TechExperts(IPN) at GenAI Detection Task 1: Detecting AI-Generated Text in English and Multilingual Contexts

Gull Mehak, Amna Qasim, Abdul Gafar Manuel Meque, Nisar Hussain, Grigori Sidorov, Alexander Gelbukh


Abstract
The ever-increasing spread of AI-generated text, driven by the considerable progress in large language models, entails a real problem for all digital platforms: how to ensure con tent authenticity. The team TechExperts(IPN) presents a method for detecting AI-generated content in English and multilingual contexts, using the google/gemma-2b model fine-tuned for COLING 2025 shared task 1 for English and multilingual. Training results show peak F1 scores of 97.63% for English and 97.87% for multilingual detection, highlighting the model’s effectiveness in supporting content integrity across platforms.
Anthology ID:
2025.genaidetect-1.14
Volume:
Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)
Month:
January
Year:
2025
Address:
Abu Dhabi, UAE
Editors:
Firoj Alam, Preslav Nakov, Nizar Habash, Iryna Gurevych, Shammur Chowdhury, Artem Shelmanov, Yuxia Wang, Ekaterina Artemova, Mucahid Kutlu, George Mikros
Venues:
GenAIDetect | WS
SIG:
Publisher:
International Conference on Computational Linguistics
Note:
Pages:
161–165
Language:
URL:
https://aclanthology.org/2025.genaidetect-1.14/
DOI:
Bibkey:
Cite (ACL):
Gull Mehak, Amna Qasim, Abdul Gafar Manuel Meque, Nisar Hussain, Grigori Sidorov, and Alexander Gelbukh. 2025. TechExperts(IPN) at GenAI Detection Task 1: Detecting AI-Generated Text in English and Multilingual Contexts. In Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect), pages 161–165, Abu Dhabi, UAE. International Conference on Computational Linguistics.
Cite (Informal):
TechExperts(IPN) at GenAI Detection Task 1: Detecting AI-Generated Text in English and Multilingual Contexts (Mehak et al., GenAIDetect 2025)
Copy Citation:
PDF:
https://aclanthology.org/2025.genaidetect-1.14.pdf