@inproceedings{ivchenko-grabar-2025-french,
title = "A {F}rench Eye-Tracking Corpus of Original and Simplified Medical, Clinical, and General Texts - {FETA}",
author = "Ivchenko, Oksana and
Grabar, Natalia",
editor = "Acarturk, Cengiz and
Nasir, Jamal and
Can, Burcu and
Coltekin, Cagr{\i}",
booktitle = "Proceedings of the First International Workshop on Gaze Data and Natural Language Processing",
month = sep,
year = "2025",
address = "Varna, Bulgaria",
publisher = "INCOMA Ltd., Shoumen, BULGARIA",
url = "https://aclanthology.org/2025.gaze4nlp-1.5/",
pages = "37--43",
abstract = "Eye tracking offers an objective window on real-time cognitive processing of information being read: longer fixations, more regressions, and wider pupil dilation reliably index linguistic difficulty. Yet, there is a paucity of the available corpora annotated with eye-tracking features. We introduce in this paper the FETA corpus {--} a French Eye-TrAcking corpus. It combines three types of texts (general, medical and clinical) in two versions (original and manually simplified). These texts are read by 46 participants, from which we collect eye-tracking data through dozens of eye-tracking features."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ivchenko-grabar-2025-french">
<titleInfo>
<title>A French Eye-Tracking Corpus of Original and Simplified Medical, Clinical, and General Texts - FETA</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oksana</namePart>
<namePart type="family">Ivchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalia</namePart>
<namePart type="family">Grabar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-09</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First International Workshop on Gaze Data and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cengiz</namePart>
<namePart type="family">Acarturk</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamal</namePart>
<namePart type="family">Nasir</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Burcu</namePart>
<namePart type="family">Can</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cagrı</namePart>
<namePart type="family">Coltekin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>INCOMA Ltd., Shoumen, BULGARIA</publisher>
<place>
<placeTerm type="text">Varna, Bulgaria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Eye tracking offers an objective window on real-time cognitive processing of information being read: longer fixations, more regressions, and wider pupil dilation reliably index linguistic difficulty. Yet, there is a paucity of the available corpora annotated with eye-tracking features. We introduce in this paper the FETA corpus – a French Eye-TrAcking corpus. It combines three types of texts (general, medical and clinical) in two versions (original and manually simplified). These texts are read by 46 participants, from which we collect eye-tracking data through dozens of eye-tracking features.</abstract>
<identifier type="citekey">ivchenko-grabar-2025-french</identifier>
<location>
<url>https://aclanthology.org/2025.gaze4nlp-1.5/</url>
</location>
<part>
<date>2025-09</date>
<extent unit="page">
<start>37</start>
<end>43</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A French Eye-Tracking Corpus of Original and Simplified Medical, Clinical, and General Texts - FETA
%A Ivchenko, Oksana
%A Grabar, Natalia
%Y Acarturk, Cengiz
%Y Nasir, Jamal
%Y Can, Burcu
%Y Coltekin, Cagrı
%S Proceedings of the First International Workshop on Gaze Data and Natural Language Processing
%D 2025
%8 September
%I INCOMA Ltd., Shoumen, BULGARIA
%C Varna, Bulgaria
%F ivchenko-grabar-2025-french
%X Eye tracking offers an objective window on real-time cognitive processing of information being read: longer fixations, more regressions, and wider pupil dilation reliably index linguistic difficulty. Yet, there is a paucity of the available corpora annotated with eye-tracking features. We introduce in this paper the FETA corpus – a French Eye-TrAcking corpus. It combines three types of texts (general, medical and clinical) in two versions (original and manually simplified). These texts are read by 46 participants, from which we collect eye-tracking data through dozens of eye-tracking features.
%U https://aclanthology.org/2025.gaze4nlp-1.5/
%P 37-43
Markdown (Informal)
[A French Eye-Tracking Corpus of Original and Simplified Medical, Clinical, and General Texts - FETA](https://aclanthology.org/2025.gaze4nlp-1.5/) (Ivchenko & Grabar, Gaze4NLP 2025)
ACL