
Proceedings of the 1st Workshop on GenAI Content Detection (GenAIDetect), pages 134–139
January 19, 2025. ©2025 International Conference on Computational Linguistics

134

Text Graph Neural Networks for Detecting AI-Generated Content

Andric Valdez-Valenzuela
Instituto de Investigaciones
en Matemáticas Aplicadas

y en Sistemas
CDMX, Mexico.

Helena Gómez-Adorno
Instituto de Investigaciones
en Matemáticas Aplicadas

y en Sistemas
CDMX, Mexico.

Manuel Montes-y-Gómez
Instituto Nacional

de Astrofísica, Óptica
y Electrónica

Puebla, Mexico.

Abstract
The widespread availability of Large Language
Models (LLMs) such as GPT-4 and Llama-3,
among others, has led to a surge in machine-
generated content across various platforms, in-
cluding social media, educational tools, and
academic settings. While these models demon-
strate remarkable capabilities in generating co-
herent text, their misuse raises significant con-
cerns. For this reason, detecting machine-
generated text has become a pressing need
to mitigate these risks. This research pro-
posed a novel classification method combin-
ing text-graph representations with Graph Neu-
ral Networks (GNNs) and different node fea-
ture initialization strategies to distinguish be-
tween human-written and machine-generated
content. Experimental results demonstrate that
the proposed approach outperforms traditional
machine learning classifiers, highlighting the
effectiveness of integrating structural and se-
mantic relationships in text.

1 Introduction

Large language Models (LLMs) are now widely
available and easily accessible, resulting in in-
creased machine-generated content across various
platforms, including Q&A forums, social media,
educational resources, and academic contexts. Re-
cent advancements in LLM technology, such as
Llama-3 and GPT-4, have enabled these models to
generate coherent responses to most user inquiries,
making them increasingly attractive for replacing
human labor in multiple fields. Moreover, this in-
creased accessibility has led to concerns about mis-
use, including the creation of fake news, financial
and legal issues, and education disruptions. Given
the difficulty people have distinguishing between
machine-generated and human-written text, there
is a growing need for automated systems that can
detect machine-generated content to mitigate and
address the risks associated with its misuse (Nitu
and Dascalu, 2024).

Viewing this problem as a classical text clas-
sification task, there are plenty of approaches to
tackle it nowadays, from traditional methods such
as training machine learning or deep learning mod-
els using Bag of Words or stylometric patterns as
features to more advanced approaches based on the
Transformer architecture, such as BERT (Devlin,
2018) or RoBERTa (Liu, 2019).

However, in recent years, a new area of re-
search known as Graph Neural Networks (GNNs),
or graph embeddings, has gained significant inter-
est (Battaglia et al., 2018). These networks have
proven to be highly effective in text classification
tasks involving complex relational structures as
they retain the global structure of a graph within
their embeddings.

A text can be appropriately represented as a
graph using the words/documents as nodes and the
edge representing the significant relationship be-
tween the nodes. Also, it is possible to assign differ-
ent attributes or weights to the graph’s edges/nodes
to add more significant information. Moreover,
graph-based methods capture complex connections
and dependencies that traditional methods might
miss. Understanding these relationships between
words/nodes is crucial for exploiting the text’s best
features. It could also help capture semantic and
syntactic nuances in the text, distinguishing be-
tween human and machine-generated texts.

The contributions of our paper are summarized
as follows:

• A classification method that combines Text-
Graph representation and GNNs with different
node feature initialization strategies to detect
machine-generated text 1.

• A detailed comparison of the performance of
our method against baseline and state-of-the-
art methods on English texts.

1https://github.com/andricValdez/GraphDeepLearning



135

2 Background

Several approaches to identifying automatically
generated text have been proposed in recent years.
Many of these works have been published in the
framework of a series of shared tasks that focus on
this specific problem, such as PAN-CLEF 2024
(Bevendorff et al., 2024) or IberAutextification
2023 (Sarvazyan et al., 2023). In (Abburi et al.,
2023), the authors proposed an ensemble neural
model combining probabilities from pre-trained
LLMs as features and then applying a traditional
machine learning classifier. Another relevant work
assessed text predictability by leveraging features
like grammatical accuracy, word frequency, linguis-
tic patterns, and fine-tuned LLM representations
(Duran-Silva, 2023). As we will see in the next
sections, this last system ranks 1st in the binary
classification task (for English text) on the Iber-
Autextification shared task

On the other hand, regarding the usage of GNNs,
many research works implement this approach to
solve different types of text classification tasks
(Wang et al., 2024). In (Yao et al., 2019), the
authors explored the use of GNNs with convolu-
tional layers (called TextGCN) for text classifica-
tion, building a single text graph for a corpus based
on word co-occurrence and document-word rela-
tionships, then used the graph embeddings as in-
put for a final classification layer. Experimental
results show that the TextGCN, even without exter-
nal word embeddings, outperforms state-of-the-art
methods and is particularly robust when training
data is reduced. Another research work combines
BERT and GCN for text classification tasks (called
BertGCN) (Lin et al., 2021). BertGCN constructs
a heterogeneous graph where documents are rep-
resented as nodes and uses BERT embeddings as
feature representation. Their experiments demon-
strate that BertGCN achieves state-of-the-art perfor-
mance across multiple text classification datasets.

Moreover, regarding using Text Graph and
GNNs to solve the machine-generated content iden-
tification task, in (Valdez-Valenzuela and Goméz-
Adorno, 2024) it is proposed an ensemble architec-
ture that combines Text Graph and GNNs, LLMs
embeddings, and stylometric features achieving
better performance than baselines.

3 Method Overview

This section describes our classification methodol-
ogy for detecting machine-generated text, combin-

Figure 1: CoOccurrence Graph for the text: millions in
texas lose power as the winter storm falls to -22c

ing text-graph and GNNs. Section 3.1 describes
the text-to-graph construction process, and section
3.2 explains all the pipeline architecture.

3.1 Text Graph Representation

We implemented the Co-Occurrence graph to rep-
resent the text documents; to apply this transforma-
tion in a simple and flexible way, we used a Python
library called text2graphAPI (Valdez-Valenzuela
and Gómez-Adorno, 2024). In the Co-Occurrence
graph, each word is represented as a node, and
an edge connects two nodes if the corresponding
words co-occur within the same text document (in
a predefined window size). In addition, different
weights can be assigned to the edges, including
the frequency of co-occurrences between words
and the Point-wise Mutual Information (PMI) for
each word pair. Considering this, we built one
Co-Occurrence graph representation for each text
document in the corpus 2.

For instance, consider the sentence ’Millions
in Texas lose power as the winter storm falls to
22°C’ 3 as shown in Figure 1. In the corresponding
graph, each node represents a unique word from
the sentence, such as ’power’, ’lose’, and ’Texas’.
These nodes are connected by edges, which indi-
cate that the words co-occur within a certain con-
text or proximity in the text (within a window size
of 2). The frequency weight on an edge indicates
how often the connected words appeared together.
For instance, if an edge is labeled ’freq: 2’, it means
that the two words appeared together twice.

2Edge weights were calculated for each text document
separately.

3This sentence is part of a longer document; thus, the
weights of the edges may not correspond to what is observed
in it



136

Additionally, the PMI weight measures the asso-
ciation strength between two words, highlighting
how often these words co-occur more than would
be expected by chance. Higher PMI values sug-
gest a strong contextual relationship between the
word pairs, even if their co-occurrence is infrequent.
This metric helps reveal significant word associa-
tions that might not be immediately apparent from
frequency alone.

3.2 Pipeline Architecture

Figure 2 shows the proposed pipeline architecture
for identifying machine-generated text. As a first
step, each document in the corpus is transformed
into a Co-Occurrence graph, as described in Sec-
tion 1. This transformation captures the relational
structure of the texts, which is crucial for further
processing.

After the graph has been built, we apply fine-
tuning using pre-trained transformer models, such
as BERT-Base-Uncased or RoBERTa-Base. These
models are used to initialize node features in the
graph, enhancing the semantic understanding of
the text. Moreover, for the sake of comparison in
the performance, we tested using different node
features, such as the Word2Vec model (Mikolov,
2013) and random features.

The processed graph is then fed into a Graph
Neural Network using a Graph Attention Network
(GAT) layer (Veličković et al., 2017). This GAT
layer uses attention mechanisms to focus on the
most important nodes and edges, capturing relation-
ships between words in a more subtle way. This
attention-based learning enables the model to un-
derstand complex dependencies and associations
within the text.

We implemented the GAT layer using the Py-
Torch Geometric library 4, providing as inputs the
node features, the co-occurrence graph (as a sparse
matrix, in COO format) and the edge weights (freq
or PMI metrics). Additionally, we set and test with
different kinds of hyperparameter related to this
GNN, such as the number of convolutions (message
passing layers), head attentions, hidden channels,
pooling layers (add, mean, max), and normaliza-
tion layers (such as BatchNorm1d or Dropout).

Lastly, the graph document embedding is fed
into a final classification model. This classifier,
typically handled by a dense neural network (but it

4This library provides various methods for deep learning
on graphs from a variety of published papers: https://pytorch-
geometric.readthedocs.io/en/latest/

Partition Autextification 2023
human machine total

Train 11,963 11,728 23,691
Validation 5,083 5,071 10,154

Test 10,642 11,190 21,832

Table 1: Summary stats for the Autextification 2023
English dataset used in the experiments.

could be any classification algorithm), determines
whether the text was machine-generated based on
the learned representations.

4 Experiments

This section shows all the experiment settings,
datasets used, and the performance and results ob-
tained for the proposed method.

4.1 Dataset

To evaluate the effectiveness of our proposed
method, we utilized the Autextification2023 (Sar-
vazyan et al., 2023) dataset, a publicly available
corpus specifically designed for machine-generated
text detection. This dataset contains text in English
and Spanish (In our case, we only used English
texts). It comprises human and LLM-generated
texts across five domains: tweets, reviews, how-
to articles, news, and legal documents, represent-
ing a range of writing styles from formal to in-
formal. Human texts were sourced from publicly
available datasets like MultiEURLEX, XSUM, XL-
SUM, MLSUM, Amazon Reviews, WikiLingua,
and more. Machine-generated texts were produced
using BLOOM and GPT-3 models, chosen for their
multilingual capabilities and accessibility. Table 1
shows the Train, Validation, and Test sets, with
a balanced distribution between human-generated
and machine-generated text samples.

4.2 Results

Table 2 compares the performance of various mod-
els on the datasets for detecting machine-generated
text using the Accuracy and F1-Score (macro) mea-
sures. The models evaluated include traditional
machine learning classifiers, such as Support Vec-
tor Machine (using TF-IDF unigrams for vector
representation), a fine-tuned BERT and RoBERTa
model 5, and GNNs with different node initializa-
tion strategies.

5Using a 16 batch size, five training epochs, 2e-5 as learn-
ing rate and 0.01 of weight decay.



137

Figure 2: Pipeline Architecture for generated text identification.

Approach Node Feat Init Val Acc Val F1Score Test Acc Test F1Score
Linear-SVM - 0.7419 0.7419 0.5944 0.5624
Word2Vec - 0.7325 0.7320 0.6040 0.5982
FT-BERT - 0.8924 0.8916 0.6197 0.5515

FT-RoBERTa - 0.8974 0.8965 0.6184 0.5481
GNN Cooc-Graph Random 0.6469 0.6434 0.5738 0.5737
GNN Cooc-Graph Word2Vec 0.7896 0.7896 0.6618 0.6592
GNN Cooc-Graph FT-BERT 0.8889 0.8882 0.7448 0.7441
GNN Cooc-Graph FT-RoBERTa 0.8812 0.8805 0.7447 0.7370

Table 2: Accuracy and Macro F1-Score on classification tasks for validation and test sets in the Autext 2023 dataset.

For the nodes feat initialization, we considered
the following strategies, varying the feature vector
size from 128 to 768:

• Random. In this approach, node features are
initialized randomly using the PyTorch Em-
bedding Layer 6, taking values from -1 to 1.

• Word2Vec. We trained the model (on train
set) using the Continuous Bag of Words
method and then obtained the word embed-
dings for each node/word in the graph. We ap-
plied a random vector initialization for those
out of the vocabulary words.

• Transformer. Fine-tuned the BERT and
RoBERTa models using the training data and
then extracted the word embeddings. The
tokenizer of this model generates some fine-
grained tokens for certain words. To handle
and match this with the graph’s nodes, we ob-
tain the average embedding for each token and
assign the result as the node feature.

6https://pytorch.org/docs/stable/nn.html

Table 2 highlights the best-performing models
for text classification in the Autextification 2023
dataset, showcasing significant differences in val-
idation and test performances across approaches.
The Linear-SVM and Word2Vec baselines achieved
a validation accuracy (Val F1 Macro Score) of
0.7419 and 0.7320, respectively. Among base-
line models, the fine-tuned BERT and RoBERTa
achieve the highest validation F1 score at 0.8965
and 0.8916, respectively, but a decline in test
performance (showing high overfitting). Now,
regarding the GNN Cooc-Graph, using a ran-
dom feature node initialization yields moderate re-
sults, while Word2Vec improves validation and test
scores (Val F1: 0.6618, Test F1: 0.6592). Using
fine-tuned transformer-based features (BERT and
RoBERTa models) further enhances GNN perfor-
mance, achieving the best overall test results: Test
F1 Score: 0.7370 for FT-RoBERTa and 0.7441 for
FT-BERT. This demonstrates the effectiveness of
leveraging pre-trained transformer features within
a graph-based framework and how the node feature
initialization significantly impacts performance.



138

Rank Approach Run Macro-F1
1 TALN-UPF HB plus 0.8091
- GNN (our) FT-BERT 0.7418
2 TALN-UPF HB 0.7416
3 CIC-IPN run2 0.7413
23 BOW+LR baseline 0.6578
52 Transformer baseline 0.5710
77 UAEMex run1 0.3387

Table 3: Final Ranking on the IberAutextification 2023
shared task (English text, subtask 1).

On the other hand, Table 3 shows the final rank-
ing on the IberAutextification 2023 shared task for
subtask 1 (binary classification on English texts).
The team TALN-UPF ranks 1st and 2nd with a
Macro-F1 with 0.8091 and 0.7416, respectively
(the system is described in section 2). As we can
see, the 1st rank system outperformed our proposed
approach; however, our method achieved better re-
sults than the other 76 systems, including the base-
lines.

5 Conclusions and Future work

This paper addresses the increasing prevalence of
machine-generated content due to advancements
in LLMs. With their rising accessibility, concerns
about their misuse have grown. To tackle this, we
proposed a model architecture that combines text-
graph representations and GNNs to detect machine-
generated text; specifically, we implemented a co-
occurrence graph where each word is represented
as a node, and if two words co-occur within the
same text document, it is linked with an edge. Then,
this graph is fed into a GNN (GAT), generating the
graph document embeddings as output, which are
used to train a final classification model to distin-
guish between human and machine text documents.

Based on the experiments in the Autextification
2023 Engish dataset, our approach demonstrated
superior performance compared to baselines and
traditional approaches, highlighting the effective-
ness of integrating structural and semantic features
in identifying machine-generated content.

Moreover, future studies could enhance these
approaches further and investigate their applica-
bility across various languages and datasets with
different domains. Also, different text graph repre-
sentations (e.g. Heterogeneous Graphs) and GNN
architectures should be tried using a combination
of different node feature initialization strategies.

6 Limitations

The results are based on a specific dataset, which
may not fully represent the diversity of machine-
generated content across different domains or
languages. Moreover, combining GNNs and
transformer-based features can be computationally
expensive, making the approach less feasible for
real-time and large-scale applications without fur-
ther optimization.

References
Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Al-

varo Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational in-
ductive biases, deep learning, and graph networks.
arXiv preprint arXiv:1806.01261.

Janek Bevendorff, Matti Wiegmann, Jussi Karlgren,
Luise Dürlich, Evangelia Gogoulou, Aarne Talman,
Efstathios Stamatatos, Martin Potthast, and Benno
Stein. 2024. Overview of the “Voight-Kampff” Gen-
erative AI Authorship Verification Task at PAN and
ELOQUENT 2024. In Working Notes of CLEF
2024 - Conference and Labs of the Evaluation Forum,
CEUR Workshop Proceedings. CEUR-WS.org.

Jacob Devlin. 2018. Bert: Pre-training of deep bidi-
rectional transformers for language understanding.
arXiv preprint arXiv:1810.04805.

Yuxiao Lin, Yuxian Meng, Xiaofei Sun, Qinghong Han,
Kun Kuang, Jiwei Li, and Fei Wu. 2021. Bertgcn:
Transductive text classification by combining gcn and
bert. arXiv preprint arXiv:2105.05727.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364.

Tomas Mikolov. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781, 3781.

Melania Nitu and Mihai Dascalu. 2024. Beyond lexical
boundaries: Llm-generated text detection for roma-
nian digital libraries. Future Internet, 16(2).

Areg Mikael Sarvazyan, José Ángel González, Marc
Franco Salvador, Francisco Rangel, Berta Chulvi,
and Paolo Rosso. 2023. Overview of autextifica-
tion at iberlef 2023: Detection and attribution of
machine-generated text in multiple domains. In
Procesamiento del Lenguaje Natural, Jaén, Spain.

Andric Valdez-Valenzuela and Helena Goméz-Adorno.
2024. The iimasnlp team at iberautextification 2024:
Integrating graph neural networks, multilingual llms,
and stylometry for automatic text identification.

https://doi.org/10.3390/fi16020041
https://doi.org/10.3390/fi16020041
https://doi.org/10.3390/fi16020041


139

Andric Valdez-Valenzuela and Helena Gómez-Adorno.
2024. text2graphapi: A library to transform text
documents into different graph representations. Soft-
wareX, 28:101888.

Petar Veličković, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2017. Graph attention networks. arXiv preprint
arXiv:1710.10903.

Kunze Wang, Yihao Ding, and Soyeon Caren Han. 2024.
Graph neural networks for text classification: A sur-
vey. Artificial Intelligence Review, 57(8):190.

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019.
Graph convolutional networks for text classification.
In Proceedings of the AAAI conference on artificial
intelligence, volume 33, pages 7370–7377.


	Introduction
	Background
	Method Overview
	Text Graph Representation
	Pipeline Architecture

	Experiments
	Dataset
	Results

	Conclusions and Future work
	Limitations

