@inproceedings{kononykhina-etal-2025-mind,
title = "Mind the Gap: Gender-based Differences in Occupational Embeddings",
author = "Kononykhina, Olga and
Haensch, Anna-Carolina and
Kreuter, Frauke",
editor = "Fale{\'n}ska, Agnieszka and
Basta, Christine and
Costa-juss{\`a}, Marta and
Sta{\'n}czak, Karolina and
Nozza, Debora",
booktitle = "Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)",
month = aug,
year = "2025",
address = "Vienna, Austria",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2025.gebnlp-1.7/",
doi = "10.18653/v1/2025.gebnlp-1.7",
pages = "83--91",
ISBN = "979-8-89176-277-0",
abstract = "Large Language Models (LLMs) offer promising alternatives to traditional occupational coding approaches in survey research. Using a German dataset, we examine the extent to which LLM-based occupational coding differs by gender. Our findings reveal systematic disparities: gendered job titles (e.g., ``Autor'' vs. ``Autorin'', meaning ``male author'' vs. ``female author'') frequently result in diverging occupation codes, even when semantically identical. Across all models, 54{\%}{--}82{\%} of gendered inputs obtain different Top-5 suggestions. The practical impact, however, depends on the model. GPT includes the correct code most often (62{\%}) but demonstrates female bias (up to +18 pp). IBM is less accurate (51{\%}) but largely balanced. Alibaba, Gemini, and MiniLM achieve about 50{\%} correct-code inclusion, and their small ({\ensuremath{<}} 10 pp) and direction-flipping gaps could indicate a sampling noise rather than gender bias. We discuss these findings in the context of fairness and reproducibility in NLP applications for social data."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kononykhina-etal-2025-mind">
<titleInfo>
<title>Mind the Gap: Gender-based Differences in Occupational Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Olga</namePart>
<namePart type="family">Kononykhina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna-Carolina</namePart>
<namePart type="family">Haensch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Frauke</namePart>
<namePart type="family">Kreuter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Agnieszka</namePart>
<namePart type="family">Faleńska</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Basta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marta</namePart>
<namePart type="family">Costa-jussà</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karolina</namePart>
<namePart type="family">Stańczak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Debora</namePart>
<namePart type="family">Nozza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Vienna, Austria</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-8-89176-277-0</identifier>
</relatedItem>
<abstract>Large Language Models (LLMs) offer promising alternatives to traditional occupational coding approaches in survey research. Using a German dataset, we examine the extent to which LLM-based occupational coding differs by gender. Our findings reveal systematic disparities: gendered job titles (e.g., “Autor” vs. “Autorin”, meaning “male author” vs. “female author”) frequently result in diverging occupation codes, even when semantically identical. Across all models, 54%–82% of gendered inputs obtain different Top-5 suggestions. The practical impact, however, depends on the model. GPT includes the correct code most often (62%) but demonstrates female bias (up to +18 pp). IBM is less accurate (51%) but largely balanced. Alibaba, Gemini, and MiniLM achieve about 50% correct-code inclusion, and their small (\ensuremath< 10 pp) and direction-flipping gaps could indicate a sampling noise rather than gender bias. We discuss these findings in the context of fairness and reproducibility in NLP applications for social data.</abstract>
<identifier type="citekey">kononykhina-etal-2025-mind</identifier>
<identifier type="doi">10.18653/v1/2025.gebnlp-1.7</identifier>
<location>
<url>https://aclanthology.org/2025.gebnlp-1.7/</url>
</location>
<part>
<date>2025-08</date>
<extent unit="page">
<start>83</start>
<end>91</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Mind the Gap: Gender-based Differences in Occupational Embeddings
%A Kononykhina, Olga
%A Haensch, Anna-Carolina
%A Kreuter, Frauke
%Y Faleńska, Agnieszka
%Y Basta, Christine
%Y Costa-jussà, Marta
%Y Stańczak, Karolina
%Y Nozza, Debora
%S Proceedings of the 6th Workshop on Gender Bias in Natural Language Processing (GeBNLP)
%D 2025
%8 August
%I Association for Computational Linguistics
%C Vienna, Austria
%@ 979-8-89176-277-0
%F kononykhina-etal-2025-mind
%X Large Language Models (LLMs) offer promising alternatives to traditional occupational coding approaches in survey research. Using a German dataset, we examine the extent to which LLM-based occupational coding differs by gender. Our findings reveal systematic disparities: gendered job titles (e.g., “Autor” vs. “Autorin”, meaning “male author” vs. “female author”) frequently result in diverging occupation codes, even when semantically identical. Across all models, 54%–82% of gendered inputs obtain different Top-5 suggestions. The practical impact, however, depends on the model. GPT includes the correct code most often (62%) but demonstrates female bias (up to +18 pp). IBM is less accurate (51%) but largely balanced. Alibaba, Gemini, and MiniLM achieve about 50% correct-code inclusion, and their small (\ensuremath< 10 pp) and direction-flipping gaps could indicate a sampling noise rather than gender bias. We discuss these findings in the context of fairness and reproducibility in NLP applications for social data.
%R 10.18653/v1/2025.gebnlp-1.7
%U https://aclanthology.org/2025.gebnlp-1.7/
%U https://doi.org/10.18653/v1/2025.gebnlp-1.7
%P 83-91
Markdown (Informal)
[Mind the Gap: Gender-based Differences in Occupational Embeddings](https://aclanthology.org/2025.gebnlp-1.7/) (Kononykhina et al., GeBNLP 2025)
ACL