@inproceedings{fanton-etal-2025-diachronic,
title = "A Diachronic Analysis of Human and Model Predictions on Audience Gender in How-to Guides",
author = "Fanton, Nicola and
Ranjan, Sidharth and
Malsburg, Titus Von Der and
Roth, Michael",
editor = "Fale{\'n}ska, Agnieszka and
Basta, Christine and
Costa-juss{\`a}, Marta and
Sta{\'n}czak, Karolina and
Nozza, Debora",
booktitle = "Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
month = aug,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.gebnlp-1.22/",
doi = "10.18653/v1/2025.gebnlp-1.22",
pages = "242--255",
ISBN = "979-8-89176-277-0",
abstract = "We examine audience-specific how-to guides on wikiHow, in English, diachronically by comparing predictions from fine-tuned language models and human judgments. Using both early and revised versions, we quantitatively and qualitatively study how gender-specific features are identified over time. While language model performance remains relatively stable in terms of macro F$_1$-scores, we observe an increased reliance on stereotypical tokens. Notably, both models and human raters tend to overpredict women as an audience, raising questions about bias in the evaluation of educational systems and resources."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fanton-etal-2025-diachronic">
<titleInfo>
<title>A Diachronic Analysis of Human and Model Predictions on Audience Gender in How-to Guides</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nicola</namePart>
<namePart type="family">Fanton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sidharth</namePart>
<namePart type="family">Ranjan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Titus</namePart>
<namePart type="given">Von</namePart>
<namePart type="given">Der</namePart>
<namePart type="family">Malsburg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Roth</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Agnieszka</namePart>
<namePart type="family">Faleńska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Basta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karolina</namePart>
<namePart type="family">Stańczak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debora</namePart>
<namePart type="family">Nozza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-277-0</identifier>
</relatedItem>
<abstract>We examine audience-specific how-to guides on wikiHow, in English, diachronically by comparing predictions from fine-tuned language models and human judgments. Using both early and revised versions, we quantitatively and qualitatively study how gender-specific features are identified over time. While language model performance remains relatively stable in terms of macro F₁-scores, we observe an increased reliance on stereotypical tokens. Notably, both models and human raters tend to overpredict women as an audience, raising questions about bias in the evaluation of educational systems and resources.</abstract>
<identifier type="citekey">fanton-etal-2025-diachronic</identifier>
<identifier type="doi">10.18653/v1/2025.gebnlp-1.22</identifier>
<location>
<url>https://aclanthology.org/2025.gebnlp-1.22/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>242</start>
<end>255</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Diachronic Analysis of Human and Model Predictions on Audience Gender in How-to Guides
%A Fanton, Nicola
%A Ranjan, Sidharth
%A Malsburg, Titus Von Der
%A Roth, Michael
%Y Faleńska, Agnieszka
%Y Basta, Christine
%Y Costa-jussà, Marta
%Y Stańczak, Karolina
%Y Nozza, Debora
%S Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
%D 2025
%8 August
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-277-0
%F fanton-etal-2025-diachronic
%X We examine audience-specific how-to guides on wikiHow, in English, diachronically by comparing predictions from fine-tuned language models and human judgments. Using both early and revised versions, we quantitatively and qualitatively study how gender-specific features are identified over time. While language model performance remains relatively stable in terms of macro F₁-scores, we observe an increased reliance on stereotypical tokens. Notably, both models and human raters tend to overpredict women as an audience, raising questions about bias in the evaluation of educational systems and resources.
%R 10.18653/v1/2025.gebnlp-1.22
%U https://aclanthology.org/2025.gebnlp-1.22/
%U https://doi.org/10.18653/v1/2025.gebnlp-1.22
%P 242-255
Markdown (Informal)
[A Diachronic Analysis of Human and Model Predictions on Audience Gender in How-to Guides](https://aclanthology.org/2025.gebnlp-1.22/) (Fanton et al., GeBNLP 2025)
ACL