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Abstract

This paper presents our approach to the MGT
Detection Task 1, which focuses on detecting
AI-generated content. The objective of this task
is to classify texts as either machine-generated
or human-written. We participated in Subtask
A, which concentrates on English-only texts.
We utilized the RoBERTa model for semantic
feature extraction and the LLaMA3 model for
probabilistic feature analysis. By integrating
these features, we aimed to enhance the sys-
tem’s classification accuracy. Our approach
achieved strong results, with an F1 score of
0.7713 on Subtask A, ranking ninth among 36
teams. These results demonstrate the effective-
ness of our feature integration strategy.

1 Introduction

In recent years, with the rapid development of large
language models, distinguishing between machine-
generated text and human-authored text has be-
come increasingly challenging. This issue can lead
to several potential problems. Low-quality gener-
ated text, when posted on social media, can reduce
user experience, hinder the growth of platforms and
high-quality content creators (Radivojevic et al.,
2024). Generated text that lacks fact-checking can
lead to the spread of rumors and misinformation
(Chen and Shu, 2023), causing public panic and un-
dermining government credibility. In academia, the
presence of generated text raises ethical concerns
regarding academic integrity (Meyer et al., 2023).
Therefore, there is an urgent need to develop ef-
fective techniques for detecting machine-generated
content (Wu et al., 2023).

Unlike typical machine-generated text, the data
for this shared task are derived from multiple mod-
els and spans various domains (Wang et al., 2025).
The human-authored texts in Subtask A originate
from over 20 specialized fields, including finance,
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Figure 1: A two-stage machine generated text detection
model architecture.

medicine, arXiv, WikiHow, IMDb, and Yelp. Cor-
respondingly, the machine-generated texts are pro-
duced by more than 40 different large language
models. Due to the diverse sources of this dataset,
many simple yet effective statistical features are no
longer viable, significantly increasing the challenge
of the detection task.

Machine-generated text often exhibits certain
characteristics, such as weaker emotional expres-
sion, fewer numeric details, simpler grammar and
vocabulary, and the absence of word order or
spelling errors. However, these characteristics can
be mitigated through iterative prompt optimization,
which makes detection less reliable. To address
this, we aim to develop a more generalized detec-
tion method that minimizes the risk of counter-
detection. Since large models are pretrained on
next-token prediction tasks, machine-generated
text inherently exhibits high-probability character-
istics. This feature remains consistent across texts
generated by different models or under various
prompt conditions. Specifically, we leverage the
[CLS] vector of the RoBERTa (Liu, 2019) model
as the semantic feature of the text and use LLaMA3
(Dubey et al., 2024) model to calculate the differ-
ence between the probability of the actual next
token and the predicted next token at each token
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Figure 2: The x-axis represents the mean of the different dimensions of the probabilistic features Hp for each text,
while the y-axis represents the number of texts with the same average value.

position, obtaining a vector as the probabilistic fea-
ture. By concatenating these two feature sets and
feeding them into a feedforward network for binary
classification, as illustrated in Figure 1, we achieve
robust detection performance.

2 Related Works

The task of detecting machine-generated text is es-
sentially a binary classification problem. Wu et al.
(2023) provide a comprehensive overview of the
field of LLM-generated text detection, thoroughly
examining the necessity of this task. They catego-
rize detection techniques into watermarking meth-
ods, statistical detectors, neural network-based de-
tectors, and human-assisted approaches, and also
list available data resources. Suvra Ghosal et al.
(2023) conducted a similarly excellent review, fo-
cusing on the possibilities and limitations of text
inspection. They categorize detection frameworks
into a priori and post hoc detectors, as well as ana-
lyzing novel attack strategies for evading detection
in machine-generated text. Due to challenges in
achieving consistency and widespread adoption of
watermarking methods, post hoc detection is cur-
rently the only feasible approach for real-world
detection tasks. This approach is further divided
into zero-shot detection and fine-tuned model de-
tection, with the latter being the category of this
shared task.

Zero-shot detection does not require labeled
datasets. Typically, it involves calculating entropy,
perplexity, n-gram frequency, or the average log
probability per token of a given sequence, fol-
lowed by thresholding. Mitchell et al. (2023) detect
machine-generated text by examining the curva-
ture of a language model’s log probability function.
They generate perturbations of a given text sample,
compares their log probabilities with the original

text, and identifies machine-generated text based
on a higher discrepancy metric. Yang et al. (2023)
detects machine-generated text by truncating a text
in the middle, regenerating the remainder using a
language model, and then analyzing n-gram differ-
ences between the original and newly generated
text segments.

Fine-tuned model detection, on the other hand,
trains binary classifiers using features extracted
from pretrained language models. Petukhova et al.
(2024) combine RoBERTa-base embeddings with
diversity features and resample the training set.
Verma et al. (2023) calculate the log probability
of tokens using a series of weaker language mod-
els, generates additional synthetic features through
vector and scalar operations, and uses a logistic
regression classifier to detect machine-generated
text based on these features.

3 Method

As shown in Figure 1, our model is divided into
two stages. In the first stage, we perform super-
vised learning for binary classification using the
RoBERTa model, aiming to enhance the [CLS]
vector of the RoBERTa model with features rel-
evant to the task of detecting machine-generated
text. In the second stage, we freeze the parameters
of the RoBERTa model and obtain the [CLS] vec-
tor for each text as the semantic feature Hs. For a
given text x = [x1, . . . , xn], where n is the token
length of the text, we freeze the parameters of the
LLaMA3-8B-Instruct model and compute the prob-
abilistic features Hp = [h1, . . . , hn], where hi is
calculated according to Equation 1:

hi = pθ (xi+1|x≤i)−max
y∈V

pθ (y|x≤i) (1)

That is, under model θ, the probability of pre-
dicting the next token xi+1 given the prefix x≤i
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is subtracted by the maximum probability of any
token being predicted as the next token given the
prefix x≤i. V represents the entire vocabulary.

For the different dimensions hi of the probabilis-
tic features Hp for the same text, we performed
normalization, as shown in Equation 2:

h′i =
hi −min(Hp)

max(Hp)−min(Hp)
(2)

We compute the mean of the probabilistic fea-
tures Hp for a text. The distribution of the prob-
abilistic features mean is illustrated in Figure 2,
where we can observe that machine-generated text
tends to follow high-probability sampling for the
next token, whereas human-authored text does not
exhibit this distinct characteristic.

The semantic features Hs and probabilistic fea-
tures Hp are first subjected to dimensionality re-
duction individually. These reduced vectors are
then concatenated to form a unified representation.
This concatenated representation is subsequently
processed through a series of linear layers. Finally,
a softmax activation function is applied to produce
the final label predictions.

4 Experiments

As shown in Figure 3, the text lengths in the dataset
are primarily concentrated around 500 words. In
the first stage illustrated in Figure 1, we uniformly
truncate texts to the first 512 tokens and exper-
iment with four models: RoBERTa, RoBERTa-
large, DeBERTa (He et al., 2021), and DeBERTa-
large. We use the baseline script for training, with
hyperparameters set as follows: a learning rate of
2e-5, batch size of 16, three epochs, and an L2
weight regularization of 0.01. On the validation
set, RoBERTa-large achieved the best performance,
with comparative results shown in Table 1.

score micro f1 accuracy
Baseline 0.8163 - -
RoBERTa-large 0.8502 0.8571 0.8571
DeBERTa 0.8273 0.8378 0.8378
DeBERTa-large 0.8384 0.8439 0.8439
RoBERTa-large+LLaMA3 0.8980 0.9015 0.9015

Table 1: Performance Comparison of Models.

In the second stage, we select RoBERTa-large to
extract the [CLS] vector with a dimension of 1024.
The text is again truncated to the first 512 tokens
and input into LLaMA3-8B-Instruct to compute
the probabilistic feature vector with a dimension

of 512. We then train a feedforward neural net-
work with three hidden layers and ReLU activation
functions. The first layer reduces both features to
128 dimensions, which are then concatenated. The
second layer further reduces the dimensionality to
64, and the final layer reduces it to 2 classes. We
use a learning rate of 1e-4 and a dropout rate of
0.5. This approach achieves a macro F1 score of
0.8980 on the validation set. Our experiments were
conducted using an NVIDIA GeForce RTX 4090
24GB.

Llm Human Total
Train 381845 228922 610767
Dev 163430 98328 261758
Test - - 73941

Table 2: Statistics for datasets.

It is evident that using the same generative model
as the text source for computing the probabilis-
tic features in the second stage would yield better
results. However, on the one hand, the dataset
for the competition does not originate from a sin-
gle model, and on the other hand, in real-world
scenarios, we cannot know the potential model
source of the text. We chose to use LLaMA3-8B-
Instruct for computing the probabilistic features
because the LLaMA series models have had a sig-
nificant influence in the open-source model domain.
Many subsequent open-source models have been
affected by it and may have been trained on the
same general datasets, leading to similar probabil-
ity distributions in text generation. Additionally,
LLaMA3-8B-Instruct performs exceptionally well
in the English domain. Due to the large scale of the
competition dataset and our limited computational
resources, we did not conduct comparative exper-
iments using other large models for probabilistic
feature extraction.Table 2 presents the scale of the
dataset.

Although we did not participate in the final sub-
mission for Subtask B, we conducted experiments
on the validation set for this subtask. We used a
combination of XLM-RoBERTa (Conneau, 2019)
and LLaMA3-8B-Instruct, achieving a score of
0.6766 compared to the baseline of 0.6546 for Sub-
task B. This result suggests that probabilistic fea-
tures can be helpful for detecting multilingual text,
but the current model framework does not perform
outstandingly.
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Figure 3: The x-axis represents the text length segmented by words, while the y-axis shows the probability density
corresponding to each length. It can be observed that the text lengths in both the training and validation sets are
primarily concentrated within 500 words.

5 Conclusion

In this work, we proposed a two-stage detection
system for machine-generated text. By integrating
semantic features from RoBERTa with probabilis-
tic features from LLaMA3, our system achieves
a Macro F1 score of 0.7713 on the test set, rank-
ing ninth overall. Our experiments confirmed the
effectiveness and generalizability of this feature
integration approach. Compared to average results,
our proposed system demonstrates robustness and
strong generalization capability, which we aim to
further enhance in future work.
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