@inproceedings{qian-etal-2025-disentangling,
title = "Disentangling Biased Representations: A Causal Intervention Framework for Fairer {NLP} Models",
author = "Qian, Yangge and
Hu, Yilong and
Zhang, Siqi and
Gu, Xu and
Qin, Xiaolin",
editor = "Fale{\'n}ska, Agnieszka and
Basta, Christine and
Costa-juss{\`a}, Marta and
Sta{\'n}czak, Karolina and
Nozza, Debora",
booktitle = "Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
month = aug,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.gebnlp-1.33/",
doi = "10.18653/v1/2025.gebnlp-1.33",
pages = "393--402",
ISBN = "979-8-89176-277-0",
abstract = "Natural language processing (NLP) systems often inadvertently encode and amplify social biases through entangled representations of demographic attributes and task-related attributes. To mitigate this, we propose a novel framework that combines causal analysis with practical intervention strategies. The method leverages attribute-specific prompting to isolate sensitive attributes while applying information-theoretic constraints to minimize spurious correlations. Experiments across six language models and two classification tasks demonstrate its effectiveness. We hope this work will provide the NLP community with a causal disentanglement perspective for achieving fairness in NLP systems."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="qian-etal-2025-disentangling">
<titleInfo>
<title>Disentangling Biased Representations: A Causal Intervention Framework for Fairer NLP Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yangge</namePart>
<namePart type="family">Qian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yilong</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siqi</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaolin</namePart>
<namePart type="family">Qin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Agnieszka</namePart>
<namePart type="family">Faleńska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Basta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karolina</namePart>
<namePart type="family">Stańczak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debora</namePart>
<namePart type="family">Nozza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-277-0</identifier>
</relatedItem>
<abstract>Natural language processing (NLP) systems often inadvertently encode and amplify social biases through entangled representations of demographic attributes and task-related attributes. To mitigate this, we propose a novel framework that combines causal analysis with practical intervention strategies. The method leverages attribute-specific prompting to isolate sensitive attributes while applying information-theoretic constraints to minimize spurious correlations. Experiments across six language models and two classification tasks demonstrate its effectiveness. We hope this work will provide the NLP community with a causal disentanglement perspective for achieving fairness in NLP systems.</abstract>
<identifier type="citekey">qian-etal-2025-disentangling</identifier>
<identifier type="doi">10.18653/v1/2025.gebnlp-1.33</identifier>
<location>
<url>https://aclanthology.org/2025.gebnlp-1.33/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>393</start>
<end>402</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Disentangling Biased Representations: A Causal Intervention Framework for Fairer NLP Models
%A Qian, Yangge
%A Hu, Yilong
%A Zhang, Siqi
%A Gu, Xu
%A Qin, Xiaolin
%Y Faleńska, Agnieszka
%Y Basta, Christine
%Y Costa-jussà, Marta
%Y Stańczak, Karolina
%Y Nozza, Debora
%S Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
%D 2025
%8 August
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-277-0
%F qian-etal-2025-disentangling
%X Natural language processing (NLP) systems often inadvertently encode and amplify social biases through entangled representations of demographic attributes and task-related attributes. To mitigate this, we propose a novel framework that combines causal analysis with practical intervention strategies. The method leverages attribute-specific prompting to isolate sensitive attributes while applying information-theoretic constraints to minimize spurious correlations. Experiments across six language models and two classification tasks demonstrate its effectiveness. We hope this work will provide the NLP community with a causal disentanglement perspective for achieving fairness in NLP systems.
%R 10.18653/v1/2025.gebnlp-1.33
%U https://aclanthology.org/2025.gebnlp-1.33/
%U https://doi.org/10.18653/v1/2025.gebnlp-1.33
%P 393-402
Markdown (Informal)
[Disentangling Biased Representations: A Causal Intervention Framework for Fairer NLP Models](https://aclanthology.org/2025.gebnlp-1.33/) (Qian et al., GeBNLP 2025)
ACL