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Abstract

Detecting AI-generated text has become in-
creasingly prominent. This paper presents
our solution for the DAIGenC Task 1 Subtask
2, where we address the challenge of distin-
guishing human-authored text from machine-
generated content, especially in multilingual
contexts. We introduce Multi-Task Detection
(MLDet), a model that leverages Cross-Lingual
Adaptation and Model Generalization strate-
gies for Multilingual Machine-Generated Text
(MGT) detection. By combining language-
specific embeddings with fusion techniques,
MLDet creates a unified, language-agnostic
feature representation, enhancing its ability to
generalize across diverse languages and mod-
els. Our approach demonstrates strong perfor-
mance, achieving macro and micro F1 scores
of 0.7067 and 0.7187, respectively, and ranking
15th in the competition1. We also evaluate our
model across datasets generated by different
distinct models in many languages, showcasing
its robustness in multilingual and cross-model
scenarios.

1 Introduction

Large Language Models (LLMs) have been quickly
adopted in mainstream, making machine-generated
content readily available across various platforms,
such as news, social media, Q&A forums, edu-
cation and academics. Recent models, ChatGPT,
GPT-4 and Llama, can deliver quality responses
to diverse prompts. However, the ease with which
these models can articulate human-like text has
raised concerns about potential misuse and infor-
mation integrity (Liao, 2020). Given that humans
have very slim chance of distinguishing machine-
generated text from human-written content, there
is an urgent need for automated detection systems.
Many researches are underway developing various

1https://github.com/mbzuai-nlp/COLING-2025-
Workshop-on-MGT-Detection-Task1/tree/main

methods and models to address the challenge of dis-
tinguish MGT from human-authored content. Most
of these works focus on English text, but struggle
to differentiate text in other languages effectively.
While the overall accuracy is generally high, the
class-wise F1 scores remain low.

To tackle these issues, The COLING 2025 Work-
shop on DAIGenC (Wang et al., 2025) "Task 1: Bi-
nary Multilingual Machine-Generated Text (MGT)
Detection (Human vs. Machine)" aim to refresh
training and testing data with generations from
novel LLMs and include new languages. The task
is framed as—"determining whether a given text
is generated by a machine or authored by a hu-
man"— and is divided into two sub-tasks: Subtask
A: English-only MGT detection. Subtask B: Mul-
tilingual MGT detection. This paper focuses on
Subtask B.

Our approach for multilingual MGT detection
includes Cross-Lingual Adaptation and Model Gen-
eralization strategies. This methodology leverages
language-specific embeddings to improve general-
ization across languages and models. Through this
our model, Multi-Task Detection MLDet aims to
balanced performance on both macro and micro F1
scores.

2 Background

Over the last few years, numerous approaches
have been proposed to tackle the task of Machine-
generated text detection. Detecting machine-
generated text is primarily formulated as a binary
classification task (Zellers et al., 2019; Gehrmann
et al., 2019; Ippolito et al., 2019), naively dis-
tinguishing between human-written and machine-
generated text. In general, there are three main
approaches: the supervised methods (Wang et al.,
2023; Uchendu et al., 2021; Zellers et al., 2019;
Zhong et al., 2020; Liu et al., 2023, 2022), the
unsupervised ones, such as zero-shot methods (So-

https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1/tree/main
https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1/tree/main
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laiman et al., 2019; Ippolito et al., 2019; Mitchell
et al., 2023; Su et al., 2023; Hans et al.; Shijaku
and Canhasi, 2023) and Adversarial measures on
detection accuracy (Susnjak and McIntosh, 2024;
Liang et al., 2023), especially within the education
domain. For example, Antoun et al. 2023 evalu-
ates the robustness of detectors against character-
level perturbations or misspelled words, focusing
on French as a case study. Krishna et al. 2024 train
a generative model (DIPPER) to paraphrase para-
graphs to evade detection. Although supervised
approaches yield relatively better results, they are
susceptible to overfitting (Mitchell et al., 2023; Su
et al., 2023).

There are few Multilingual MGT Detection tech-
niques which are mainly based on finetuned models
(Macko et al., 2023, 2024; Hashmi et al., 2024; Ba-
had et al., 2024).

3 Proposed Model

In this section, we outline our approach for multi-
lingual MGT detection.

3.1 Dataset Description

There are three datasets provided by (Wang et al.,
2025): Train, Dev, and Test. Training and develop-
ment data with 7 columns id, source, sub_source,
language, model, label and text for the develop-
ment phase. Testing data for the Evaluation phase.
The AI and Human text distribution is tabulated in
Table 1.

Data AI Human Total
Train 674,083 257,968 932,051
Dev 178,728 110,166 288,894
Test 77,791 73,634 151,425

Table 1: Data for AI and Human across three datasets.

Table 2 includes different AI text generation
models, languages, and domains. Specifically, the
text in the training and development datasets are
generated using 43 distinct models, while the train-
ing dataset uses 20 different models. Additionally,
the training dataset includes data in 9 languages,
whereas the testing dataset contains text in 20 lan-
guages. These variations in models and languages
are essential for training and evaluation processes.
Detail of dataset mention in Section A.2

lang model domain
Train 9 43 36
Dev 9 43 36
Test 16 20 27

Table 2: Table showing the different type of unique lang,
model, and domain.

3.2 Language-Specific Embedding Extraction

Given the input text x(l) from the "text" column in
language l, we obtain a feature vector h(l) using
the pre-trained embedding model Ml specialized
for the language l (e.g. Chinese-BERT (Sun et al.,
2021) for Chinese, and AraBERT (Antoun et al.,
2020) for Arabic) as h(l) = Ml(x

(l)). Detail of
Embedding models mention in Section A.3.1

This produces a feature vector that captures both
language-specific and general semantic features.
For handling unknown languages, we detect the
language of input text and either use a default lan-
guage model such as XLM-RoBERTa or fall back
to an "unknown" embedding model, ensuring ro-
bustness across languages not explicitly included
in the training set.

3.3 Cross-Lingual Fusion for Unified
Representation

We combine embeddings from different lan-
guages in the dataset to create a unified rep-
resentation as language-agnostic. Let H =
{h(l1), h(l2), . . . , h(ln)} represent feature embed-
dings across languages.

Concatenation Fusion combines embeddings
from various languages, as shown in equation 1.
We then apply a weighted summation, where each
language embedding h(l) is scaled by a learnable
weight w(l), as shown in equation 2. The result-
ing fused embedding, hfusion, is passed through a
Language Prediction Network, which predicts the
language of the text. The output of this network
is ŷlang which is the Language model label, as de-
scribed in equation 3.

hfusion = [h(l1);h(l2); . . . ;h(ln)] ∈ Rn×d (1)

hfusion =
∑
l∈L

w(l)h(l) (2)

ŷlang = flanguage(hfusion) (3)
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Figure 1: Proposed Detector model architecture: fusing stylometric features with a PLM embedding.

3.4 Cross-Lingual Consistency Loss
To enforce consistency across languages, we intro-
duce a cross-lingual consistency loss that encour-
ages similarity between embeddings of the same
sample across languages. For each pair of lan-
guages (li, lj) as shown in equation 4. This loss
aligns embeddings across languages, promoting
language-invariant features.

Lcross-l =
1

|L|(|L| − 1)

∑
i ̸=j

∥ŷ(li)lang − ŷ
(lj)
lang∥

2 (4)

The notation |L| denotes the total number of
languages in this set.

3.5 Embedding Extraction with mBERT
Each text x from the "text" column, we pass it
through mBERT, which produces a sequence of
hidden states for each token in the text. The embed-
ding corresponding to the [CLS] token from the
final hidden layer is then extracted as the represen-
tation for input text as shown in equation 5.

he
CLS = RoBERTa(x)[CLS] (5)

where, he
CLS ∈ Re is the CLS token embedding,

and e is the embedding size of the model’s output.

3.6 Model Generalization for MGT Detection
After obtaining the embedding he

CLS, we pass it
through the Model Prediction Network, which pre-
dicts the specific model responsible for generating
the text. The output of this network is the predicted
model label ŷm as shown in equation 6.

ŷm = fmodel(h
e
CLS) (6)

Given that the training and testing set includes 43
and 20 different models respectively, we introduce

a model generalization loss to reduce reliance on
specific training models.

The Cross-Model Pairwise Loss promote model-
invariant features by minimizing the divergence
between embeddings from different models, as in
equation 7. Noise Augmentation adds Gaussian
noise ϵ ∼ N (0, σ2) during training to simulate
unseen models as ŷaug

m = ŷm + ϵ.

Lmodel-gen =
1

|M|(|M| − 1)

∑
m ̸=m′

∥ŷm − ŷm′∥2 (7)

|M| denotes the total number of generated model.

3.7 AI vs. Human Classification Network
The CLS token embedding he

CLS is passed to the AI
vs. Human Classification Network. This network is
a fully connected layer that outputs the probability
of whether the text is human-written or machine-
generated. The binary cross-entropy loss is used to
compute the classification output as in equation 8.

Llabel = − 1

N

N∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (8)

Where, ŷi is the predicted probability for the i-th
sample, yi is the true label, N is the total number
of samples.

3.8 Total Loss Function
Our model is optimized with a combination of label
classification, cross-lingual, and model generaliza-
tion losses. The total loss function is given by
equation 9.

Ltotal = αLlabel + βLcross-l + γLmodel-gen (9)

where α, β, and γ are hyperparameters controlling
the contributions of each component.
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3.9 Training and Evaluation
We train the model by minimizing Ltotal with gra-
dient descent using the AdamW optimizer. The
CLS token embedding, which is 768 dimensions
for mBERT serves as the input to fully connected
hidden layers across the task-specific networks,
each configured with 512 and 256 neurons and
ReLU activations. The Macro F1 score used for
evaluation to ensure balanced performance across
classes. Further details of experimental setup in
presented in section A.1.

During development phase, we consider differ-
ent models with varied training strategies, detailed
in Table 3. This includes direct fine-tuning of pre-
trained language models (PLMs) such as XLM-
RoBERTa (Wiciaputra et al., 2021) and mBERT
(Wu and Dredze, 2020) as the initial model. Fur-
thermore, the mBERT + CM model utilizes cross-
model adaptation (Section 3.6), while the mBERT
+ CL model applies Cross-Lingual Fusion (Sec-
tion 3.3). The MLDet model incorporates Cross-
Lingual Adaptation and Model Generalization
strategies, as described in Section 3.

4 Results

The comprehensive analysis of the performance of
various models on MGT detection based on micro
F1, macro F1 score and accuracy are presented in
Table 3. Final model, MTDet achieves macro F1
(classwise) score of 0.7739, outperforming other
models.

Model Macro
F1

Micro F1 Accu.

XLM-RoBERTa 0.4133 0.4631 0.4631
mBERT 0.5203 0.8352 0.8352
mBERT + CM 0.5832 0.8523 0.8521
mBERT + CL 0.6044 0.8264 0.8264
MTDet (Final) 0.7739 0.7938 0.7938

Table 3: Performance scores of different models on Dev
Dataset.

The result of evaluating on the test dataset is
tabulated in Table 4. Final model, MLDet, demon-
strates a balanced performance on both macro and
micro F1 scores, achieving 0.7067 and 0.7187 re-
spectively. Although it does not reach the highest
micro F1 score, its macro F1 performance suggests
a more balanced generalization across different lan-
guages and domains, reflecting its robustness in
multilingual MGT detection.

Test Model Macro F1 Micro F1
XLM-RoBERTa 0.3876 0.6798
mBERT 0.4307 0.7135
mBERT + CM 0.5678 0.8123
mBERT + CL 0.4897 0.8650
MLDet (Final) 0.7067 0.7187

Table 4: Performance comparison of various test models
on Macro and Micro F1 scores.

5 Analysis

The performance of our MLDet model, as pre-
sented in Tables 3 and 4, highlights its strengths in
achieving a balanced Macro and Micro F1 score.
While direct PLM (mBERT) models may perform
better in terms of accuracy and Micro F1, their low
Class-wise (Macro) F1 scores indicate a bias to-
ward majority classes in the dataset (as discussed
in Table 1). These models also struggle to handle di-
verse languages and text generated by different AI
models. In comparison, the mBERT + CM model
slightly outperforms the mBERT + CL model in
accuracy and micro F1 but falls short in macro F1,
highlighting the importance of adaptation to un-
seen language pairs and model generalization. Our
final MTDet model (mBERT + CM + CL) success-
fully balances macro and micro F1 scores, show-
casing the effectiveness of integrating advanced
cross-lingual adaptation and model generalization
strategies.

However, the final model performs better on the
development dataset compared to the test dataset.
As noted in Section 2, the languages and generation
models in the training and development datasets are
similar, whereas the test dataset introduces different
languages and generation models. Despite this
increased challenge, the model still outperforms
others in this scenario.

6 Conclusions

In conclusion, the robust performance of MLDet
on diverse multilingual datasets underscores the
importance of incorporating cross-lingual adapta-
tion and model generalization strategies. A robust
performance on the test dataset with a macro F1
score of 0.7067. By capturing a wide range of lin-
guistic and contextual information, these strategies
allow the model to generalize effectively across
languages and domains, positioning MLDet as a
versatile and efficient solution for MGT detection
in multilingual settings.
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A Example Appendix

A.1 Details of Experimental Setups

The experimental setup for this study includes a
comprehensive range of hyperparameters, multi-
lingual datasets, and model embeddings tailored
to effectively detect machine-generated text across
diverse languages and domains.

Key hyperparameters, mention in Table 4 such
as learning rate, batch size, and dropout rate, were
carefully tuned to optimize model performance.
Additionally, weights for classification, domain,
and cross-lingual loss were experimentally adjusted
to ensure the model’s adaptability to varied linguis-
tic structures. The optimizer used was Adam, with
specific parameters for Beta values and epsilon,
while learning rate scheduling was customized
based on experimental results. The setup is de-
signed to capture fine-grained cross-lingual fea-
tures, thereby enabling robust language-specific
and language-agnostic pattern recognition.

A.2 Details of Dataset and Used Model

The table 2 summarizes the diversity in datasets:
Train/Dev (9 lang, 43 models, 36 domains) and
Test (16 lang, 20 models, 27 domains), highlighting
broader testing scope.

A.2.1 Training Dataset detail
Traning dataset with 7 columns id,source,
sub_source, language, model, label and text

Hyperparameter Typical Values
Learning Rate (η) 1e− 5 to 1e− 3

Batch Size 16, 32, 64
Number of Epochs 100 to 500
Weight for Classifi-
cation Loss (λ)

Tuned based on experi-
ment

Weight for Domain
Loss (γ)

Tuned based on experi-
ment

Weight for Cross-
Lingual Loss (δ)

Tuned based on experi-
ment

Dropout Rate 0.1 to 0.5
Gradient Reversal
Layer Parameter

Tuned based on experi-
ment

Hidden Layer Di-
mensions

Tuned based on experi-
ment

Optimizer (Adam
Parameters)

Beta1: 0.9, Beta2: 0.999,
Epsilon: 1e− 8

Learning Rate
Scheduler Parame-
ters

Tuned based on experi-
ment

Table 5: List of Hyper parameters for the Experiment
during Training

The dataset includes diverse languages Table
6 with English (229,209 human, 381,467 AI)
dominating, followed by Chinese (19,315 human,
15,969 AI). Bulgarian (4,205 human, 3,886 AI)
and German (231 human, 4,462 AI) emphasize AI.
Indonesian, Urdu, and Russian show balanced dis-
tributions, while Italian contains only AI samples
(4,174).

The experimental setup includes diverse
generation models: OpenAI’s GPT series
(GPT-3.5-Turbo, Davinci, GPT4), BLOOM
models (Bloomz, bloom_7b), Meta’s Llama3, OPT,
and Llama2-fine-tuned, along with Flan_T5, T0,
and specialized models (Gemma, Jais-30b). These
cover multilingual and task-specific applications,
emphasizing robust, fine-tuned, and scalable AI
capabilities.

A.3 Testing Dataset details

The testing dataset expands the linguistic range,
incorporating additional languages such as Kazakh,
Norwegian, and Hindi as mention Table 8, thus
testing the model’s capacity to generalize to un-
seen linguistic contexts. A broad array of genera-
tive models, including recent releases like GPT-4,
Llama, and Baichuan, are represented, allowing a
thorough evaluation of the model’s effectiveness

https://api.semanticscholar.org/CorpusID:259145150
https://api.semanticscholar.org/CorpusID:259145150
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Language (Code) Human AI
Arabic (ar) 344 1770
Bulgarian (bg) 4205 3886
German (de) 231 4462
English (en) 229209 381467
Indonesian (id) 1895 2081
Italian (it) 0 4174
Russian (ru) 684 630
Urdu (ur) 2085 1676
Chinese (zh) 19315 15969

Table 6: Counts of Human and AI instances across
languages in Training Dataset.

Language Embedding
English RoBERTa
Chinese Chinese-BERT
Bulgarian XLM-RoBERTa
German GottBERT
Italian AlBERTo
Indonesian IndoBERT
Urdu UrduBERT
Arabic AraBERT
Russian RuBERT

Table 7: Languages and their corresponding embed-
dings during Training.

Language Human AI
Arabic 4350 6320
Chinese 29947 33062
Dutch 600 600
German 1865 0
Hebrew 1182 0
Hindi 599 600
Indonesian 600 600
Italian 2496 2800
Japanese 300 300
Kazakh 1171 1300
Norwegian 1544 0
Russian 13039 13094
Spanish 600 600
Urdu 13190 17315
Vietnamese 1126 1200
Russian 1025 0

Table 8: Counts of Human and AI instances across
various languages in Testing Dataset.

across diverse AI text generation systems. This ex-
perimental design facilitates a detailed assessment
of the model’s cross-lingual performance and ro-
bustness against various language models, ensuring

comprehensive validation of the approach.

Model Count
Human 73634
GPT-4o 28538
GPT-4o-mini 6845
gpt4o 6591
Vikhrmodels 6503
gpt-4o-2024-05-13 5998
Baichuan2-13B-Chat 5521
ChatGLM3-6B 5359
Llama 3.1 405B instruct 4000
gpt-4o 2400
gpt-4 1545
GPT-4-turbo 1400
glm-4-9b-chat 778
claude-3-5-sonnet 773
GPT4 299
Qwen 297
GPT3.5 297
ChatGLM 295
Baichuan 283
qwen2.5 72b 69

Table 9: Counts of instances for different models in
Testing Dataset.

Table 9:The model distribution includes 73,634
human samples and a variety of AI models: GPT-4o
(28,538), GPT-4o-mini (6,845), Vikhrmodels
(6,503), and gpt-4o-2024-05-13 (5,998). Other
models include Baichuan2-13B-Chat (5,521),
ChatGLM3-6B (5,359), Llama 3.1 405B instruct
(4,000), and smaller counts for models like
GPT-4-turbo (1,400), glm-4-9b-chat (778), and
GPT4 (299). The dataset highlights diverse AI ca-
pabilities across various architectures and scales.

A.3.1 Detail of Language-Specific Embedding
Used

The dataset is organized by language, embedding
models, and instance counts for human and AI
content 6. Training spans nine languages with
language-specific models (e.g., RoBERTa for En-
glish, Chinese-BERT for Chinese, AraBERT for
Arabic) as mention Table 7, enabling nuanced fea-
ture extraction. It ensures a balanced multilingual
setup, with English and Chinese dominating, and
sufficient representation for Bulgarian, Indonesian,
and Urdu.
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