on LLM
powered plain text accounting generation with
12 error classes among two different tasks.

We provide all data to replicate our experiments
including our prompts, data and methodology. 1

2 Related Work

Language models for code generation. In ad-
dition to common language-related tasks, LLMs
are also applied in the field of code genera-
tion. There are three types of transformer models:
encoder-only, encoder-decoder, and decoder-only.
Code2Vec (Alon et al., 2019) is one of the first lan-
guage models to attempt to understand code by rep-
resenting code snippets as embeddings. Encoder-
only models include CodeBERT (Feng et al., 2020)
and CuBERT (Kanade et al., 2020), which are pre-
trained BERT models (Devlin et al., 2019) and are
typically utilized in search or classification tasks.
Encoder-decoder models, such as AlphaCode (Li
et al., 2022) and CodeT5+ (Wang et al., 2023),
are instrumental for source code summarization,
text-to-code and code editing (Wang et al., 2021;
Ahmad et al., 2021). Recently, decoder-only Trans-
former models, such as Codex (Chen et al., 2021),
CodeGeeX (Zheng et al., 2023b), StarCoder (Li

1https://github.com/DATEXIS/LLMFinLiteracy

et al., 2023) and Wizardcoder (Luo et al., 2024),
comprehend the state-of-the-art in generating code
from natural language descriptions. In our work,
we use LLMs as generators of accounting DSLs
that can be inherently evaluated via compilation.

Large language models on accounting tasks.
LLMs are leveraged to perform accounting tasks,
such as auditing (Eulerich and Wood, 2023; Gu
et al., 2023; Emett et al., 2023; Li and Vasarhe-
lyi, 2023) and analyzing financial statements (Kim
et al., 2024). Eulerich and Wood (2023); Emett
et al. (2023) show that ChatGPT can help in open
generation tasks such as audit report writing. Kim
et al. (2024) examine the ability of LLMs (namely
GPT-4) to analyze financial statements. Their find-
ings suggest that GPT-4 and human analysts com-
plement each other and chain-of-thought prompting
(CoT) (Wei et al., 2024) leads to significantly bet-
ter results. Gu et al. (2023) also make use of CoT
prompting for co-piloted auditing and present fi-
nancial ratio analysis, post-implementation review
and journal entry testing as examples. We lever-
age CoT as a framework to direct and enhance the
output of LLMs for our accounting scenario tasks.

Plain text accounting tools. In contrast to com-
mon ERP systems, plain text accounting is based
on human-readable text files, which facilitates ac-
cess and editing of transactions by both humans
and machines. Among the most popular tools for
plain text accounting are Ledger (Wiegley, 2023),
hledger (Michael, 2023) and Beancount (Blais,
2023). Beancount offers features that are tailored
to domains such as trading and investing and pro-
vides the most customization. The corresponding
compiler is highly pessimistic and follows a strict
approach assuming an unreliable user. Hence, we
use Beancount as a target for the evaluation of our
experiments.

3 Tasks and Dataset

3.1 Financial Ratios

Financial ratios cover all scopes of the situation
of a company including operational applications
in single departments, the entire company, or even
external stakeholders such as suppliers and cus-
tomers (Bragg, 2012, p. 1). The financial ratios
that we consider are the liquidity ratios that ascer-
tain a company’s viability for investors. A company
can be deemed to be viable when it maintains an
amount of liquid assets that is sufficient enough to

https://github.com/DATEXIS/LLMFinLiteracy

65

SCENARIO 1
Description: The company sells a property
for 500 EUR to increase liquidity
Effect: Positive
--
TRANSACTION 1
2024-07-11 * "Selling non current asset"

Assets:NonCurrent:Appartment -500 EUR
Assets:Current:Cash 500 EUR

Figure 1: Top: Expected generated output of scenario
generation increasing the Current Ratio (liquidity). Bot-
tom: expected generated transaction using the Bean-
count DSL altering the balance-sheet accordingly.

pay off short-term liabilities (Bragg, 2012, p. 67).
We focus on three liquidity ratios: Current Ratio,
Quick Ratio and the Cash Ratio. These are among
the most common liquidity ratios and require only
accounts belonging to the balance sheet.

Current ratio. The current ratio assesses a com-
pany’s capacity to pay short-term debt that matures
within a year. The minimum level of liquidity is of-
ten considered to be at a current ratio of 1:1, where
ratios closer to 2:1 are more desirable (Bragg, 2012,
p. 81).

Current Ratio =
Current Assets

Current Liabilities
(1)

Quick ratio. As the current ratio includes inven-
tory which could overestimate the measured liq-
uidity. The quick ratio alleviates this by excluding
inventory when aggregating current assets. This re-
sults in a more balanced quantity that reflects how
quickly accessible assets can be converted into cash
(Bragg, 2012, p. 82).

Quick Ratio =

Cash

+ Marketable Securities

+ Accounts receivable
Current Liabilities

(2)

Cash ratio. This ratio only considers how cash
and cash equivalents can cover short-term liabili-
ties. Since the cash ratio does not include assets
that have to be transferred to cash, it is a direct and
reliable indicator of liquidity (Bragg, 2012, p. 83).

Cash Ratio =
Cash + Cash Equivalents

Current Liabilities
(3)

3.2 Tasks
We use LLMs to perform two primary tasks: Gen-
eration of financial scenarios and Generation of

transactions. By generating financial scenarios, we
assess whether LLMs are literate regarding account-
ing concepts, e.g., financial ratios and resource allo-
cation within a company. Based on these scenarios,
we generate transactions in the Beancount DSL.
Using the respective compiler, we gauge whether
LLMs understand double-entry accounting and can
keep the context of an entire balance sheet as hu-
mans do. Additionally, we probe for numeracy w.r.t
monetary quantities. Both tasks represent skills
that are fundamental to the activities of financial
practitioners.

Scenario generation. In this task LLMs gener-
ate scenarios that strategically influence financial
ratios in the context of a balance sheet, specifically
liquidity ratios. The expected output consists of
a series of textual scenario descriptions and their
positive or negative effects on a given liquidity ra-
tio. An example of such scenario is presented in
Figure 1 (top).

Plain text DSL transaction generation. In this
task LLMs must translate the previously generated
scenarios into plain text transactions, specifically
those that are compilable by Beancount. This
task assesses the models’ ability to convert the-
oretical changes in financial ratios into practical
accounting entries. These entries can be compiled
by Beancount and be automatically categorized in
different error classes. An example of an expected
transaction is shown in Figure 1 (bottom).

Transactions are generally additive towards a
balance sheet (initial state). However, the resulting
changes in financial ratios are subject to the initial
conditions as well as the arithmetic on the accounts.
Thus, the changes on the balance sheet compared
against the scenario objective effectively probe for
numeracy and the intuition of arithmetics in LLMs.

3.3 Balance Sheet Data
We use real balance sheet statements to provide
LLMs with the initial state (context) for the gen-
eration tasks. We focus on balance sheets of five
different companies that are part of the DAX and
have varying fields of operation: Airbus, Bayer,
Deutsche Telekom, Mercedes and SAP, specifically
their quarterly reports (Airbus, 2024; Bayer, 2024;
Deutsche Telekom, 2024; Mercedes-Benz Group,
2024; SAP, 2024).

To ensure uniform naming of the accounts, the
balance sheets are converted into the Beancount
DSL. These are then used as part of the context

66

included in the prompt for the LLMs to process.
An example of this company data expressed in the
DSL is presented in Appendix C.

4 Experiments

4.1 Large Language Models

We include five state-of-the-art LLMs in our eval-
uation. We focus on smaller open weight models
that can be deployed on premise following the pri-
vacy sensitivity of financial data. Our interest lays
in discriminating between the performance of spe-
cialized code models and general purpose models.
Hence, we evaluate three general purpose models:
Llama-3-8B-Instruct (AI@Meta, 2024), Qwen-2-
7B-Instruct (Yang et al., 2024), and Mistral-7B-
v0.3 (Jiang et al., 2023), in addition to two models
with a focus on coding: CodeLlama-7b-Instruct-hf
(AI@Meta, 2023) and CodeQwen1.5-7B-Chat (Bai
et al., 2023).

We limit the maximum number of generated to-
kens to 8192 per example and use greedy sampling
with a temperature setting of 0.

4.2 Prompt Engineering

To provide the various models with the context of
their tasks we use a standardized prompt protocol.
We follow the principles of (Gu et al., 2023) and
adapt their chain of thought (CoT) structure to the
novel tasks. In total, the CoT prompts consist of
nine prompts that guide the models in performing
their tasks. The chain starts with a role definition
and is then followed by a task explanation, an input
data explanation, output data explanation, the plain
text accounting rules, an input-output example, the
balance sheet context, and the two task execution
prompts. We provide details on the prompt protocol
in Appendix A. We evaluate the LLMs’ inherent
domain knowledge regarding financial ratios, thus
we do not provide explicit formulas.

4.3 Double-entry Accounting and the
Beancount DSL

We use this DSL as the target of the transaction
generation task since it can be compiled (see Ap-
pendix B for syntax details). The Beancount com-
piler validates that the postings follow a double-
entry bookkeeping approach which is an industry
standard. In double-entry bookkeeping, when an
account is credited by an amount, a different ac-
count (or set of accounts) has to be debited by a cor-
responding inverse amount. The overall sum of all

amounts of the transaction must be zero. In order to
prevent errors in the accounts, the Beancount com-
piler verifies that the total of all postings across all
transactions is zero. If the accounts do not balance
to zero after the transactions, the Beancount com-
piler returns an error. All accounts in Beancount
are categorised into one of five groups: Assets, Li-
abilities, Income, Expenses and Equity, where Eq-
uity is a summary of Income and Expenses (Blais,
2023). Since the scenarios generated focus on liq-
uidity ratios, income and expenses are excluded as
they do not affect the ratios directly.

4.4 Evaluation Setup

A domain knowledge expert evaluates the gener-
ated responses by each model in relation to the
financial goal and outcomes of every task. For ev-
ery model, financial ratio and company a model
generates a response, resulting in a total of 1500
samples. Each sample contains a scenario and a set
of corresponding financial transactions. To expe-
dite the human evaluation process, we sub-sample
this resulting dataset. We sample 60 entries for
each of the five models, stratified (Parsons, 2017)
by the combinations of company, scenario, and fi-
nancial ratio. This results in a total of 300 data
entries.

Human evaluation of scenarios. We follow a hi-
erarchical approach, starting with the identification
of major problems, such as missing scenarios, and
ending with the evaluation of finer details, such as
the correctness of the scenario content. As soon as
an error occurs, the evaluation is stopped and no
further reviews are carried out for the scenario. The
error classes are evaluated in the following order:

1. Missing Scenario: a scenario is missing.

2. Missing Effect: the effect is missing.

3. Ambiguous Accounts: the affected accounts
are not specific to the financial ratio.

4. Scenario Incorrect: the scenario content de-
viates from standard business practice (e.g.,
selling your own debt for cash).

5. Effects Incorrect: the effects of the scenario
is inconsistent with the financial ratio.

6. Correct: the scenario-effect combination
meets all criteria.

67

Evaluation of transactions. We distinguish be-
tween six error classes for the evaluation of trans-
actions:

1. Missing Transaction: a transaction was not
generated.

2. Syntax Error: the transaction format is incor-
rect.

3. Unknown Account: the account is not in the
balance sheet.

4. Balance Error: the transaction does not bal-
ance to zero.

5. Incorrect | Compiles: the transaction com-
piles, but does not match scenario.

6. Correct | Compiles: the transaction compiles
and the content is valid.

We append every transaction generated by the
LLMs to to the corresponding company ledger.
Then, we compile the resulting Beancount file.
The resulting error messages are mapped to the
respective transaction error classes. In cases where
the compiler reports both balance errors and un-
known account errors simultaneously, we prioritize
account errors, since resulting balances are unde-
fined. While a non-compiling transaction serves
as a definitive indicator of an error, a compiling
transaction does not necessarily signify correctness.
Since the transactions are based on generated sce-
narios, they may not always accurately reflect the
scenario. Therefore, we manually verify all the
transactions that are compiled, checking that they
are coherent with the scenario (Incorrect | Com-
piles and Correct | Compiles).

5 Evaluation Results

Human evaluation of scenarios. We report the
distribution of the scenario classes across the 300
samples in Table 1. The distribution of the er-
ror classes reveals significant issues. 33.67% of
all generated scenarios is missing and 6.33% are
not describing any effect. Additionally, 28.33% of
the scenarios included ambiguous accounts, mak-
ing a clear assessment impossible. 14.33% of the
scenario descriptions fail to adhere to accounting
principles i.e., they are nonsensical. Furthermore,
5.67% of the scenarios are sufficiently specified,
but do not affect the respective ratio as stated. Only

11.67% of the generated scenarios can be consid-
ered correct, following standard accounting prac-
tices and are coherent with their respective ratios.

Scenario Class Proportion [%]
Missing Scenario 33.67
Missing Effect 6.33
Ambiguous Accounts 28.33
Incorrect Scenario 14.33
Incorrect Effect 5.67
Correct 11.67

Table 1: Distribution of Scenario Classes in %. A ma-
jority of the scenarios have missing or unspecified el-
ements, highlighting significant gaps in completeness
and accuracy.

General purpose models outperform. Table 2
details the performance across the different lan-
guage models. Among these, only CodeLlama
and CodeQwen 1.5 have missing scenarios. In
fact, CodeQwen 1.5 fails to generate any scenario,
while the outputs of CodeLlama lack the effect in
31.67% of the cases. In contrast, Mistral, Llama
3, and Qwen 2 do not have any missing scenarios
nor effects, demonstrating a better adherence to
the desired output structure. However, Mistral and
Llama 3 struggle with specifying affected accounts
in their scenarios, where 58.33% and 51.67% of
scenarios exhibit this error, respectively. Qwen 2
stands out with the highest correct scenario genera-
tion accuracy of 21.67%. Mistral follows with an
accuracy of 20%, while Llama 3 achieves an accu-
racy of 16.67%. Although, general purpose models
outperform the code-related variants, the overall
performance leaves a great room for improvement.

Transactions. We report the distribution of the
transaction error classes across the 300 samples in
Table 3. From these entries, 40% are missing the
associated transaction. Additionally, 23.33% of the
transactions do not balance, which suggests incon-
sistencies in the associated amounts, e.g., sign er-
rors or mismatches in values. Furthermore, 17.67%
of the transactions reference an unknown account
and only 19% of the transactions adhere to the
Beancount syntax. However, more than half of
these (10.67% of the total) are nonsensical or in-
consistent with the described scenario. Out of all
evaluated transactions only 8.33% are correct. We
expand on the performance of each model in Ta-
ble 4.

68

Scenario Class CodeLlama CodeQwen 1.5 Mistral Llama 3 Qwen 2
Missing Scenario 68.33 100.00 0.00 0.00 0.00
Missing Effect 31.67 0.00 0.00 0.00 0.00
Ambiguous Accounts 0.00 0.00 58.33 51.67 31.67
Incorrect Scenario 0.00 0.00 21.67 23.33 26.67
Incorrect Effect 0.00 0.00 0.00 8.33 20.00
Correct 0.00 0.00 20.00 16.67 21.67

Table 2: Distribution of Scenario Classes Across Models in %. CodeLlama and CodeQwen 1.5 fail to generate
any correct scenarios. Mistral, Llama 3, and Qwen 2 show higher, though still suboptimal, accuracy, with Qwen 2
performing best.

Transaction Class Proportion [%]
Missing Transaction 40.00
Syntax Error 0.00
Unknown Account 17.67
Balance Error 23.33
Incorrect | Compiles 10.67
Correct | Compiles 8.33

Table 3: Distribution of Transaction Classes in % The
majority of generated transactions are not compiled or
are flawed. Only 8.33% of all transactions are correct
and compile.

CodeLlama and CodeQwen 1.5 fail to generate
any transactions, which is expected considering
their poor performance on generating scenarios. In
contrast, Mistral, Llama 3 and Qwen 2 success-
fully generate transactions, albeit with varying er-
ror rates. The Qwen 2 model mainly generates
transactions that do not balance (61.67%). Of the
transactions generated by Mistral, 28.33% compile
successfully but show inconsistencies with the sce-
narios they are intended to represent. This class
is less pronounced in the transactions generated
by Llama 3 (11.67%) and Qwen 2 (16.67%). The
model that exhibits the best performance is Qwen
2, with 16.67% of transactions being compiled and
correct. Llama 3 and Mistral achieve an accuracy
of 15% and 10% respectively. Overall, Qwen 2
shows the highest accuracy, but generally, all mod-
els demonstrate significant limitations in generating
correct transactions.

6 Discussion

Task generalization from context. We observe
significant limitations in the ability of the chosen
language models to generate accurate financial sce-
narios and transactions. The LLMs that are spe-
cialized in code generation performed significantly

worse than the general models. In fact, they do
not generate a single correct scenario. We argue
that this is due to a high sensitivity of the model
response to the prompt structure. These mod-
els consistently produce the string "Processed
- Waiting for next input." after receiving
the task prompt, resulting in no viable scenarios
or transactions being generated. While this prob-
lem could potentially be mitigated with different
prompting strategies, we do not explore this further
and leave it as future work.

Among the scenarios generated by the general
purpose models, nearly half are incomplete, often
due to unspecific account descriptions. Only Qwen
2 generates scenarios with an error rate in the ac-
counts of less than 50%. This result is problematic
because accounting is typically a field in which
accuracy is of paramount importance.

Transaction accuracy and financial literacy.
Even though Mistral, Llama 3, and Qwen 2 do not
generate any transactions with syntax errors, thus
capturing the Beancount DSL, they compile less
than 40% of the time, with Llama 3 having the low-
est compile rate of 26.67%. This emphasizes how
these models are not able to distinctively capture
the accounts nor amounts in the scenario context.
Furthermore, many of the transactions that did com-
pile were inconsistent with the financial scenario
(Incorrect | Compiles), highlighting the necessity
of manual evaluation to avoid errors if these models
were deployed in practice. We show an example
in fig. 2, here the scenario is supposed to affect
positively the Current Ratio (CuR), i.e. either in-
crease liquid assets (like cash) or decrease short
term liabilities. Although the transaction balances
correctly, the transaction is nonsensical, since it de-
scribes the sales of debt while, in accounting terms,
what it effectively accomplishes is to increase cash
by increasing debt. This is a clear sign of the model

69

Transaction Class CodeLlama CodeQwen 1.5 Mistral Llama 3 Qwen 2
Missing Transaction 100.00 100.00 0.00 0.00 0.00
Syntax Error 0.00 0.00 0.00 0.00 0.00
Unknown Account 0.00 0.00 45.00 35.00 8.33
Balance Error 0.00 0.00 16.67 38.33 61.67
Incorrect | Compiles 0.00 0.00 28.33 11.67 13.33
Correct | Compiles 0.00 0.00 10.00 15.00 16.67

Table 4: Distribution of Transaction Classes Across Models in %. CodeLlama and CodeQwen 1.5 fail to generate
correct transactions. Transactions generated by Llama 3 and Qwen 2 mainly suffer from balance errors and Mistral
from unknown accounts. Qwen 2 outperforms the other general-purpose models slightly.

Llama-CuR-Deutsche_Telekom13:
The company receives 700 EUR in cash from the sale of non-current financial liabilities.
Effect: Positive

2024-08-15 * "Sale of Non-Current Financial Liabilities"
Liabilities:NonCurrent:FinancialLiabilities -700 EUR
Assets:Current:CashAndCashEquivalents 700 EUR

Figure 2: Succesfully compiling transaction created by the Llama 3 model for the scenario targeting an increase of
the Current Ratio (CuR). Although the transaction balances correctly (zero sum), it is incoherent with the scenario.
More importantly it’s description and intent (sales of liabilities) expressed with these two accounts are nonsensical
and show a clear hallucination regime.

following the syntax of the DSL, but hallucinating
w.r.t the actual goal of the task.

Probing GPT-4o as a judge. We probe, whether
an LLM-as-a-judge (Zheng et al., 2023a) for eval-
uation is feasible using the current state-of-the-art
LLM GPT-4o. We use ten of the nonsensical sce-
narios yielded by our models as an input. We exam-
ine the output of GPT-4o with the help of a domain
expert. The evaluation shows that GPT-4o fails to
assess the underlying inconsistencies in all tested
cases. This implies that even the current state-of-
the-art can not be used for an automatic evaluation,
highlighting the importance of human evaluation
even for trivial accounting tasks.

General accounting performance. Generally,
only 7 out of 300 (2.3%) scenario-transaction com-
binations resulted in a correct outcome. When
excluding the code models, the accuracy only in-
creases to 3.8%. For these correct samples, the gen-
erated scenario-transaction combinations resemble
the provided examples in the context very closely.
This suggests a possible over-reliance on the exam-
ples provided in the prompts, rather than demon-
strating an ability to generalize or generating origi-
nal results. Such behavior is potentially problem-
atic, as it suggests that the models may be reproduc-
ing the patterns in the example scenarios rather than

understanding the underlying processes or princi-
ples required for accounting.

Value proposition of LLMs for accounting.
Given the significant time and compute required
to generate even the seven correct scenario-
transaction combinations, it is questionable
whether LLMs are suited for generating plain text
accounting files. The slow inference and low ac-
curacy raise concerns about their efficiency and
reliability in these tasks. Our human evaluation
took approximately six expert hours to yield seven
correct transactions, which represent only two fi-
nancial ratios. This effectively reduces the number
of valid scenario-transactions to two, which in real-
ity would be significantly less time-consuming for
a human practitioner.

Another critical factor is that even when LLMs
manage to generate compiling transactions, the re-
sults can often be incorrect. This directly implies
that it is impossible to use these technologies with-
out human interaction. Transactions that the model
compiles still require meticulous review by a quali-
fied accountant to ensure that there are no content
errors.

In essence, the lack of accuracy and the need for
extensive post-processing review raises significant
questions about the potential value of using LLMs

70

to automate accounting processes.

7 Conclusion

We evaluate the capabilities of open-weight large
language models in generating meaningful account-
ing scenarios and code for plain text accounting
with domain specific languages. Through a com-
prehensive evaluation of two novel tasks we gauge
the domain knowledge and financial numeracy of
these models. We highlight that the models show
very poor performance. In a human expert evalua-
tion we find that only for 2.3% scenario-transaction
generations, LLMs succeed at our tasks, with most
of them stemming from a single model (Llama 3).

These results raise significant concerns about the
practical applicability of LLMs for code generation
using domain-specific languages for accounting.
Our results show that even successfully compiled
(balanced) transactions can be flawed (e.g. hal-
lucinated effects), severely propagating errors in
an automated evaluation and assessment of results.
Although we evaluate state-of-the-art prompt en-
gineering techniques, these seem to be limited to-
wards steering LLMs to a useful generation of trans-
actions. This is worsened by the time-intensive
nature of both inference and scenario human eval-
uation, which further complicates the search for a
"golden prompt".

7.1 Future Work

Prompt engineering. Given that a significant
proportion of the code model output was incom-
plete or missing, further refinement of the prompts
and additional strategies could improve perfor-
mance. We limit our survey to a Chain of Thought
approach, and although it is state-of-the art, addi-
tional methods and experiments could be consid-
ered.

Hyperparameter optimization. A qualitative
flaw of the generated scenarios is that they lack
in originality (diversity). This potentially stems
from the temperature we set to 0. A temperature of
0 results in greedy decoding, where the model se-
lects the token with the highest probability at each
step, leading to deterministic outcomes. By exper-
imenting with different hyperparameters, such as
using a temperature above zero or using a different
search algorithm (e.g. beam search (Freitag and
Al-Onaizan, 2017)), we can potentially get more
diverse and original results.

Fine-Tuning on domain-specific datasets. An-
other potential area for improvement is fine-tuning
the LLMs. The used general-purpose models were
trained on very diverse corpora, which likely do
not include sufficient data on accounting practices
and Beancount. By fine-tuning the language mod-
els on domain-specific datasets, such as financial
reports, accounting scenarios and Beancount files,
the performance could be improved. Using a more
specialized dataset, the models could learn to gen-
erate scenarios and transactions that are not only
syntactically correct, but also align more closely
with common accounting practices. Additionally,
the datasets could be tailored to specific areas of ac-
counting, such as tax accounting, cost accounting
e.t.c, to improve the precision in these areas.

Deploying larger models. Deploying larger
models could improve the precision in generat-
ing scenarios and transactions. Models with more
parameters, have more capacity to learn complex
patterns. This could be particularly beneficial in
accounting tasks, where details and accuracy are
crucial. With their increased capacity, larger mod-
els may also be better suited to handle the intri-
cacies of financial data, potentially reducing the
frequency of incomplete or inaccurate outputs ob-
served with smaller models. However, the larger
models come with an increased computational re-
quirement and longer inference times, increasing
the related costs.

Acknowledgments

We would like to thank the reviewers for their
helpful suggestions and comments. Our work is
funded by the German Federal Ministry of Educa-
tion and Research (BMBF) under the grant agree-
ments 01|S23013C (More-with-Less), 01|S23015A
(AI4SCM) and 16SV8857 (KIP-SDM). This work
is also funded by the Deutsche Forschungsge-
meinschaft (DFG, German Research Foundation)
Project-ID 528483508 - FIP 12, as well as the Eu-
ropean Union under the grant project 101079894
(COMFORT - Improving Urologic Cancer Care
with Artificial Intelligence Solutions).

References
Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi

Ray, and Kai-Wei Chang. 2021. Unified Pre-training
for Program Understanding and Generation. arXiv
preprint arXiv:2103.06333.

71

AI@Meta. 2023. CodeLlama Model Card.

AI@Meta. 2024. Llama 3 Model Card.

Airbus. 2024. Airbus SE Unaudited Condensed In-
terim IFRS Consolidated Financial Information for
the three-month period ended 31 March 2024. Ac-
cessed: 20 October 2024.

Uri Alon, Meital Zilberstein, Omer Levy, and Eran Ya-
hav. 2019. code2vec: Learning Distributed Repre-
sentations of Code. Proceedings of the ACM on Pro-
gramming Languages, 3(POPL):1–29.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609.

Bayer. 2024. Quarterly Statement First Quarter of 2024.
Accessed: 20 October 2024.

Martin Blais. 2023. beancount: Double-Entry Account-
ing from Text Files. Accessed: 16 October 2024.

Steven M. Bragg. 2012. Business Ratios and Formulas,
3rd edition edition. John Wiley & Sons, Ltd.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language Models are Few-Shot
Learners. Advances in Neural Information Process-
ing Systems, 33:1877–1901.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021. Evaluating Large Lan-
guage Models Trained on Code. arXiv preprint
arXiv:2107.03374.

Deutsche Telekom. 2024. Interim Group Report Q1
2024. Accessed: 20 October 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171–4186. Association for Computational
Linguistics.

Scott A Emett, Marc Eulerich, Egemen Lipinski, Ni-
colo Prien, and David A Wood. 2023. Leveraging
ChatGPT for Enhancing the Internal Audit Process –
A Real-World Example from a Large Multinational
Company. Available at SSRN 4514238.

Marc Eulerich and David A Wood. 2023. A Demonstra-
tion of How ChatGPT Can be Used in the Internal
Auditing Process. Available at SSRN 4519583.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536–1547. Association
for Computational Linguistics.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. In
Proceedings of the First Workshop on Neural Ma-
chine Translation, NMT@ACL 2017, Vancouver,
Canada, August 4, 2017, pages 56–60. Association
for Computational Linguistics.

Hanchi Gu, Marco Schreyer, Kevin Moffitt, and Mik-
los A Vasarhelyi. 2023. Artificial Intelligence Co-
Piloted Auditing. Available at SSRN 4444763.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7B. arXiv preprint arXiv:2310.06825.

Aditya Kanade, Petros Maniatis, Gogul Balakrishnan,
and Kensen Shi. 2020. Learning and Evaluating Con-
textual Embedding of Source Code. In International
Conference on Machine Learning, pages 5110–5121.
PMLR.

Alex Kim, Maximilian Muhn, and Valeri V Nikolaev.
2024. Financial statement analysis with large lan-
guage models. Chicago Booth Research Paper Forth-
coming, Fama-Miller Working Paper.

Huaxia Li and Miklos A Vasarhelyi. 2023. Applying
Large Language Models in Accounting: A Compar-
ative Analysis of Different Methodologies and Off-
the-Shelf Examples. Available at SSRN 4650476.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason T. Stiller-
man, Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Fahmy, Ur-
vashi Bhattacharyya, Wenhao Yu, Swayam Singh,

https://github.com/meta-llama/codellama/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.airbus.com/sites/g/files/jlcbta136/files/2024-04/Q1%2724%20Airbus%20Financial%20Statements_vr.pdf
https://www.airbus.com/sites/g/files/jlcbta136/files/2024-04/Q1%2724%20Airbus%20Financial%20Statements_vr.pdf
https://www.airbus.com/sites/g/files/jlcbta136/files/2024-04/Q1%2724%20Airbus%20Financial%20Statements_vr.pdf
https://www.bayer.com/sites/default/files/2024-05/bayer-quarterly-statement-q1-2024.pdf
https://beancount.github.io/
https://beancount.github.io/
https://report.telekom.com/interim-report-q1-2024/_assets/downloads/entire-dtag-ir124.pdf
https://report.telekom.com/interim-report-q1-2024/_assets/downloads/entire-dtag-ir124.pdf
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/W17-3207
https://doi.org/10.18653/V1/W17-3207

72

Sasha Luccioni, Paulo Villegas, Maxim Kunakov,
Fedor Zhdanov, Manuel Romero, Tony Lee, Na-
dav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jer-
nite, Carlos Muñoz Ferrandis, Sean Hughes, Thomas
Wolf, Arjun Guha, Leandro von Werra, and Harm
de Vries. 2023. Starcoder: may the source be with
you! Trans. Mach. Learn. Res., 2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman,
Julian Schrittwieser, Rémi Leblond, Tom Eccles,
James Keeling, Felix Gimeno, Agustin Dal Lago,
et al. 2022. Competition-level code generation with
AlphaCode. Science, 378(6624):1092–1097.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2024. Wizardcoder:
Empowering code large language models with evol-
instruct. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Mercedes-Benz Group. 2024. Interim Report Q1 2024.
Accessed: 20 October 2024.

Simon Michael. 2023. hledger. Accessed: 16 October
2024.

Van L. Parsons. 2017. Stratified Sampling, pages 1–11.
John Wiley & Sons, Ltd.

SAP. 2024. Quarterly Statement Q1 2024. Accessed:
20 October 2024.

J Schulman, B Zoph, C Kim, J Hilton, J Menick, J Weng,
JFC Uribe, L Fedus, L Metz, M Pokorny, et al. 2022.
ChatGPT: Optimizing language models for dialogue.

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi D. Q. Bui,
Junnan Li, and Steven C. H. Hoi. 2023. Codet5+:
Open code large language models for code under-
standing and generation. In Proceedings of the 2023
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 1069–1088. Association for
Computational Linguistics.

Yue Wang, Weishi Wang, Shafiq R. Joty, and Steven
C. H. Hoi. 2021. Codet5: Identifier-aware unified
pre-trained encoder-decoder models for code under-
standing and generation. In Proceedings of the 2021
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2021, Virtual Event /
Punta Cana, Dominican Republic, 7-11 November,
2021, pages 8696–8708. Association for Computa-
tional Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2024. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Proceedings of the 36th International Conference on

Neural Information Processing Systems, NIPS ’22,
Red Hook, NY, USA. Curran Associates Inc.

John Wiegley. 2023. Ledger. Accessed: 16 October
2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. 2024. Qwen2
Technical Report. arXiv preprint arXiv:2407.10671.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang,
Joseph E Gonzalez, and Ion Stoica. 2023a. Judging
llm-as-a-judge with mt-bench and chatbot arena. In
Advances in Neural Information Processing Systems,
volume 36, pages 46595–46623. Curran Associates,
Inc.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi
Wang, Yang Li, et al. 2023b. CodeGeeX: A Pre-
Trained Model for Code Generation with Multilin-
gual Evaluations on HumanEval-X. arXiv preprint
arXiv:2303.17568.

A Prompt Engineering

Chain-of-thought prompting. A method to fur-
ther enhance prompt engineering is following a
chain-of-thought prompting approach (Wei et al.,
2024). In chain-of-thought prompting a multi-step
problem is split into multiple smaller and simpler
steps. This results in the model performing better
at performing complex problems (Wei et al., 2024).

Prompt protocol. In total, the chain of thought
prompts consists of nine prompts that guide the
models in performing their tasks. We list these
next.

A.0.1 Prompt 1: Role Definition
This prompt explains the models’ role as an audi-
tor. To reduce the inference cost, the model is also
instructed to return a short sentence as confirma-
tion that it understands it’s task. This also ensures
that the model does not generate a different long
output. We empirically observed that models have
to be specifically asked not to provide a repetition
of the provided rules and not to provide a confirma-
tion. Otherwise the models would generate verbose
strings, increasing inference time.

A.0.2 Prompt 2: Task Explanation
The second prompt provides the model with an
explanation of the tasks it has to perform: a genera-
tion of realistic scenarios that affect financial ratios
based on a given balance sheet and the generation

https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=KoFOg41haE
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://openreview.net/forum?id=UnUwSIgK5W
https://group.mercedes-benz.com/documents/investors/reports/interim-reports/q1/mercedes-benz-interim-report-q1-2024.pdf
https://hledger.org/
https://www.sap.com/docs/download/investors/2024/sap-2024-q1-statement.pdf
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.68
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.685
https://www.ledger-cli.org/
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf

73

of Beancount transactions based on the financial
scenarios. The task execution prompt, in which the
financial ratio and number of scenarios are given, is
also explained in this prompt. Furthermore, we do
not provide any explicit formulas for the financial
ratios.

A.0.3 Prompt 3: Input Data Explanation

This prompt explains the financial data that is to be
processed by the model. It explains the data origin.
The statement is a report generated by Beancount,
and each line represents a different account to be
used in the scenario generation task.

A.0.4 Prompt 4: Output Data Explanation

The fourth prompt outlines the two types of outputs
expected from the model. The first output is for
the first task, where the model generates scenarios
that influence the given financial ratio. The second
output is created for the transaction generation task
that is based on the first output.

A.0.5 Prompt 5: Plain Text Accounting Rules

This prompt provides the model additional rules
that it has to adhere to while solving the tasks. Dur-
ing the prompt engineering process, the models ig-
nored the principles of double-entry bookkeeping.
Occasionally models would create transactions that
only affect a single account, whereas a transaction
has to influence at least two accounts. Liabilities
and equity were also problematic, because these ac-
counts increase with negative signs in Beancount.
The first rule provides the model with knowledge
about double-entry bookkeeping in plain text trans-
actions such as Beancount. The following rule is
that the scenarios have to state affected accounts
clearly. The third rule states that liabilities and eq-
uity increase with negative signs. In the last rule,
the model is forbidden to omit transactions during
generation and has to generate as many transactions
as scenarios.

A.0.6 Prompt 6: Input-Output Example

In this prompt the model is provided with an exam-
ple on what kind of input it receives and what kind
of output is expected. Providing an example of the
output, allows for a standardization of the output
layouts. The input is a balance sheet generated by
Beancount. The output examples are specific to
the ratio that the model is tasked to influence.

2024-01-01 open Assets:Current:Cash EUR
2024-01-01 open Liabilities:Current:VISA EUR

2024-05-29 * "Withdrawing from ATM with CC"
Assets:Current:Cash 500 EUR
Liabilities:Current:VISA -500 EUR

Figure 3: Beancount DSL example for opening an ac-
count and withdrawing cash from an ATM with a credit
card.

A.0.7 Prompt 7: Balance Sheet Context
A balance sheet, output by Beancount, is pro-
vided to the model as context by this prompt. The
Beancount balance sheet report is used, so the
models have the actual Beancount account names
as context. Experiments have shown that otherwise
different naming conventions are used, leading to
compilation issues for Beancount.

A.0.8 Prompt 8: Scenario Generation
The task outlined in the prompt asks the model to
generate 20 scenarios based on the balance sheet
provided.

A.0.9 Prompt 9: Transaction Generation
This prompt asks the model to execute the transac-
tion generation task 20 times, which draws on the
knowledge of the previous model outputs.

B Beancount DSL

Each transaction in Beancount adheres to a con-
sistent syntax and is entered using a uniform stan-
dardised format. A Beancount text file typically
comprises numerous transactions, which are then
parsed by a compiler. Prior to the execution of
transactions, the affected accounts must be open or
Beancount returns an unknown account error. The
format of the open directive follows the following
syntax: YYYY-MM-DD open Account (optional
currency constraint)

Transactions start with the date of the transaction
and are followed by a memo that is provided as
an identifier or description. After the memo, two
or more postings follow, that specify the affected
accounts and the amounts by which they change.
An example of a transaction alongside with the
opening of the accounts is shown in Figure 3.

The example starts with the opening of two ac-
counts: an assets account for cash and a liabilities
account for short term credit card debt (VISA).
The liabilities account is debited with 500 euros,
which is shown with a negative sign, while the

74

assets account is credited with the same amount
(with the opposite sign). In essence this transac-
tion summarizes the account movements analogous
to withdrawing cash from an ATM using a credit
card.

C Opening balances in a Beancount file

Figure 4 shows the data included in the Airbus
Beancount file, which is used to produce the bal-
ance sheet report that is fed as context to the LLMs.
The generated transactions are appended to this
file and subsequently verified by the Beancount
compiler.

75

; Opening balances
2024-01-01 open Assets:Current:Inventories
2024-01-01 open Assets:Current:TradeReceivables
2024-01-01 open Assets:Current:PortionOfOtherLongTermFinancialAssets
2024-01-01 open Assets:Current:ContractAssets
2024-01-01 open Assets:Current:OtherFinancialAssets
2024-01-01 open Assets:Current:OtherAssets
2024-01-01 open Assets:Current:TaxAssets
2024-01-01 open Assets:Current:Securities
2024-01-01 open Assets:Current:CashAndCashEquivalents

2024-01-01 open Assets:NonCurrent:IntangibleAssets
2024-01-01 open Assets:NonCurrent:PropertyPlantAndEquipment
2024-01-01 open Assets:NonCurrent:InvestmentProperty
2024-01-01 open Assets:NonCurrent:InvestmentsAccountedUnderEquityMethod
2024-01-01 open Assets:NonCurrent:OtherInvestmentsAndOtherLongTermFinancialAssets
2024-01-01 open Assets:NonCurrent:ContractAssets
2024-01-01 open Assets:NonCurrent:OtherFinancialAssets
2024-01-01 open Assets:NonCurrent:OtherAssets
2024-01-01 open Assets:NonCurrent:DeferredTaxAssets
2024-01-01 open Assets:NonCurrent:Securities
2024-01-01 open Assets:HeldForSale

2024-01-01 open Liabilities:Current:Provisions
2024-01-01 open Liabilities:Current:ShortTermFinancingLiabilities
2024-01-01 open Liabilities:Current:TradeLiabilities
2024-01-01 open Liabilities:Current:ContractLiabilities
2024-01-01 open Liabilities:Current:OtherFinancialLiabilities
2024-01-01 open Liabilities:Current:OtherLiabilities
2024-01-01 open Liabilities:Current:TaxLiabilities
2024-01-01 open Liabilities:Current:DeferredIncome

2024-01-01 open Liabilities:NonCurrent:Provisions
2024-01-01 open Liabilities:NonCurrent:LongTermFinancingLiabilities
2024-01-01 open Liabilities:NonCurrent:ContractLiabilities
2024-01-01 open Liabilities:NonCurrent:OtherFinancialLiabilities
2024-01-01 open Liabilities:NonCurrent:OtherLiabilities
2024-01-01 open Liabilities:NonCurrent:DeferredTaxLiabilities
2024-01-01 open Liabilities:NonCurrent:DeferredIncome

2024-01-01 open Liabilities:HeldForSale

2024-01-01 open Equity:CapitalStock
2024-01-01 open Equity:SharePremium
2024-01-01 open Equity:RetainedEarnings
2024-01-01 open Equity:AccumulatedOtherComprehensiveIncome
2024-01-01 open Equity:TreasuryShares
2024-01-01 open Equity:NonControllingInterests

; Opening balances as of 03/31/2024
2024-03-31 * "Opening Balances as of 03/31/2024"
Assets:Current:Inventories 37,656 EUR
Assets:Current:TradeReceivables 4,959 EUR
Assets:Current:PortionOfOtherLongTermFinancialAssets 836 EUR
Assets:Current:ContractAssets 1,923 EUR
Assets:Current:OtherFinancialAssets 1,831 EUR
Assets:Current:OtherAssets 3,633 EUR
Assets:Current:TaxAssets 618 EUR
Assets:Current:Securities 1,845 EUR
Assets:Current:CashAndCashEquivalents 13,615 EUR
Assets:HeldForSale 52 EUR
Assets:NonCurrent:IntangibleAssets 17,055 EUR
Assets:NonCurrent:PropertyPlantAndEquipment 17,360 EUR
Assets:NonCurrent:InvestmentProperty 35 EUR
Assets:NonCurrent:InvestmentsAccountedUnderEquityMethod 2,269 EUR
Assets:NonCurrent:OtherInvestmentsAndOtherLongTermFinancialAssets 4,955 EUR
Assets:NonCurrent:ContractAssets 62 EUR
Assets:NonCurrent:OtherFinancialAssets 721 EUR
Assets:NonCurrent:OtherAssets 1,994 EUR
Assets:NonCurrent:DeferredTaxAssets 3,374 EUR
Assets:NonCurrent:Securities 7,964 EUR
Liabilities:Current:Provisions -4,125 EUR
Liabilities:Current:ShortTermFinancingLiabilities -3,393 EUR
Liabilities:Current:TradeLiabilities -14,202 EUR
Liabilities:Current:ContractLiabilities -27,125 EUR
Liabilities:Current:OtherFinancialLiabilities -2,707 EUR
Liabilities:Current:OtherLiabilities -4,364 EUR
Liabilities:Current:TaxLiabilities -697 EUR
Liabilities:Current:DeferredIncome -528 EUR
Liabilities:NonCurrent:Provisions -5,515 EUR
Liabilities:NonCurrent:LongTermFinancingLiabilities -10,286 EUR
Liabilities:NonCurrent:ContractLiabilities -23,540 EUR
Liabilities:NonCurrent:OtherFinancialLiabilities -7,042 EUR
Liabilities:NonCurrent:OtherLiabilities -410 EUR
Liabilities:NonCurrent:DeferredTaxLiabilities -249 EUR
Liabilities:NonCurrent:DeferredIncome -40 EUR
Liabilities:HeldForSale -74 EUR
Equity:CapitalStock -793 EUR
Equity:SharePremium -4,080 EUR
Equity:RetainedEarnings -16,674 EUR
Equity:AccumulatedOtherComprehensiveIncome +2,949 EUR
Equity:TreasuryShares +174 EUR
Equity:NonControllingInterests -36 EUR

Figure 4: Example Beancount file.

	Introduction
	Related Work
	Tasks and Dataset
	Financial Ratios
	Tasks
	Balance Sheet Data

	Experiments
	Large Language Models
	Prompt Engineering
	Double-entry Accounting and the Beancount DSL
	Evaluation Setup

	Evaluation Results
	Discussion
	Conclusion
	Future Work

	Prompt Engineering
	Prompt 1: Role Definition
	Prompt 2: Task Explanation
	Prompt 3: Input Data Explanation
	Prompt 4: Output Data Explanation
	Prompt 5: Plain Text Accounting Rules
	Prompt 6: Input-Output Example
	Prompt 7: Balance Sheet Context
	Prompt 8: Scenario Generation
	Prompt 9: Transaction Generation

	Beancount DSL
	Opening balances in a Beancount file

