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Abstract
This paper describes the participation of the
SzegedAI team in Subtask A of Task 1 at the
COLING 2025 Workshop on Detecting AI-
Generated Content. Our solutions investigate
the effectiveness of combining multi-class ap-
proaches with ensemble methods for detecting
machine-generated text. This approach groups
models into multiple classes based on proper-
ties such as model size or generative capabili-
ties. Additionally, we employ a length-based
method, utilizing specialized expert models de-
signed for specific text length ranges. During
inference, we condense multi-class predictions
into a binary outcome, categorizing any label
other than human as AI-generated. The effec-
tiveness of both standard and snapshot ensem-
ble techniques is evaluated. Although not all
multi-class configurations outperformed the bi-
nary setup, our findings indicate that the com-
bination of multi-class training and ensemble
methods can enhance performance over single-
method or binary approaches.

1 Introduction

In recent years, machine-generated text has become
increasingly sophisticated, with advances in gen-
erative models. Nowadays, substantial amounts of
AI-generated content are being produced, even in
the academic and scientific literature (Liang et al.,
2024b). Recent findings estimate that between
6.5% and 16.9% of peer review text submitted to AI
conferences may be substantially modified by large
language models, revealing subtle trends in the use
of LLMs within academic settings (Liang et al.,
2024a). This trend is further supported by the fact
that various models, such as GPT (OpenAI et al.,
2024), Mixtral (Jiang et al., 2024), and Gemini
(Gemini et al., 2024) have become easily accessible
to lay people, even those without a strong technical
background. As a result, there is an increasing need
for algorithms capable of predicting the difference
between human- and machine-generated content.

Workshops have been organized to address this
need, such as those discussed in (Sarvazyan et al.,
2023) and (Chamezopoulos et al., 2024).

In this paper, we present our solutions for Task 1
in the Workshop on Detecting AI-Generated Con-
tent at COLING 2025 (Wang et al., 2025). Our
focus was on Subtask A, where the objective was
to make a binary prediction indicating whether the
text was human-written or AI-generated.

The dataset for this subtask contained only En-
glish texts. To tackle this challenge, we exper-
imented with various classification schemes to
determine the most effective setup for detecting
machine-generated text. Binary, 3, 5, 6 and 41
class solutions were developed, with each config-
uration representing a different heuristic grouping
of models based on parameters, model size, or the
quality of generated text. Standard ensemble meth-
ods with soft voting were applied across all class
configurations to improve robustness and perfor-
mance. An additional experiment involved using a
snapshot ensemble (Huang et al., 2017), capturing
multiple snapshots of the model during training to
create a diverse but computationally efficient en-
semble. This snapshot ensemble was created only
for the 41-class configuration.

In addition, a length-based solution was devel-
oped in which the texts were categorized by length.
Three intervals were created based on text length,
with an expert model assigned to each interval.
These texts were classified according to their length
and directed to the corresponding expert model, op-
timizing performance by matching each text to a
model specialized in its specific length range.

Our final submission, the 6-class solution,
achieved a macro F1 score of 0.791, though it was
not our highest performing model. Our post-shared
task evaluation revealed that the length-based ap-
proach achieved a macro F1 score of 0.827, while
the 41-class standard ensemble scored slightly
higher at 0.826.
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2 Related Work

Recent advancements in detecting machine-
generated text have highlighted the efficacy of en-
semble learning methods, particularly those that
employ soft voting strategies. In the SemEval-2024
Task 8 (Wang et al., 2024), Gu and Meng (2024)
developed a class-balanced soft-voting system that
fine-tuned transformer-based models, including
encoder-only, decoder-only and encoder-decoder
architectures (Gu and Meng, 2024). Their approach
effectively addressed data imbalance and achieved
state-of-the-art performance in multi-class classifi-
cation tasks involving various text generators.

Building upon this, we explored the application
of snapshot ensembles within transformer architec-
tures for machine-generated text detection. This
method captures multiple “snapshots” of a model at
different training stages, offering computational ef-
ficiency over traditional ensembles. Although this
approach may not match the robustness of standard
ensembles, it presents a viable alternative when
resources are limited (Huang et al., 2017).

Another approach for detecting AI-generated
text leverages a Transformer Encoder that com-
bines probabilistic features from multiple LLaMA-
2 models (Sarvazyan et al., 2024). This model
reached impressive accuracy in distinguishing
machine-generated from human-written content.
The study reveals that integrating probabilistic fea-
tures from various language models can signifi-
cantly boost detection precision, with LLMixtic
effectively emphasizing the unique features of the
final tokens in a sequence.

3 Methodology

3.1 Multi-Class Classification

While the main task was framed as a binary classi-
fication problem, it may not fully capture the diver-
sity and variability present in machine-generated
content. The category of machine-generated text
is a heterogeneous group; it has outputs from a
wide array of models that differ in parameter count,
training data, and text generation. For example,
GPT-4o will likely produce a more coherent and
contextually aware text compared to flan_t5_small
for the same prompt. This heterogeneity results in
a “melting pot” when viewed as a binary task, it
can remove meaningful features within the data. To
address these challenges, we initially considered a
multi-class classification approach.

DeBERTa We chose DeBERTa-v1-base (He
et al., 2021) for this task due to its well-known
strengths and its proven performance in various
NLP tasks (C. Timoneda and Vallejo Vera, 2024).
To confirm its superiority, we made a comparison
with BERT-base-cased (Devlin et al., 2019), which
showed that DeBERTa consistently outperformed
BERT in this binary classification task, achieving
higher F1 scores. BERT achieved a macro F1 score
of 0.973, while DeBERTa got 0.982 on the devel-
opment set.

Configuration (used in all experiments): opti-
mizer = AdamW, base learning rate = 2e-5, weight
decay = 0.01, warmup steps = 10% of total steps,
batch size = 16, 4 validation per epoch and 3 epochs
with early stopping.

Binary reduction It is important to note that
while we trained the models on multiple classes, all
our experiments ultimately reduced the output to a
binary label. If the model predicts any class other
than “human” it is handled as “1” (AI-generated);
otherwise, it is classified as “0” (human).

3.1.1 41-class: one class per generative model
Since the shared task dataset includes information
on which model generated the text, our aim was
to capture this and treat each model as a different
class. This approach introduced 41 classes in total,
since the training texts were generated by 40 differ-
ent models. However, this method may lead to a
fragmented dataset, where individual classes con-
tain limited data for robust training and analysis.

Our hypothesis is that a better classification gran-
ularity could improve model effectiveness by orga-
nizing classes based on the generative capabilities
or the parameter count of the generative models. To
explore this, we also implemented 3, 5, and 6 class
solutions. By adopting these diverse class struc-
tures, we aimed to create categories with highly
distinct properties, allowing models to effectively
differentiate between them.

3.1.2 Modeling based on the parameter count
5-class Our second approach was to create
groups based on the parameter count of the models,
as we hypothesized that categorizing the models
by this criterion might reveal performance differ-
ences more clearly. This grouping strategy allows
us to examine whether models with different pa-
rameter scales show distinct behaviors or predictive
capabilities in binary classification tasks. By seg-
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menting models according to parameter count, we
aim to highlight potential trends in model efficacy
and better understand how complexity influences
outcomes.

We reviewed the models and recorded the num-
ber of parameters for each, hoping that grouping
them into intervals by parameter count would show
clear differences in capabilities: less than 5 billion,
6−10 billion, 11−130 billion, and over 130 billion.

6-class In our next approach, we introduce an
additional interval in the lower range, refining the
parameter-based grouping to examine performance
distinctions more precisely. This allows us to check
how vulnerable certain parameter sizes are, espe-
cially smaller models, to capturing nuanced dis-
tinctions. We split the less than 5B category into
two, at the threshold of 1B parameters, allowing a
more accurate analysis of how smaller model scales
may impact binary classification performance. The
6 different classes are shown in Figure 2 of Ap-
pendix A.

3.1.3 3-class: generative capability grouping
While parameter count serves as a valuable met-
ric for model complexity, it alone may not fully
capture a model’s performance capabilities. We
hypothesized that additional indicators, such as
leaderboard rankings and perplexity scores, could
provide more information on the effectiveness of a
model. By including these additional evaluations,
we aimed to refine our classification and account
for differences that parameter count might not be
able to effectively capture. This approach led us to
consider leaderboard-based ELO score as an addi-
tional metric for a more complete evaluation.

Two leaderboards were analyzed: the LLM Ex-
plorer leaderboard1 and Chatbot Arena2. Although
the LLM Explorer leaderboard featured a larger
selection of models, only a few were listed on the
Chatbot Arena leaderboard, and only four models
appeared on both leaderboards. Based on these
shared models, we performed a linear regression to
align the scores, thereby creating a unified scale for
all models. This regression produced the follow-
ing equation, where x represents the LLM explorer
leaderboard score: ELO = 1238 · x+ 484. Using
this formula, we calculated an ELO score for each
model.

A threshold for classification was established:
1https://llm.extractum.io/list/?small
2https://lmarena.ai/

models with an ELO score above 800 were cate-
gorized as Strong, while those with scores below
800 were categorized as Weak. We thresholded at
800 due to a noticeable gap between 700 and 800,
suggesting that this range might represent a mean-
ingful difference in generative capabilities. For
the 19 models that were not found on any leader-
boards, we assigned them to the class that seemed
the closest match based on our judgment. This ap-
proach resulted in a three-class classification task:
human, weak, strong. The final groups are shown
in Figure 2 of Appendix A.

3.2 Binary Ensemble
Ensemble methods, where multiple models con-
tribute to a final prediction, are well-established
for improving accuracy and robustness in machine
learning tasks (Ganaie et al., 2022). In the con-
text of machine-generated text detection, ensem-
ble approaches combine the strengths of individual
models, often leading to enhanced performance.
However, these methods are computationally ex-
pensive, as they require fine-tuning multiple mod-
els independently. Despite these costs, our results
demonstrate that using ensemble shows substantial
improvement.

We fine-tuned three models for the original bi-
nary task and applied soft voting, comparing its
performance to the average F1 score of each model
operating independently. The results, showing soft
voting versus the individual model performance,
are presented in Table 1.

3.3 Multi-Class Ensemble
Gu and Meng (2024) demonstrated the effective-
ness of ensemble methods for multi-class machine-
generated text detection, showing significant im-
provements in both accuracy and robustness across
diverse classes. Building on these findings, we fur-
ther enhanced our approach by incorporating a soft
voting technique within our ensemble, allowing
for more reliable and consistent predictions across
various text categories.

Similarly to the binary ensemble approach, we
fine-tuned three models, applied soft voting, and
compared the results to the average F1 score of 3
single fine-tuned models. This process was used in
all of our experiments.

3.4 Using Length-Adaptive Expert Models
We examined the performance of various models
in the data set to identify patterns in the generated

https://llm.extractum.io/list/?small
https://lmarena.ai/
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texts. We observed, as expected, that larger mod-
els such as GPT-4 tended to produce significantly
longer texts. This is illustrated in Figure 2 of Ap-
pendix A. This natural variance in the output length
suggests that a length-based approach to model
grouping could improve the detection accuracy.

With this approach, the models were divided
into three length-based groups, each represented
by a specialized expert model for short, medium,
and long text intervals. We chose the length cut-
off values at 745 and 1613, so the three groups
nearly contained the same amount of texts. This
structure was hypothesized to improve classifica-
tion precision by leveraging each model’s inherent
tendencies within its length category, ultimately
contributing to a more robust and accurate text clas-
sification system. The fine-tuning here was also
handled as a 41-class problem.

3.5 Snapshot Ensemble
We implemented a snapshot ensemble (Huang et al.,
2017), capturing several “snapshots” of a model at
different stages throughout its training. Unlike tra-
ditional ensembles that train multiple independent
models from scratch, this method reuses the same
model’s evolving states, making it significantly
more resource-efficient. The diversity among snap-
shots is introduced through a cyclical learning rate
schedule, where the learning rate varies between
a high and low value over several cycles during
training. We implemented the cyclical learning rate
ourselves, following the original design in the pa-
per. Each cycle allows the model to explore a wider
range of parameter spaces, capturing unique repre-
sentations in each snapshot. We chose to use six
models in our implementation. This choice was pri-
marily practical, ensuring enough diversity among
the snapshots while maintaining computational ef-
ficiency. After that, we evaluated combinations
of three snapshot checkpoints to find the set that
achieves the best results together through soft vot-
ing. Later on, we used these three models.

3.6 Data Split With 3 Models
With this experiment, we also aimed to find a com-
putationally efficient solution with a promising re-
sult. The main idea was that the availability of a
sufficiently large amount of training data suggested
that the models could perform well even when
trained on only a subset of it, thereby reducing
computational requirements without significantly
reducing the performance.

In this approach, we fine-tuned three separate
models for 41-class classification, each trained on
a unique one third subset of the training data. To
enhance the final predictions, we combined the
outputs of these models using the previously intro-
duced ensemble method with soft voting.

4 Results

Our final submission was a 6-class soft voting,
which secured 7th place. We evaluated our solu-
tions in both the development set and the published
test set. Based on these evaluations, the 6-class
approach was not the optimal choice. The best per-
forming experiment was the length-based solution
with soft voting, closely followed by the simple
41-class approach. The corresponding F1 scores
are shown in Table 1. Without Soft Voting refers
to the average F1 score of three individual mod-
els evaluated separately, while Soft Voting refers to
applying soft voting across these three models.

Experiment Without Soft Voting Soft Voting

Development Test Development Test

Binary 0.972 0.780 0.979 0.795
3-class 0.983 0.750 0.985 0.754
5-class 0.982 0.790 0.986 0.796
6-class 0.980 0.771 0.985 0.791
41-class 0.982 0.806 0.985 0.826
Snapshot 0.978 0.796 0.982 0.810
Length-based 0.968 0.820 0.973 0.827
Data split models 0.980 0.801 0.982 0.814

Table 1: Summary of results on development and test
set by class count and ensemble setting (F1 scores)

Length-based Analysis The length-based ap-
proach achieved the best results. Our aim was to
understand where it failed and how it did so to pro-
vide a deeper understanding of its limitations. To
achieve this, we created a confusion matrix which
is shown in Figure 1, allowing us to identify pat-
terns and categories of errors. Our error analysis
revealed that errors predominantly occurred within
model families. For example, the model often strug-
gled to accurately determine which specific opt_
model generated a given text.

In addition, we examined the results for each
text length interval. The analysis showed a clear
trend: the longer the text, the better the results. The
F1 scores for different character count intervals are
as follows: For intervals of 0–745 characters, the
F1 score is 0.621; for 746–1613 characters, it is
0.684; and for texts with 1614 or more characters,
the F1 score increases to 0.840.
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Figure 1: Log-scaled confusion matrix for the length-
based solution

ZeroGPT We compared our own experiments
with another solution that is easily accessible from
a browser, which is ZeroGPT3. Detailed informa-
tion about the model and techniques they use is not
available, but their website promises good results.
This solution can be accessed via an API call, al-
lowing requests to be sent. For evaluation, we used
2000 random texts from the workshop test dataset
and also another 2000 texts from a previous shared
task dataset named AuTexTification (Sarvazyan
et al., 2023), which is completely independent of
our solutions. We could not evaluate more data
as it would have required payment. We did the
same evaluation on the exact same texts with our
own solutions. Their system operates by returning
a whole number between 0 and 100. This value
indicates the likelihood that the text was written
by a human. Since their results are provided in
this format, a threshold had to be established. This
threshold was set at 50, treated as a closed interval,
which means that a score of 50 was also included
in this category. Modifying this threshold value
does not significantly affect the predictions results.

The results presented in Table 2 indicate that Ze-
roGPT exhibited poorer performance compared to
all of our solutions in both datasets. The workshop
test data set comprised text generated by advanced
models, while the independent data set included
text from both advanced and less advanced models.
This highlights the robustness and adaptability of
our solutions to machine-generated text classifica-
tion tasks.

3https://www.zerogpt.com/

Experiment Shared task AuTexTification

zeroGPT 0.615 0.715
Binary 0.794 0.797
3-class 0.830 0.767
5-class 0.841 0.814
6-class 0.838 0.805
41-class 0.831 0.836
Snapshot 0.812 0.826
Length-based 0.807 0.845

Table 2: F1 scores for ZeroGPT and our solution, evalu-
ated on 2000 texts each from the AuTexTification (Sar-
vazyan et al., 2023) and this shared task test set

5 Conclusion

Our findings highlight that the binary approach may
not be the most effective way to detect machine-
generated texts. Instead, we recommend consider-
ing multi-class solutions, as they might improve
classification by capturing distinctions among AI-
generated texts. In our experiments, we found that
different approaches performed well on different
datasets: one solution showed strong results on the
development set, while another excelled on the test
set. For example, the length-based approach was
not promising in the development set but performed
well on the test set.

To evaluate our approach comprehensively, we
considered not only the results, but also the com-
putational efficiency. We implemented a snapshot
ensemble technique and also a data split approach
with 3 models. Both strategies demonstrated im-
proved performance compared to a single model
fine-tuned on the full training dataset while main-
taining the same computational costs. However, the
more expensive solutions still outperformed these.

Notably, the 3-class approach showed a drop in
performance on the test set, likely due to the ab-
sence of weaker models in the test data. This sug-
gests that certain multi-class configurations may
be less effective when faced with a set of high-
performing models only. However, even with these
variations, the 41- and 5-class solutions outper-
formed the binary approach and provided a consis-
tent gain over binary modeling.

Ultimately, our approach demonstrates that mov-
ing beyond binary classification to a multi-class
strategy, especially when using ensemble soft vot-
ing, can yield better results in detecting machine-
generated text.

https://www.zerogpt.com/
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A Average Text Length and Strong
Models

In Figure 2, we present the 6-class groups, and the
striped bars indicate models categorized as Strong.
All other models not listed under the Strong models
are categorized as Weak.
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Figure 2: Average character per model
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