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Abstract
The widespread use of large language mod-
els (LLMs) influences different social media
and educational contexts through the over-
whelming generated text with a certain de-
gree of coherence. To mitigate their poten-
tial misuse, this paper explores the feasibil-
ity of finetuning LLaMA with label super-
vision (named LS-LLaMA) in unidirectional
and bidirectional settings, to discriminate the
texts generated by machines and humans in
monolingual and multilingual corpora. Our
findings show that unidirectional LS-LLaMA
outperformed the sequence language models
as the benchmark by a large margin (up to
7.39 and 5.29 percentage points in F1 in-
crease in monolingual and multilingual cor-
pora, respectively). Our code is publicly avail-
able at https://github.com/honghanhh/llama-as-
a-judge.

1 Introduction

The blooming of large language models (LLMs)
has led to a significant step forward in producing
different machine-generated content across diverse
channels and platforms (e.g., news, social media,
question-answering forums, educational, and even
academic contexts). The generated texts become
increasingly fluent and coherent with the advent of
recent models (e.g., GPT-4o, Claude 3.5). How-
ever, this also resulted in concerns regarding their
potential misuse, such as spreading misinformation
and causing disruptions in the education system.
Consequently, there is a need to develop automatic
systems to identify machine-generated text to miti-
gate its potential misuse.

Inspired by the work of Tran et al. (2024), we
investigate the feasibility of training a binary se-
quence classifier that can reliably differentiate be-
tween text generated by humans and text that ap-
pears human-like but is generated by machines but
leverage the performance with the integration of a
LLaMA-as-a-judge in three different settings on the

larger monolingual and multilingual corpora from
Wang et al. (2025).

The main contribution of this paper is as follows:

• We study a label-supervised adaptation config-
uration for LLaMA-as-a-judge to discriminate
between human-written (HW) and machine-
generated (MG) texts.

• We investigate the feasibility of employing
latent representations in LLaMA with three
settings: masked unidirectional, masked bidi-
rectional, and unmasked ones for discriminant
label prediction in the classification tasks.

• Our solution is publicly available on GitHub
to encourage openness, transparency, and re-
producibility in the research community.

2 Related Work

The success of LLMs in various downstream NLP
tasks (Vilar et al., 2022; Hegselmann et al., 2023)
leads to the overuse and abuse of the information
generated by LLMs. However, it is essential to
acknowledge that the outputs generated by LLMs
are not always accurate, giving rise to the issue of
hallucination (Azamfirei et al., 2023). Researchers
have developed several automatic detection meth-
ods (Zellers et al., 2019; Uchendu et al., 2021)
that can identify the MG texts from the HW texts,
which initially can be divided into two categories,
i.e., metric-based and model-based methods.

Metric-based methods Metric-based methods
leverage LLMs to process the text and extract its
distinguishable features. Then, predicted distribu-
tion entropy determines whether a text belongs to
MG or HW texts. Some metric-based detection
methods include Log-Likelihood, Rank, Entropy,
GLTR, Log-Rank, and DetectGPT (He et al., 2023),
to cite a few.

https://github.com/honghanhh/llama-as-a-judge
https://github.com/honghanhh/llama-as-a-judge
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Figure 1: Our general LLaMA architecture in three different settings.

Model-based methods The model-based meth-
ods (Habibzadeh, 2023; Guo et al., 2023) are of-
ten trained using a corpus that contains both MG
and MW texts to make predictions, for example,
ChatGPT Detector (Guo et al., 2023), GPTZero
(Habibzadeh, 2023), and LM Detector (Ippolito
et al., 2020). Regarding Wang et al. (2024b),
RoBERTa (Liu et al., 2019) and XLM-R (Conneau
et al., 2020) are two baseline language models for
these specific tasks.

The comparative studies of both categories can
be found at the work of Tran et al. (2024).

3 Data

We evaluate the feasibility of our approach with
English1 and multilingual2 corpora from Wang
et al. (2025). Both corpora are the continuation
and improvement of Wang et al. (2024a) with ad-
ditional training and testing data generated from
novel LLMs and including new languages.

4 Methodology

This section tackles the problem by formulat-
ing it as supervised sequence classification tasks.
We then introduce our proposed architecture and
present how we fine-tune them before indicating
how we assessed their performance.

1Jinyan1/COLING 2025 MGT en
2Jinyan1/COLING 2025 MGT multingual

4.1 Problem Formulation
We formulate the problem as a binary supervised
classification task, whose objective is to learn a
mapping between a text representation and a binary
variable, which is 1 if the text is machine-generated,
and 0 otherwise. Mathematically, we learn a func-
tion f that, given an input text ti, represented as
a set of features [f i

1, ..., f
i
k], outputs an estimated

label l̂i ∈ {0, 1}, i.e., l̂i = f(ti).

4.2 Our architecture
Our general architecture of the label-supervised
LLaMA-as-a-judge (short form: LS-LLaMA3) from
MG text detection with three different settings is
visualized in Figure 1.

4.2.1 Masked Unidirectional LS-LLaMA
The tokens T from the input sequence S were fed
into pretrained models to extract the latent represen-
tation H from LLaMA for sequence classification.
First, we compute its embedding:

t = Tokenizer(S) (1)

then
x = Embedding(t) (2)

the transformer decoder layers are computed as

AttnLLaMA
i (Q,K,V) = SoftMax

(
QK⊤
√
d

+M
)
V (3)

3https://github.com/4AI/LS-LLaMA

https://huggingface.co/datasets/Jinyan1/COLING_2025_MGT_en
https://huggingface.co/datasets/Jinyan1/COLING_2025_MGT_multingual
https://github.com/4AI/LS-LLaMA
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Q = Wqx+ b, K = Wkx+ b, V = Wvx+ b

M: denotes the causal mask.
We modify the LLaMA model to obtain all the

sequence representations:

hLLaMA = LLaMA(T ) (4)

The pooling operation is applied to the latent
representation to obtain the vector representation h
for sequence classification. After passing through
fully connected layers and a softmax layer, vec-
tor representation h is mapped to the label space.
Cross-entropy loss is calculated based on the output
logits and the ground-truth label.

4.2.2 Masked Bidirectional LS-LLaMA
To address the missing dependency information in
autoregressive LLMs, we explore how backward
dependencies affect sentence embedding learning.
This is done by converting certain attention layers
in the transformer decoder from unidirectional to
bidirectional, removing the causal masks. How-
ever, if we keep all the causal masks, performance
decreases significantly. Therefore, only the last
attention layer is converted to bidirectional.

Mathematically speaking, with input sentence S
and its embedding x as computed in LS-LLaMA,
the embeddings are fed to the transformers to ob-
tain
←−−−→
LLaMA1:n:

AttnLLaMA
i (Q,K,V) = SoftMax

(
QK⊤
√
d

+M
)
V (5)

Then, we detach and transform it from uni- to
bi-directional to obtain

←−−−−−→
BiLLaMAn−1:n

AttnBiLLaMA
i (Q,K,V) = SoftMax(

QK⊤
√
d

)V (6)

The final representation can be formulated as:

h =
−−−−−→
LLaMA1:n(x) +

←−−−−−→
BiLLaMAn−1:n(x) (7)

4.2.3 Unmasked Unidirectional LS-LLaMA
Instead of removing only the causal mask of the
last transformer layer, the causal masks will be
removed in all transformer layers with the assump-
tion to be replenished in token representations dur-
ing fine-tuning as all the tokens can attend to each
other. The computation of the transformer layer is
computed as:

AttnunLlaMa
i (Q,K,V) = SoftMax(

QK⊤
√
d

)V (8)

Moreover, using bidirectional combining with
max-over-time pooling yields better performance
than average pooling and last-token pooling in clas-
sification tasks. The formula of unmasked unidi-
rectional LS-LLaMA can be represented as follows:

hunLLaMA = UnLLaMA(x) (9)

without causal masks.

4.3 Hyperparameters

We fine-tuned LLaMA-2-7b-hf 4 with the same con-
figuration for all three settings: batch size = 16,
learning rate = 1e-5, number of epochs = 5 with
max length = 128, and Lora = 12. All the ex-
periments were implemented on an NVIDIA RTX
H100 with a CUDA Version of 12.4 (95000MiB).

4.4 Evaluation metrics

We use Accuracy, macro-F1, and micro-F1 as the
evaluation metrics to measure our classifiers’ per-
formance. These are also the standard metrics in
Wang et al. (2025), which makes our work more
comparable with other solutions.

5 Results

Table 1 and 2 report the evaluation of LS-LLaMA
with three different learning settings in comparison
with the baselines on the monolingual and multi-
lingual subsets, respectively, in the development
phase before the test set was released.

Methods Accuracy Micro F1 Macro F1

LS-LLaMA 0.9166 0.9166 0.9146
biLS-LLaMA 0.8887 0.8928 0.8928
LS-unLLaMA 0.8725 0.8725 0.8682

Baseline 0.8483 0.8483 0.8407

Table 1: Evaluation on monolingual set in dev. phase.

Overall, LS-LLaMA demonstrates strong perfor-
mance in monolingual and multilingual corpora,
particularly excelling in accuracy and micro F1
metrics. However, the significant drop in macro F1
scores for the multilingual evaluation suggests that
while the model performs well on average, it may

4NousResearch/LLaMA-2-7b-hf
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Methods Accuracy Micro F1 Macro F1

LS-LLaMA 0.8703 0.8703 0.6715
biLS-LLaMA 0.8514 0.8514 0.6540
LS-unLLaMA 0.8025 0.8025 0.5890

Baseline 0.8561 0.8561 0.6186

Table 2: Evaluation on multilingual set in dev. phase.

have difficulty with less frequent classes, indicat-
ing a potential area for improvement in handling
multilingual data where there exists an imbalance
in HW and MG classes in different languages and
resources. While providing some performance, the
other models do not surpass LS-LLaMA, reinforc-
ing their effectiveness in this evaluation phase.

Based on the subset’s performance in the devel-
opment phase, we applied LS-LLaMA to the test set
in the test phase, which achieved 0.7463 in macro
F1 and 0.7554 in accuracy for the monolingual test
set, 0.7427 in macro F1 and 0.744 in accuracy for
the multilingual test set.

6 Discussion

Unidirectional vs. Bidirectional Context. The uni-
directional LS-LLaMA’s focus on sequential learn-
ing, coherence recognition, and specialized train-
ing objectives makes it particularly well-suited for
the task of MG text detection. In contrast, the
bidirectional LS-LLaMA, while powerful in captur-
ing overall context, may struggle with the specific
sequential dependencies that are critical for effec-
tively distinguishing HW from MG texts. This
fundamental difference in architecture and training
approach likely contributes to the observed perfor-
mance advantage of unidirectional LS-LLaMA.

Masking Strategy. The “masked” aspect refers
to how models are trained to predict missing parts
of the input. In unidirectional masked LS-LLaMA,
the focus is often on learning to predict the next
token or fill in gaps based on prior context. This
can enhance their ability to understand coherent
patterns typical in HW texts, which explains the
higher performance of masked LS-LLaMA com-
pared to unmasked settings, which can potentially
suffer from data leaks.

7 Error Analysis

We conduct several analyses to investigate how
different factors would affect the detection perfor-
mance of our best classifier, namely LS-LLaMA.

Figure 2 illustrates the confusion matrices for the
English and multilingual test sets. These matrices
reveal a notable tendency for higher error rates in
detecting MG content. This observation suggests
the model may be calibrated to prioritize detecting
MG (label 1) instead of HW texts (label 0).

(a) The monolingual test set.

(b) The multilingual test set.

Figure 2: Confusion matrices for LS-LLaMA.

We elaborated our analysis regarding the error
rate by text length and textual analysis of misclas-
sification. The results suggest that error rates may
not consistently increase or decrease with longer
or shorter texts; instead, they vary based on data.
However, there is a tendency for the classifier to
have higher errors when the length of the text is
from 10,000 to 20,000 words (see Figure 3).

8 Conclusions

In conclusion, we conducted a comparative study
of label supervision LLaMA, so-called LS-LLaMA
to highlight the potential and feasibility of fine-
tuning an LLM to discriminate between HW and
MG texts. Three different settings have been ap-
plied, including unidirectional masked, unidirec-
tional unmasked, and bidirectional. Our findings
suggest that unidirectional masked LS-LLaMA out-
performed two other settings and the benchmarks
for both monolingual and multilingual sets.
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A Error Rate by Text Length

Figure 3a and 3b show fluctuating error rates across
text lengths of the English set and multilingual test
set, we can not see a clear linear relationship be-
tween text length and error rate. This suggests
that errors may not consistently increase or de-
crease with longer or shorter texts; instead, they
vary based on data. However, there is a tendency
for the classifier to have higher errors when the
length of the text is from 10,000 to 20,000 words
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(a) The monolingual test set.

(b) The multilingual test set.

Figure 3: Error rates based on text length using LS-LLaMA.


