
Proceedings of the 1st Workshop on GenAI Content Detection (GenAIDetect), pages 140–149
January 19, 2025. ©2025 International Conference on Computational Linguistics

140

I Know You Did Not Write That! A Sampling Based Watermarking
Method for Identifying Machine Generated Text

Kaan Efe Keleş
TOBB ETU

kaanefekeles@etu.edu.tr

Ömer Kaan Gürbüz
Bilkent University

kaan.gurbuz@bilkent.edu.tr

Mucahid Kutlu
Qatar University

mucahidkutlu@qu.edu.qa

Abstract

Potential harms of Large Language Models
such as mass misinformation and plagiarism
can be partially mitigated if there exists a re-
liable way to detect machine generated text.
In this paper, we propose a new watermark-
ing method to detect machine-generated texts.
Our method embeds a unique pattern within
the generated text, ensuring that while the con-
tent remains coherent and natural to human
readers, it carries distinct markers that can be
identified algorithmically. Specifically, we in-
tervene with the token sampling process in a
way which enables us to trace back our token
choices during the detection phase. We show
how watermarking affects textual quality and
compare our proposed method with a state-of-
the-art watermarking method in terms of ro-
bustness and detectability. Through extensive
experiments, we demonstrate the effectiveness
of our watermarking scheme in distinguishing
between watermarked and non-watermarked
text, achieving high detection rates while main-
taining textual quality.

1 Introduction

Transformer based Large Language Models
(LLMs) (Vaswani, 2017) such as ChatGPT, Llama2
(Touvron et al., 2023) are able to generate texts
that closely resemble human authored texts. For
instance, Clark et al. (2021) report that untrained
humans are not able to distinguish between texts
generated by GPT-3 and texts authored by humans.
As we train larger models with more parameters
on an ever-expanding corpora, their capabilities in
generating human-like text are likely to increase
(Hoffmann et al., 2022). With their incredible per-
formance in text generation, they become effective
tools for automating text based tasks such as sum-
marization and translation (Radford et al., 2019).

However, these LLMs pose various threats to so-
ciety because they can be also used for bad causes

such as generating credible-sounding misinforma-
tion (Pan et al., 2023), creating fake product re-
views (Adelani et al., 2019) and academic pla-
giarism (Dehouche, 2021). Recent studies have
discovered that even though LLM-generated re-
sponses may sound convincing, they can be fre-
quently incorrect (Lin et al., 2022).

The potential negative consequences associated
with LLMs can be reduced significantly if a reli-
able detection system is in place to differentiate be-
tween machine-generated and human-written texts.
A number of researchers focused on this important
problem and proposed various approaches such as-
training a classifier (Solaiman et al., 2019; Ippolito
et al., 2020), detecting based on linguistic features
(Guo et al., 2023) and log probabilities and pertur-
bations (Mitchell et al., 2023). Data driven methods
such as training classifiers requires a wide range of
data with different styles, sources, and languages.
Currently existing perplexity based detectors are
biased against non-native English writers (Liang
et al., 2023), raising ethical concerns about their
usage in real-world applications.

In this paper we propose a novel model-agnostic
watermarking method to detect machine generated
text. In watermarking, a hidden pattern is inserted
to a passage that is imperceptible to humans but
can be easily detected an algorithm.

In our proposal, we interfere with the random-
ness of sampling a new token to be generated in the
decoding phase of LLMs. For each token to be gen-
erated, we sample multiple candidate tokens based
on their probability provided by the LLM and cal-
culate a secret number for each of the candidate
tokens. Subsequently, we pick the token with the
highest secret number value. The way we calculate
the secret number enables us to retrieve the same
values from generated text. And our maximization
effort lets us discriminate against non-watermarked
text.

In our experiments, we evaluate the quality of



141

the watermarked texts and how accurately we can
detect the watermarks using various datasets and
LLMs. We also compare our model against water-
marking method of Kirchenbauer et al. (2023a). In
our experiments, we show that we are able to detect
watermarked texts almost in all cases. In addition,
we observe that our method based on sampling
with replacement does not reduce the text quality
in almost all cases while our method based on sam-
pling without replacement yields slight decrease
in text quality. In addition, we show that our pro-
posed method is robust to token level paraphrasing
attacks.

The main contributions of our work are as
follows. i) We introduce a novel watermarking
scheme to detect machine-generated text. In our
comprehensive evaluation we show that our water-
marks are highly detectable while causing a slight
decrease in text quality. ii) We share both our
code and dataset to ensure reproducibility of our
results and help other researchers build upon our
findings.1.

2 Related Work

The remarkable achievements of Large Language
Models (LLMs) compelled researchers to shift
their attention towards understanding their poten-
tial drawbacks and risks. We direct readers to the
survey studies conducted by Crothers et al. (2022)
and Weidinger et al. (2021) for an in-depth analysis
of the risks associated with LLMs. Now, we focus
on studies on detecting texts generated by LLMs.

2.1 Non-Watermarking Detection Methods

Gehrmann et al. (2019) propose a tool GLTR which
works in a white-box setting and highlights texts
based on probability distribution of tokens provided
by the LLMs. They show that their visual tool im-
proves the human detection rate of machine gen-
erated text from 54% to 72% without any prior
training and without tampering with the text gener-
ation phase.

Mitchell et al. (2023) also work in a white-box
setting and create perturbations of the candidate
text and analyze the negative curvature regions of
the model’s log probability function. Their main
hypothesis for detection is as follows. When ma-
chine generated text is modified it tends to have
lower log probability. However, modifications on

1The code will be made available soon.

the human-written text may have higher or lower
log probability than the unmodified text.

Zellers et al. (2019) examine several schemes to
detect fake news article using GROVER which is a
language model that generates and classifies fake
news articles. They conclude that the most effec-
tive model for identifying fake news generated by
GROVER is the model itself. Adelani et al. (2019)
also report that GROVER is highly accurate in de-
tecting fake reviews. Zellers et al. (2019) argue
that machine-generated text classification requires
a similar inductive bias as the generator model,
rather than expressive capability. However, these
findings differ from those of Solaiman et al. (2019)
as they claim that a fine-tuned RoBERTa model is
a more effective detector than a similarly-capable
fine-tuned GPT-2 model.

A number of researchers focused on develop-
ing machine learning models to identify generated
texts. For instance, Fagni et al. (2021) report that
transformer based classifiers to be the best discrim-
inators of fake tweets.

Guo et al. (2023) compile a dataset comprising
responses from ChatGPT and human experts across
various domains, including finance and medicine,
and use it to train classifiers that determine whether
a given passage is machine-generated. A similar ap-
proach is also followed by the creators of ChatGPT
with underwhelming results2. In our work, we pro-
pose a watermarking method to detect generated
texts.

2.2 Watermarking Detection Methods
Abdelnabi and Fritz (2020) introduce the Adver-
sarial Watermarking Transformer (AWT) model,
which encodes binary messages in text to trace its
origin and prevent malicious use, using a jointly
trained encoder-decoder and adversarial training,
ensuring the watermark is discreet while maintain-
ing the text’s original meaning. Ueoka et al. (2021)
proposes using a masked language model, which
has a high payload capacity and is less suscepti-
ble to automatic detection than generation-based
methods. Recently, Christ et al. (2024) introduced
a cryptographically inspired method that embeds
watermarks using pseudo-random functions and en-
tropy thresholds, ensuring the output distribution
remains unchanged.

The closest work to our own is Kirchenbauer
et al. (2023a)’s watermarking method. They pro-

2https://openai.com/blog/
new-ai-classifier-for-indicating-ai-written-text/

https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text/
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text/


142

pose selecting a randomized subset of approved
tokens from the vocabulary and then promoting
the sampling of the tokens from chosen approved
subset of the vocabulary via increasing the sub-
sets logits. The randomization is seeded on previ-
ously generated token(s) in a context window. In
our work, we interfere with the sampling process
without changing LLMs’ probability distribution
over vocabulary while Kirchenbauer et al. (2023a)
interfere the probability distribution. In our ex-
periments, we extensively compare our proposed
method against Kirchenbauer et al. (2023a)’s.

2.3 Paraphrasing Attacks

As there are tools to detect generated texts, people
might want to avoid these detection tools by inten-
tionally changing the generated texts. Therefore,
prior work also explored how vulnerable detection
systems are against paraphrasing attacks.

Sadasivan et al. (2023) demonstrate how effec-
tive off-the-shelf sentence-level paraphrasing mod-
els can be at evading detection and conclude that
detecting generated text is an unsolvable prob-
lem. However, this conclusion is contradicted by
Chakraborty et al. (2023) as they show that detec-
tion should always be possible when there exist
enough samples. Krishna et al. (2023) develop
a paraphrasing model which successfully evades
several detectors including watermarking (Kirchen-
bauer et al., 2023a) and DetectGPT (Mitchell et al.,
2023). In their proposed detection scheme, the API
provider maintains a database containing every se-
quence generated by their LLM. When a detection
query is initiated, this database is queried to iden-
tify a previously-generated sequence that exhibits
the highest semantic similarity to the query. If the
level of similarity surpasses a predefined threshold,
the query is classified as machine-generated.

3 Problem Definition

Our goal is to develop a model-agnostic water-
marking method to identify generated texts. Let
LLM be a large language model and LLMw is
its version with watermarking feature. In addi-
tion, let TLLM (P )/Tw

LLM (P ) be a text generated
by LLM /LLMw for the given prompt P . An ideal
watermarking method should have the following
properties:

• The watermarking process should not decrease
the quality of the texts, i.e., the quality of

TLLM (P ) and Tw
LLM (P ) should be similar for

any given P .

• Watermarking text should not necessitate retrain-
ing or fine-tuning.

• We should have the capability to compute a statis-
tical confidence interval with interpretable values
for the detection and sensitivity analysis of the
watermark.

• The watermark should be robust to perturbations.
An adversary must make significant modifica-
tions to remove the watermark.

4 Proposed Methodology

In this section, we explain our proposed method to
generate watermarked text (Section 4.1) and how
to detect the watermark within a given text (Section
4.2).

4.1 Generating Watermarked Texts
In our watermarking method, we interfere with the
randomness of picking the next token according to
its conditional probability provided by a language
model in the decoding stage. The details of our
method are shown in Algorithm 1.

For a given input prompt P , LLM produces a
text T in an iterative way [Lines 1-9]. In each iter-
ation, LLM outputs a conditional probability dis-
tribution vector over the vocabulary V for the next
token to be generated [Line 3]. We multinomially
sample y candidate tokens based on the probability
distribution vector [Line 4]. Subsequently, we com-
pute a secret number for each candidate token t
[Lines 5-7]. In order to compute the secret number
of a candidate token (St), we first concatenate the k
previous tokens and the candidate token t and then
calculate their SHA256 hash value. Subsequently,
we seed a random number generator with the hash
value [Line 6] and generate a random number. Next
we pick the token with the highest secret number
for the next token [Line 8].

The secret number of any token in a candidate
passage only depends on itself and the k tokens
that precede it. This enables us to retrieve the same
secret number for every token in a passage outside
of the generation process. Moreover, if a passage is
watermarked we expect the average secret number
of the tokens that make up the text to be signifi-
cantly higher than otherwise. This is because while
the production of the non-watermarked text is com-
pletely ignorant of the secret numbers of tokens,



143

Algorithm 1 Text Generation with the Sampling Watermarker
Input: P {Prompt given to the model}
Parameter-1: y {The sampling count}
Parameter-2: k {The context window size}

1: TLLM (P ) = P {Keeps the whole text}
2: for each token to be generated do
3: D = LLM(TLLM (P ))) {Get the probability distribution from the LLM}
4: C[1−y] = sample(D, y) {Sample y candidate tokens}
5: for i ∈ {1, . . . , y} do
6: SCi = RNG(seed = hash(TLLM (P )[N,N−k], Ci)) {Calculate the secret number}
7: end for
8: TLLM (P ) = TLLM (P ) + Cargmax(SC1 ,··· ,SCy ) {Concatenate the selected token}
9: end for

our watermarking scheme actively attempts to max-
imize this value.

During sampling, we have the option to sam-
ple candidate tokens with or without replacement.
When we sample without replacement, the secret
numbers of the candidate tokens are guaranteed to
be distinct values. Maximizing the use of distinct
values tends to result in larger secret number val-
ues, making the watermark more detectable. On the
other hand, if the entropy of the probability distri-
bution is low, i.e., there are few plausible tokens to
be generated, sampling without replacement would
cause the model to pick the unlikely tokens, reduc-
ing the quality of the generated text. Therefore, we
also explore sampling with replacement and evalu-
ate the impact of both sampling methods in Section
5.

4.2 Detecting the watermark

In order to detect whether a given text X is water-
marked or not, i.e., a text generated by our scheme
or not, we first tokenize X and calculate the secret
number of each token in X. The secret number of
the rth token of X can be calculated as follows.

SXr = RNG(seed = hash(X(r−k), · · · , X(r)))

where RNG is a random number generator
which draws values from a continuous uniform
distribution spanning the interval from zero to one.
The anticipated mean of the secret number for the
tokens composing a text aligns with a normal dis-
tribution characterized by an expected mean of 0.5
and an expected variance of 1

12∗N (See Blitzstein
and Hwang (2015) for explanation), where N rep-
resents the number of tokens within the given text
X. As the length of the candidate text increases,
the average secret number for non-watermarked
text gradually approaches this theoretical distribu-
tion with diminishing variance, thus reducing the

likelihood of the text’s average secret number de-
viating significantly from 0.5. Conversely, during
the watermarking process, tokens are selected from
a set of candidates based on their possession of
the highest secret number (out of y candidates).
This selection dramatically alters the distribution
of the average secret number, rendering it exceed-
ingly improbable for the text to have arisen through
natural generation. Thus, we classify the text as
watermarked if a certain threshold is exceeded. For-
mally, we define the following null hypothesis.

H0: The text sequence is generated without any
attempt to maximize the secret number average.

The formula of the z-score for testing the hypothe-
sis is as follows:

z = (sna− 0.5)/
√
1/(12 ·N) (1)

where sna denotes the secret number average of the
candidate text and N represents how many tokens
make up the candidate text. The null hypothesis
is rejected (and the watermark is detected) if z −
score is above a chosen threshold u.

5 Experiments

5.1 Experimental Setup
In this section, we explain evaluation metrics (Sec-
tion 5.1.1) to assess the quality of our watermark-
ing method, describe the models we used for wa-
termarking (Section 5.1.2), baseline methods we
compare against our methods (Section 5.1.3), and
datasets we utilized in our experiment (Section
5.1.4). Lastly, we provide details about implemen-
tation details (Section 5.1.5).

5.1.1 Evaluation Metrics
In order to measure the quality of watermarking
methods, we focus on the quality of the generated
text and our detection rate. We adopt the mea-
sures used by related prior work (Kirchenbauer



144

et al., 2023b; Krishna et al., 2023). In particular,
we calculate how the generated texts are similar
to the human authored ones using P-SP (Wieting
et al., 2023). In addition, we use diversity which
aggregates n-gram repetition rates. A high diversity
score represents a more diverse text where fewer
n-grams are repeated (Li et al., 2023). Given the
fraction of unique n-grams (which is denoted as
un) diversity up to the N th order is defined as fol-
lows.

diversity = − log

(
1−

N∏
n=1

(1− un)

)
(2)

Lastly, we use coherence to measure the seman-
tic coherence between the prompt and the generated
text. We employ the sentence embedding method,
SimCSE (Gao et al., 2022) for this calculation.
Given the prompt x and the generated text x̂, the
coherence score is defined as v⊤x vx̂/(∥vx∥ · ∥vx̂∥),
where vx = SimCSE(x) and vx̂ = SimCSE(x̂).

5.1.2 Models
As our approach can be applied in any model, we
utilize three different models that our hardware
systems could execute. In particular, we use OPT
(Zhang et al., 2022) with 1.3B parameters, BTLM-
3B (Dey et al., 2023) with 3B parameters, and
Llama2 (Touvron et al., 2023) with 7B parameters.
All of the models were loaded using 4-bit quanti-
zation (Dettmers et al., 2023) to minimize memory
usage.

5.1.3 Baseline Methods
We compare our proposed method against the study
by Kirchenbauer et al. (2023a), also known as the
“Maryland Watermark” (MWM). For their method’s
configuration parameters, we follow the default set-
tings specified in their publicly available reposi-
tory3, setting the greenlist fraction γ to 0.25 and
the logit bias δ to 2. Additionally, we utilized their
repository’s evaluation pipeline to compute their
z-scores, ensuring consistency in the comparison
metrics.

5.1.4 Datasets
In our experiment, we use two different datasets: i)
the train split of the ’realnewslike’ portion of the
C4 (stands for “Colossal Clean Crawled Corpus”)
dataset (Raffel et al., 2020) and ii) the train split for
Wikitext (103-v1-raw) dataset (Merity et al., 2016).
C4 is an extensive web text collection resembling

3https://github.com/jwkirchenbauer/lm-watermarking

real news articles while Wikitext consists of 100M
tokens extracted from the set of verified Good and
Featured articles on Wikipedia, providing a more
structured and manageable source.

We use the first 100 tokens of the passages as
prompts. In order to have a fair comparison, we
use 200 tokens for all cases. Therefore, we al-
low models to generate maximum 200 new to-
kens. For a given prompt, if any of the generated
text is less than 200 tokens, we discard it, and
try another prompt drawn from the corresponding
dataset. We continue this process until we reach
500 samples for each dataset. Eventually, for each
dataset and model we use, we create five text sub-
datasets: i) texts generated by Maryland watermark-
ing (TMWM ), ii) texts generated by our approach
with sampling with replacement (TSWR), iii) texts
generated by our approach with sampling without
replacement (TSWOR), iv) texts generated without
watermark (TNoWM ), and v) texts authored by hu-
mans (THumans).

5.1.5 Implementation
We implemented the sampling watermarker using
the PyTorch (Paszke et al., 2019) backend of the
Hugging Face library (Wolf et al., 2019). We uti-
lized the generate API provided by Hugging Face
for generating text. This API allows for passing
a custom LogitsProcessor which can be used to
modify the prediction scores of a language model
head for generation. We use Top-k sampling (Fan
et al., 2018) with top − k = 40 before doing any
sampling on all methods. For our proposed method
we set the context window size k to 1 and sampling
count y to 5 unless otherwise is mentioned.

5.2 Experimental Results

This section comprises of four subsections, each
serving distinct research objectives. The first (Sec-
tion 5.2.1) assesses watermark detectability, the sec-
ond (Section 5.2.2) examines textual quality under
watermarking, the third (Section 5.2.3) evaluates
watermark robustness against attacks, and the final
subsection (Section 5.2.4) investigates the impact
of various generation parameters on watermarking
performance.

5.2.1 Detectibility Experiments
In this experiment, we assess how accurate water-
mark detection mechanisms work. Specifically, we
run our watermarking methods and MWM for all
datasets we create and calculate average z-scores



145

over the generations. In addition, we set the z-score
threshold (u) to 4 for both watermarking schemes
as in Kirchenbauer et al. (2023a) and calculate the
percentage of the texts detected as watermarked.
The results are shown in Table 1.

The average z-scores exceed 10 in most of
the watermarked texts, and is near 0 for non-
watermarked text, showing the effectiveness of wa-
termarking schemes. SWOR achieves achieves the
highest z-score and detection rates in watermarked
texts.

Our watermarking methods consistently avoid
false positives when applied to human authored
text, whereas MWM occasionally misidentifies
such content as watermarked. Moreover, both
MWM and our approach have higher false posi-
tive when dealing with non-watermarked machine-
generated text compared to human authored
text. This is because non-watermarked machine-
generated text inherently resembles watermarked
machine-generated text.

5.2.2 Textual Quality Experiments
In this experiment, we assess how watermarking
affects the textual quality. We report P-SP, diver-
sity, and coherence scores in in Table 2 for texts
watermarked with our approaches, Maryland Wa-
termarking, and without any watermark.

Regarding similarity with respect to human au-
thored text (P-SP), we observe that MWM achieves
higher scores than our methods for OPT-1.3B and
BTLM-3B. However, SWR outperforms others
when Llama2-7B is used for generation. Interest-
ingly, SWR even yields higher P-SP score than
non-watermarked text with Llama2-7B in Wikitext.
We observe a similar pattern in other metrics such
that MWM yields higher score with OPT-1.3B and
BTLM-3B models than our models in most of the
cases. On the other hand, SWR outperforms others
with the largest model we use. Regarding SWOR
vs. MWM with Llama2-7B is mix such that SWOR
outperform MWM in Wikitext but not in C4.

5.2.3 Robustness Experiments
In order to assess how vulnerable the watermark-
ing methods are against token level paraphrasing
attacks, we conduct an experiment similar to the
one in Kirchenbauer et al. (2023a). In particular,
we randomly pick %t of tokens in the watermarked
and mask them. Next, we use DistilRoBERTa-Base
model (Sanh et al., 2020) to replace masked tokens,
ensuring that the model did not predict the same to-

ken that was initially masked. Figure 1 shows how
different attack percentages effect the detection of
the watermarked text. Sampling without replace-
ment achieves high detection rates even in attacks
with %40, outperforming all other methods. Sam-
pling with replacement and Maryland Watermarker
achieve similar detection rates.

Figure 1: Impact of paraphrasing attacks on the detec-
tion rate of watermarked texts.

5.2.4 The Impact of Sampling Count
We explore the impact of the sampling count used
for secret number generation, y on the quality of the
generated texts and the detection rate. In particular,
we vary y from 2 to 11 and generate text using our
approach with and without replacement using C4
dataset and Llama-2-7B model. Table 3 shows the
text quality metrics along with average z-score and
detection rate. We observe that increasing the sam-
pling count y results in decreasing quality scores in
all cases, but yields higher z-scores. Detection rate
for SWOR remains at %100 even at a low sampling
count of y = 2 and SWR achieves 99% rate when
y = 5.

5.2.5 Entropy in Probability Distribution
The effectiveness of our proposed method and the
Maryland watermarking depends on the language
model’s output distribution. For instance, if the
model outputs a low entropy distribution for the
next token, our sampling with replacement based
method is likely to sample the same y tokens as can-
didates. However, in sampling without replacement
case, the watermarker is guaranteed to sample y
unique tokens and pick the one that has the highest
secret number.

In this experiment, we manually manipulate the
output distribution entropy of our models by adjust-
ing the sampling temperatures to assess its impact.
Table 4 shows the average z-score for varying tem-
perature values for Llama2-7B model on C4 dataset.
As expected we observe that both SWR and MWM



146

C4 Wikitext
OPT-1.3B BTLM-3B Llama2-7B OPT-1.3B BTLM-3B Llama2-7B

Text Detector z-score %WM z-score %WM z-score %WM z-score %WM z-score %WM z-score %WM
TSWR SWR 11.31 99.8% 10.11 99.8% 9.44 99% 12.09 99.8% 10.33 100% 10.36 99.8%
TSWOR SWOR 16.85 100% 16.29 100% 16.66 100% 16.92 100% 16.26 100% 17.23 100%
TMWM MWM 10.77 100% 9.82 100% 9.71 99.4% 11.79 100% 10.43 100% 10.65 97%

THumans
SWR 0.27 0% -0.07 0% 0.22 0% 0.03 0% -0.05 0% 0.28 0%
MWM -0.23 0% -0.46 0.2% 0.21 0.2% 0.35 0.6% 0.21 0.2% -0.01 0.2%

TNoWM .
SWR 0.22 0% -0.25 0% 0.44 1.4% 0.69 0.6% -0.22 0% 0.17 3.6%
MWM -0.25 0% -0.42 0.2% 0.32 1% 0.01 0.4% -0.17 0.2% 0.39 3.4%

Table 1: The average z-scores over the generations when attempted to detect the watermark and the ratio of
samples detected as “watermarked" by the corresponding detector. The text in bold represent the highest z-score for
watermarked text and lowest for baseline completion text.

Metric Method C4 Wikitext
OPT-1.3B BTLM-3B Llama2-7B OPT-1.3B BTLM-3B Llama2-7B

P-SP

SWR 0.44 0.48 0.48 0.45 0.48 0.52
SWOR 0.40 0.42 0.38 0.42 0.43 0.44
MWM 0.46 0.49 0.45 0.47 0.49 0.41
NWM 0.47 0.50 0.48 0.49 0.49 0.46

Diversity

SWR 6.92 7.50 8.16 6.26 7.06 6.96
SWOR 6.84 7.49 7.48 6.42 7.23 6.66
MWM 7.40 7.90 5.88 6.77 7.46 5.38
NWM 7.87 7.87 6.17 7.16 7.55 6.1

Coherence

SWR 0.63 0.64 0.64 0.67 0.66 0.65
SWOR 0.58 0.59 0.53 0.63 0.60 0.54
MWM 0.64 0.64 0.65 0.68 0.66 0.58
NWM 0.66 0.66 0.67 0.70 0.66 0.62

Table 2: The impact of watermarking on the the quality of the generated text. The highest score among watermarked
texts for each case is shown in bold. MWM: Maryland Watermarking, SWR: Sampling with replacement, SWOR:
Sampling without replacement, NWM: No Watermarking.

y P-SP Diversity Coherence z-score Detection Rate
SWR SWOR SWR SWOR SWR SWOR SWR SWOR SWR SWOR

2 0.49 0.45 8.33 8.65 0.66 0.61 4.79 8.33 %76 %100
5 0.48 0.38 8.16 7.48 0.64 0.53 9.44 16.66 %99 %100
8 0.46 0.34 7.66 6.4 0.62 0.50 11.72 19.51 %100 %100
11 0.45 0.30 7.65 5.83 0.62 0.46 12.91 20.94 %100 %100

Table 3: The effect of sampling count y on textual quality metrics. Model: Llama-2-7B, Dataset:c4, k:1.

exhibit stronger watermarks when the output dis-
tribution entropy is higher. SWOR shows slight
variations in the average z-score but these are just
statistical noises as SWOR is designed to be unaf-
fected by the underlying distribution entropy.

Temperature 0.8 0.9 1 1.1 1.2
SWR 8.14 8.91 9.44 10.38 10.82
SWOR 16.89 16.75 16.66 16.68 16.61
MWM 8.02 8.85 9.71 10.65 11.24

Table 4: The effect of sampling temperature on the aver-
age z-score. Lower temperatures yield output distribu-
tions with lower entropy vice versa. Model: Llama2-7B,
Dataset:C4, k:1,y:5

6 Limitations

While our work makes a significant contribution
to the research on LLMs, there are certain limita-
tions that warrant further exploration in the future.
Firstly, the prompts used in our experiments are
derived from two datasets. However, watermark-
ing performance is highly dependent on the nature
of the prompt. For example, when asking a fac-
tual question (e.g., "What is the full text of the
U.S. Constitution?"), watermarking the generated
output becomes challenging due to the limited flex-
ibility in the model’s response. To address this, a
broader range of datasets covering diverse topics
is necessary. Furthermore, our experiments were
conducted using only three models, primarily due
to hardware constraints. Since the performance of



147

watermarking methods is influenced by the specific
models used for text generation, evaluating a wider
variety of LLMs is essential for more robust assess-
ments. Additionally, we did not account for human
paraphrasing in our evaluation, which limits the
scope of robustness testing and highlights another
avenue for future research.

Furthermore, in our study, we focus on only the
task of completing a text for a given prompt. We ac-
knowledge that further evaluation of the proposed
watermark across different down stream tasks such
as question answering and summarization would
be beneficial. We leave this exploration as future
work.

Lastly, we explore only token level paraphrasing
attacks to measure the robustness of the models.
There exist different methods for manipulating text
to evade watermarking detection such as deletion,
unicode attacks and human paraphrasing. Thus,
other types of attacks should be explored to further
analyze the robustness of watermarking methods.

7 Conclusion and Future Work

In this work, we propose a watermarking scheme
which embeds a unique pattern into the generated
text while preserving its coherence and natural read-
ability for human readers. Specifically, We modify
the token sampling process of LLMs. In particular,
we first sample multiple tokens based on probabil-
ity distribution over vocabulary and then calculate
a unique secret number for each sampled one. We
always pick the token with the highest secret num-
ber, allowing us to trace the hints of generation
process.

In our experiments with multiple datasets and
LLMs, we show that our method we show that our
watermarking is detectable and reduce slight de-
crease in text quality. Furthermore, our method
outperforms Kirchenbauer et al. (2023a)’s method
in terms of detectability and robustness. Regarding
text quality, we achieve slightly superior results
compared to Kirchenbauer et al. (2023a) when ap-
plied to larger models, albeit with less favorable
outcomes when dealing with smaller models.

There are multiple research directions we plan
to extend in the future. Firstly, we plan to conduct
our experiments on a larger scale in terms of data
and model size and types. Secondly, a more so-
phisticated watermark could be implemented by
adaptively choosing the sampling count y based on
the entropy of the output distribution. Specifically,

when the output distribution exhibits low entropy,
we can select a smaller value for y and conversely,
when the entropy is high, we can opt for a larger
value. This method would ensure less perplexity
on low entropy text while allowing for a stronger
watermark to be embedded on higher entropy text.
We leave this extension as a future work.

Lastly, there are no inherent obstacles to abstain-
ing from the concurrent application of both our and
Kirchenbauer et al. (2023a)’s watermarks during
text generation. This would enable texts that are
detectable by both watermarking methods. Em-
ploying two relatively less intrusive watermarks
might potentially better maintain the textual quality
while preserving high detectability.

References
Sahar Abdelnabi and Mario Fritz. 2020. Adversarial water-

marking transformer: Towards tracing text provenance with
data hiding. arXiv preprint.

David Ifeoluwa Adelani, Haotian Mai, Fuming Fang, Huy H.
Nguyen, Junichi Yamagishi, and Isao Echizen. 2019. Gen-
erating sentiment-preserving fake online reviews using neu-
ral language models and their human- and machine-based
detection. Preprint, arXiv:1907.09177.

Joseph K. Blitzstein and Jessica Hwang. 2015. Introduction
to Probability. CRC Press.

Souradip Chakraborty, Amrit Singh Bedi, Sicheng Zhu, Bang
An, Dinesh Manocha, and Furong Huang. 2023. On
the possibilities of ai-generated text detection. Preprint,
arXiv:2304.04736.

Miranda Christ, Sam Gunn, and Or Zamir. 2024. Undetectable
watermarks for language models. In Proceedings of Thirty
Seventh Conference on Learning Theory, volume 247 of
Proceedings of Machine Learning Research, pages 1125–
1139. PMLR.

Elizabeth Clark, Tal August, Sofia Serrano, Nikita Haduong,
Suchin Gururangan, and Noah A. Smith. 2021. All that’s
’human’ is not gold: Evaluating human evaluation of gen-
erated text. Preprint, arXiv:2107.00061.

Evan Crothers, Nathalie Japkowicz, and Herna Viktor. 2022.
Machine generated text: A comprehensive survey of threat
models and detection methods. arXiv preprint.

Nassim Dehouche. 2021. Plagiarism in the age of massive
generative pre-trained transformers (gpt-3): “the best time
to act was yesterday. the next best time is now.”. Ethics in
Science and Environmental Politics, 21.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke
Zettlemoyer. 2023. Qlora: Efficient finetuning of quantized
llms. Preprint, arXiv:2305.14314.

Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang,
Ribhu Pathria, Hemant Khachane, Shaheer Muhammad,
Zhiming, Chen, Robert Myers, Jacob Robert Steeves, Na-
talia Vassilieva, Marvin Tom, and Joel Hestness. 2023.
Btlm-3b-8k: 7b parameter performance in a 3b parameter
model. Preprint, arXiv:2309.11568.

https://doi.org/10.48550/ARXIV.2009.03015
https://doi.org/10.48550/ARXIV.2009.03015
https://doi.org/10.48550/ARXIV.2009.03015
https://arxiv.org/abs/1907.09177
https://arxiv.org/abs/1907.09177
https://arxiv.org/abs/1907.09177
https://arxiv.org/abs/1907.09177
https://arxiv.org/abs/2304.04736
https://arxiv.org/abs/2304.04736
https://proceedings.mlr.press/v247/christ24a.html
https://proceedings.mlr.press/v247/christ24a.html
https://arxiv.org/abs/2107.00061
https://arxiv.org/abs/2107.00061
https://arxiv.org/abs/2107.00061
https://doi.org/10.48550/ARXIV.2210.07321
https://doi.org/10.48550/ARXIV.2210.07321
https://doi.org/10.3354/esep00195
https://doi.org/10.3354/esep00195
https://doi.org/10.3354/esep00195
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2305.14314
https://arxiv.org/abs/2309.11568
https://arxiv.org/abs/2309.11568


148

Tiziano Fagni, Fabrizio Falchi, Margherita Gambini, Antonio
Martella, and Maurizio Tesconi. 2021. TweepFake: About
detecting deepfake tweets. PLOS ONE, 16(5):e0251415.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018. Hierarchi-
cal neural story generation. Preprint, arXiv:1805.04833.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2022. Sim-
cse: Simple contrastive learning of sentence embeddings.
Preprint, arXiv:2104.08821.

Sebastian Gehrmann, Hendrik Strobelt, and Alexander M.
Rush. 2019. GLTR: statistical detection and visualization
of generated text. CoRR, abs/1906.04043.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang, Jinran
Nie, Yuxuan Ding, Jianwei Yue, and Yupeng Wu. 2023.
How close is chatgpt to human experts? comparison corpus,
evaluation, and detection. arXiv preprint.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego
de Las Casas, Lisa Anne Hendricks, Johannes Welbl,
Aidan Clark, Tom Hennigan, Eric Noland, Katie Milli-
can, George van den Driessche, Bogdan Damoc, Aure-
lia Guy, Simon Osindero, Karen Simonyan, Erich Elsen,
Jack W. Rae, Oriol Vinyals, and Laurent Sifre. 2022. Train-
ing compute-optimal large language models. Preprint,
arXiv:2203.15556.

Daphne Ippolito, Daniel Duckworth, Chris Callison-Burch,
and Douglas Eck. 2020. Automatic detection of generated
text is easiest when humans are fooled. In Proceedings of
the 58th Annual Meeting of the Association for Computa-
tional Linguistics, pages 1808–1822, Online. Association
for Computational Linguistics.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz,
Ian Miers, and Tom Goldstein. 2023a. A watermark for
large language models. Preprint, arXiv:2301.10226.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu,
Khalid Saifullah, Kezhi Kong, Kasun Fernando, Aniruddha
Saha, Micah Goldblum, and Tom Goldstein. 2023b. On
the reliability of watermarks for large language models.
Preprint, arXiv:2306.04634.

Kalpesh Krishna, Yixiao Song, Marzena Karpinska, John
Wieting, and Mohit Iyyer. 2023. Paraphrasing evades de-
tectors of ai-generated text, but retrieval is an effective
defense. Preprint, arXiv:2303.13408.

Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Ja-
son Eisner, Tatsunori Hashimoto, Luke Zettlemoyer, and
Mike Lewis. 2023. Contrastive decoding: Open-ended text
generation as optimization. Preprint, arXiv:2210.15097.

Weixin Liang, Mert Yuksekgonul, Yining Mao, Eric Wu, and
James Zou. 2023. Gpt detectors are biased against non-
native english writers. Preprint, arXiv:2304.02819.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. Truth-
fulQA: Measuring how models mimic human falsehoods.
In Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long
Papers), pages 3214–3252, Dublin, Ireland. Association
for Computational Linguistics.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard
Socher. 2016. Pointer sentinel mixture models. Preprint,
arXiv:1609.07843.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky, Christo-
pher D. Manning, and Chelsea Finn. 2023. Detectgpt:
Zero-shot machine-generated text detection using probabil-
ity curvature. arXiv preprint.

Yikang Pan, Liangming Pan, Wenhu Chen, Preslav Nakov,
Min-Yen Kan, and William Yang Wang. 2023. On the risk
of misinformation pollution with large language models.
Preprint, arXiv:2305.13661.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Yang, Zach DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. 2019. Pytorch:
An imperative style, high-performance deep learning li-
brary. Preprint, arXiv:1912.01703.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. 2019. Language models are
unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li,
and Peter J. Liu. 2020. Exploring the limits of transfer
learning with a unified text-to-text transformer. Preprint,
arXiv:1910.10683.

Vinu Sankar Sadasivan, Aounon Kumar, Sriram Bala-
subramanian, Wenxiao Wang, and Soheil Feizi. 2023.
Can ai-generated text be reliably detected? Preprint,
arXiv:2303.11156.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas
Wolf. 2020. Distilbert, a distilled version of bert: smaller,
faster, cheaper and lighter. Preprint, arXiv:1910.01108.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda Askell,
Ariel Herbert-Voss, Jeff Wu, Alec Radford, Gretchen
Krueger, Jong Wook Kim, Sarah Kreps, Miles McCain,
Alex Newhouse, Jason Blazakis, Kris McGuffie, and Jas-
mine Wang. 2019. Release strategies and the social impacts
of language models. Preprint, arXiv:1908.09203.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert,
Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan
Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya Chen,
Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj
Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor
Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril,
Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao,
Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein,
Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang
Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien
Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-tuned
chat models. Preprint, arXiv:2307.09288.

Honai Ueoka, Yugo Murawaki, and Sadao Kurohashi. 2021.
Frustratingly easy edit-based linguistic steganography with
a masked language model. arXiv preprint.

https://doi.org/10.1371/journal.pone.0251415
https://doi.org/10.1371/journal.pone.0251415
https://arxiv.org/abs/1805.04833
https://arxiv.org/abs/1805.04833
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/2104.08821
https://arxiv.org/abs/1906.04043
https://arxiv.org/abs/1906.04043
https://doi.org/10.48550/ARXIV.2301.07597
https://doi.org/10.48550/ARXIV.2301.07597
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://doi.org/10.18653/v1/2020.acl-main.164
https://doi.org/10.18653/v1/2020.acl-main.164
https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2301.10226
https://arxiv.org/abs/2306.04634
https://arxiv.org/abs/2306.04634
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2303.13408
https://arxiv.org/abs/2210.15097
https://arxiv.org/abs/2210.15097
https://arxiv.org/abs/2304.02819
https://arxiv.org/abs/2304.02819
https://doi.org/10.18653/v1/2022.acl-long.229
https://doi.org/10.18653/v1/2022.acl-long.229
https://arxiv.org/abs/1609.07843
https://doi.org/10.48550/ARXIV.2301.11305
https://doi.org/10.48550/ARXIV.2301.11305
https://doi.org/10.48550/ARXIV.2301.11305
https://arxiv.org/abs/2305.13661
https://arxiv.org/abs/2305.13661
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1912.01703
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/1910.10683
https://arxiv.org/abs/2303.11156
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1910.01108
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/1908.09203
https://arxiv.org/abs/2307.09288
https://arxiv.org/abs/2307.09288
https://doi.org/10.48550/ARXIV.2104.09833
https://doi.org/10.48550/ARXIV.2104.09833


149

A Vaswani. 2017. Attention is all you need. Advances in
Neural Information Processing Systems.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Grif-
fin, Jonathan Uesato, Po-Sen Huang, Myra Cheng, Mia
Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha
Brown, Will Hawkins, Tom Stepleton, Courtney Biles,
Abeba Birhane, Julia Haas, Laura Rimell, Lisa Anne Hen-
dricks, William S. Isaac, Sean Legassick, Geoffrey Irving,
and Iason Gabriel. 2021. Ethical and social risks of harm
from language models. CoRR, abs/2112.04359.

John Wieting, Kevin Gimpel, Graham Neubig, and Taylor
Berg-Kirkpatrick. 2023. Paraphrastic representations at
scale. Preprint, arXiv:2104.15114.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chau-
mond, Clement Delangue, Anthony Moi, Pierric Cistac,
Tim Rault, Rémi Louf, Morgan Funtowicz, et al. 2019.
Huggingface’s transformers: State-of-the-art natural lan-
guage processing. arXiv preprint arXiv:1910.03771.

Rowan Zellers, Ari Holtzman, Hannah Rashkin, Yonatan Bisk,
Ali Farhadi, Franziska Roesner, and Yejin Choi. 2019. De-
fending against neural fake news. CoRR, abs/1905.12616.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe,
Moya Chen, Shuohui Chen, Christopher Dewan, Mona
Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle
Ott, Sam Shleifer, Kurt Shuster, Daniel Simig, Punit Singh
Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
2022. Opt: Open pre-trained transformer language models.
Preprint, arXiv:2205.01068.

https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2112.04359
https://arxiv.org/abs/2104.15114
https://arxiv.org/abs/2104.15114
https://arxiv.org/abs/1905.12616
https://arxiv.org/abs/1905.12616
https://arxiv.org/abs/2205.01068

	Introduction
	Related Work
	Non-Watermarking Detection Methods
	Watermarking Detection Methods
	Paraphrasing Attacks

	Problem Definition
	Proposed Methodology
	Generating Watermarked Texts
	Detecting the watermark

	Experiments
	Experimental Setup
	Evaluation Metrics
	Models
	Baseline Methods
	Datasets
	Implementation

	Experimental Results
	Detectibility Experiments
	Textual Quality Experiments
	Robustness Experiments
	The Impact of Sampling Count
	Entropy in Probability Distribution


	Limitations
	Conclusion and Future Work

