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Abstract

In this project, we aim to solve two Sub-
tasks of Task 1: Binary Multilingual Machine-
Generated Text(MGT) Detection (Human vs.
Machine) as part of the COLING 2025 Work-
shop on MGT Detection(Wang et al., 2025)
by different approaches. The first method is
separate fine-tuned small language models on
the specific subtask. The second approach en-
hances this methodology by incorporating lin-
guistic, syntactic, and semantic features, using
ensemble learning to combine these features
with model predictions for a more robust classi-
fication. By evaluating and comparing these ap-
proaches, we want to identify the most effective
techniques for detecting machine-generated
content across languages, offering insights into
improving automated verification tools amid
the rapid growth of LLM-generated text in dig-
ital spaces. The code of this project is available
at here.

1 Introduction

The rapid development of large language mod-
els (LLMs) such as GPT-4o, Claude3.5, and
Gemini1.5-pro has led to an explosion of machine-
generated text across various channels, including
news, social media, and academic publications.
Khalifa and Albadawy (2024), based on 24 stud-
ies of academic domains, points out that using ar-
tificial intelligence enhances the productivity of
researchers. While this advancement is promis-
ing, it has raised significant concerns about misuse,
including spreading misinformation and potential
disruptions in educational contexts due to the un-
predictable nuance of these language models. To
address these issues, it is crucial to develop effec-
tive systems for distinguishing between human-
written and machine-generated content. There are
two subtasks in the Task 1:

• Subtask A: English-only machine-generated
text(MGT) detection.

• Subtask B: Multilingual MGT detection with
nine languages.

The primary goal of this project is to develop an au-
tomatic detection system capable of distinguishing
machine-generated text from human-written text
using small-sized language models. By integrating
models with fewer parameters—thus lower com-
putational demands—we aim to demonstrate that
effective detection does not require large, resource-
intensive models. Specifically, our objectives are
to:

• Explore important linguistic, syntactic, and
semantic features for human and machine text-
generated differentiation.

• Implement and evaluate newly released lan-
guage models in small sizes for text classifi-
cation.

• Assess model performance and provide in-
sights on machine-generated content detection
effectiveness.

2 Related Work

Recent research has focused on detecting machine-
generated text using various techniques. For the
traditional methodologies, GLTR uses statistical
methods to detect generated text with an improve-
ment in human detection of fake text from 54%
to 72%(Gehrmann et al., 2019). With the explo-
sive growth of Transformers and Large Language
Models(LLMs), Uchendu et al. (2021) shows
that FAIR_wmt20 and GPT-3 excel at generating
human-like text. Recently, in the SemEval-2024
Task 8: Multidomain, Multimodel and Multilingual
Machine-Generated Text Detection(Wang et al.,
2024), many researchers have tried to apply differ-
ent approaches, such as statistical, language mod-
els, and LLMs to solve the Subtask A: Human vs.
Machine Classification. Sarvazyan et al. (2024)

https://github.com/hnhine/ws_mgt
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study mixing Llama-2 features, achieved top accu-
racy. Their performance relies on multiple LLMs
and features, focusing on the last tokens. Other
teams also attempt to use language models, such
as RoBERTa or XLM-RoBERTa(Sarvazyan et al.,
2024; Petukhova et al., 2024; Tran et al., 2024).

Regarding our hardware limitations, we want
to try to evaluate newly released language models
in small sizes. In addition, all previous works on
the SemEval-2024 Task 8 mostly work with LLMs.
Based on the success of Sarvazyan et al. (2024)
with Llama-2, we consider using Llama3(Dubey
et al., 2024). While Spiegel and Macko (2024) pro-
posed combined fine-tuned LLMs with zero-shot
statistical methods, employing a two-step major-
ity voting system for predictions, Petukhova et al.
(2024) utilized a fine-tuned baseline - RoBERTa
augmented with diverse linguistic features. All
these methods surpass the baseline and achieve
good results, supporting our approach, which is a
potential way to mix LLMs with traditional linguis-
tic features.

3 Proposed Approach

Recent released large language models, such as
Llama 3 (Dubey et al., 2024) or Gemma 2 (Team
et al., 2024), are now available in smaller configu-
rations. These smaller models still perform well on
popular benchmarks while being more compatible
with hardware constraints. Therefore, we decided
to fine-tune these models for our task, utilizing their
smaller versions to match our hardware limitations.

3.1 Subtask A: Monolingual - English

This subtask focuses on detecting machine-
generated text in English generated by hc3, m4gt,
and mage. We want to use fine-tuned language
models and traditional linguistic features as their
potential performance from previous research on
the same task (Spiegel and Macko, 2024; Tran
et al., 2024). The methodology integrates neural
network-based approaches with gradient boosting
and combines the outputs through a majority voting
mechanism. The strategy is outlined in Figure 1:

Fine-Tuning of Small Language Models: The
recent availability of smaller, efficient language
models, such as Llama3.2-1B and Gemma-2-2B,
makes them suitable candidates for fine-tuning on
this task. Despite their compact size, these mod-
els maintain competitive performance, compara-
ble to larger counterparts like Mixtral 8x7B and

Figure 1: Approach for monolingual task

GPT-3.5. Fine-tuning these models on the task-
specific dataset enables them to capture intricate
patterns indicative of machine-generated content.
Their efficient architecture ensures compatibility
with hardware constraints, allowing faster training
and inference.

Gradient Boosting Classifier with Linguistic
Features: In addition to fine-tuning Llama3.2-1b
and Gemma-2-2B, a gradient-boosting classifier
will be trained using a comprehensive set of lin-
guistic features extracted from the text. These met-
rics can provide helpful information when the input
to language models is limited. Therefore, adding
other linguistic features will allow them to gain
information from the truncation part. As desired
from the work of (Petukhova et al., 2024), we use
four metrics with updated features as follows:

• Syntactic Complexity: Metrics obtained from
spaCy1 such as average sentence length, aver-
age number of noun phrases per sentence, and
average number of verbs per sentence capture
syntactic patterns and variations within the
text.

• Readability Metrics: include Flesch Reading
Ease, Flesch-Kincaid Grade Level, Gunning
Fog Index, SMOG Index, and others assess
the ease or difficulty of reading the text. We
get these metrics by using the textstat pack-
age2.

• Lexical Diversity: Metrics such as Type-
Token Ratio (TTR), Maas TTR, Hypergeomet-
ric Distribution Diversity (HDD), and Mean
Length of Textual Diversity (MLTD)3 provide

1https://pypi.org/project/spacy/
2https://pypi.org/project/textstat/
3https://pypi.org/project/lexical-diversity/

https://pypi.org/project/spacy/
https://pypi.org/project/textstat/
https://pypi.org/project/lexical-diversity/
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Figure 2: Ensemble model for multilingual task

insights into the lexical richness of the text.
Machine-generated texts may exhibit unusual
lexical patterns, making these metrics valu-
able.

• Text Statistics: Basic statistics such as the
number of difficult words, unique word count,
and sentence count offer additional context
about the text structure. These can reveal in-
consistencies or unnatural pasts often present
in machine-generated content.

By combining these diverse features, the gradient-
boosting classifier can capture non-linear relation-
ships between linguistic characteristics and the tar-
get variable, complementing the capabilities of the
fine-tuned language models.

Majority Voting Ensemble: To enhance the ro-
bustness and accuracy of the system, a majority
voting mechanism will be employed to combine
the outputs of the three models: fine-tuned versions
of Llama3.2-1b and Gemma-2-2B and the gradient
boosting classifier. Each model will provide its pre-
diction, and the final decision will be determined
by the majority vote among the three. This ensem-
ble approach leverages each component’s strengths,
balancing the fine-tuned models’ deep contextual
understanding with the interpretability and feature-
driven analysis of the gradient-boosting classifier.

3.2 Subtask B: Multilingual

This subtask extends the detection of machine-
generated text to a multilingual setting. Given the
time constraints and resource limitations, the ap-
proach will leverage two fine-tuned multilingual
models, Llama-3 1B and Qwen-2.5 1.5B (Hui et al.,
2024). These models have been selected for their
efficient architectures and ability to handle mul-
tiple languages effectively. The methodology for
Subtask B follows a similar ensemble-based strat-
egy as outlined in Subtask A, with modifications to
accommodate multilingual data.

As we see in Figure 2, an ensemble architecture
has been developed to combine the strengths of
Llama-3 and Qwen-2.5. Each model is fine-tuned
separately on the training dataset, and their outputs
are then combined through learnable weights. We
do not use text linguistic features here because of
inconsistent and unavailable support tools for non-
English languages. Therefore, we choose to create
ensemble models based on fine-tuned multilingual
models.

4 General settings

4.1 Experiments

For each subtask, we fine-tune and measure the
results of each small model individually before
applying majority and ensemble learning methods.
The hyperparameters of Llama3.2-1b, Gemma-2-
2B, and Qwen2.5-1.5B are learning rate = 2e-5,
batch size = 16, max token length = 256, lora =
16, and epoch = 5. Our hardware computation
resource is 1× NVIDIA GeForce RTX4090 24GB
and is limited to 24 hours.

4.2 Evaluation metrics and baselines

The official evaluation metric is the macro f1-score.
Another metric is micro-F1. The task also pro-
vided a baseline result for the English track using
RoBERTa, which is 81.63. The result for the multi-
lingual track using XLM-R is 65.46.

5 Results

5.1 Subtask A: English-only MGT detection

Overall, the results of the methods for Subtask A, as
shown in Table 1, confirm our intuition. The 2SLMs
is a combination of 2 small language models by av-
eraging logits of them. While 2SLMs combination

Model Macro F1 Micro F1
Linguistic Features 0.7094 0.7148
Llama3.2-1b 0.8798 0.8843
Gemma-2-2B 0.9070 0.9100
2SLMs 0.9088 0.9117
Majority Voting 0.9225 0.9248

Table 1: Performance of models on Subtask A dev_test
set

improves slightly, adding linguistic features gener-
ally increases both metrics. This can be explained
by the fact that we had to limit the maximum to-
ken length with the two small language models due
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to hardware constraints. It allowed the model to
consider information from the truncated part of the
text. For example, one case when Majority Vot-
ing successfully recognizes the text generated by
human but 2SLMs fails:
<260 tokens>. . . Fill the bowl with enough
cool tap water to cover the rice by an
inch or two. Use your hand to gently stir
the rice, then lift the strainer from
the bowl. The water in the bowl will
be cloudy from the rice starch. Empty
the water, set the strainer in the bowl
again, and repeat the process until the
water is, more or less, clear. You’ll
probably have to change the water two or
three times. Drain the rice. Pour enough
wate . . . < 400 tokens>

We can see that this text has more than 700 to-
kens which exceeds our max token length = 256.
Previous part of the text describe step by step to
prepare a dish but only after the considered context,
we see the colloquial phrases like "you’ll proba-
bly have to change the water two or three times"
which align with human authorship. In addition,
in the rest 400 tokens, it also contains natural and
diversity words. Therefore, Linguistic Features
could have the decision making power in such these
cases.

5.2 Subtask B: Multilingual MGT detection

We employ two small language models for mul-
tilingual machine-generated text detection in this
subtask, as illustrated in Table 2. The ensemble
model achieved the best Macro F1 score at 0.7388,
indicating its effectiveness in balancing the accu-
racy across different classes. Combining both mod-
els, the ensemble approach enhances generalization
across multiple languages, which is beneficial in
multilingual settings. However, the Micro F1 score
(0.8829) slightly declined compared to Qwen2.5-
1.5B, suggesting that while the ensemble model
captures class balance well, it may sacrifice a bit of
precision on individual sample classifications.

Model Macro F1 Micro F1
Llama3.2-1b 0.6878 0.8619
Qwen2.5-1.5B 0.7292 0.8869
Ensemble 0.7388 0.8829

Table 2: Performance of models on Subtask B dev_test
set

5.3 Results on the test set

Based on the results of the development dataset,
we selected the Majority model and the Ensem-
ble model to submit as the final results in Table 3.
Since the golden labels are not publicly available,
we cannot definitively conclude which approach is
the most effective. However, for Subtask A, our
result was 0.8188 — approximately a 0.09-point
improvement over the baseline and 0.05-point im-
provement in Subtask B — indicating that these
are promising approaches.

Subtask Model Macro F1 Rank

A
Baseline 0.7342

4/35
Majority Voting 0.8188

B
Baseline 0.7416

1/25
Ensemble 0.7916

Table 3: Our performance on the test set with Score is
as Macro F1

Generally, ensemble learning is a potential ap-
proach, especially when each component has its
own strength. In our study, small language models
can solve our hardware limitation while maintain-
ing good performance; their disadvantage is that
they do not fully capture all information of the
text. These models, even when combined, usu-
ally give similar results. Our intuition is that in
the case of conflicts, the result of the model with
more parameters is favored. However, additional
linguistic features can handle these cases by look-
ing for the whole text. Although this paper does
not evaluate the individual contribution of each fea-
ture, we believe that further exploration could yield
improvements in model performance.

The organization describes more details about
other team methods in subtask A in Table 4. The
top-ranking team, Advacheck, utilized a multi-
task system with a shared Transformer encoder
(DeBERTa-v3-base) and multiple classification
heads, leveraging multi-task learning to optimize
performance. Unibuc-NLP ranked 2nd with a com-
bination of masked (XLM-RoBERTa) and causal
(Qwen 2.5-0.5B) language models, enhanced by
LoRA fine-tuning. At the same time, Fraunhofer
SIT used adapters for task-specific optimization
on RoBERTa-base. While more complex than the
top teams’ methods, our ensemble-based strategy
demonstrates the value of integrating diverse model
outputs to achieve competitive performance. Future
enhancements could include incorporating multi-
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task learning or adapter-based approaches for fur-
ther gains.
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Advacheck 1 ✓
Unibuc-NLP 2 ✓
FraunhoferSIT 3 ✓
Our team 4 ✓ ✓ ✓
TechExperts(IPN) 5 ✓

Table 4: English subtask participants overview

Regarding the multilingual test set, we have the
result analysis from the organization (Wang et al.,
2025) as in Table 5 and Table 6.

When comparing our proposed approach with
other teams as described in Table 5 (Wang et al.,
2025), our method demonstrates a clear focus on ef-
ficiency and robustness by leveraging Small PLMs
and ensemble techniques, achieving the top ranking.
Unlike teams such as Nota AI and Lux Veri, who
utilized broader combinations of techniques, in-
cluding LLMs and feature engineering, our stream-
lined approach highlights the effectiveness of sim-
plicity combined with targeted ensemble learning.
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Our team 1 ✓ ✓
Nota AI 3 ✓ ✓ ✓ ✓
Lux Veri 4 ✓ ✓
TechExperts (IPN) 5 ✓

Table 5: Multilingual subtask participants overview.

From Table 6, we could see that our team result
for Subtask B Multilingual surpassed the baseline
by around 5 percent, and our gap with the second
team is 4 percent overall. In the test set, six hidden
languages were not present in the training set of this
task: Kazakh (KK), Vietnamese(VI), Hindi(HI),
Hebrew(HE), Norwegian(NO), and Japanese(JA).
Because models are not exposed to many linguistic
patterns, structures, and features during training,
it is difficult for them to generalize to unknown

languages. For example, we achieved only 51.8 on
Hindi.

6 Conclusion

We successfully addressed both subtasks using ma-
jority voting and ensemble methods. Our approach
comprised fine-tuned small language models and
linguistic features, contributing to robust task per-
formance. Specifically, fine-tuning small language
models allowed us to capture critical nuances in the
data while maintaining computational efficiency.
Meanwhile, incorporating linguistic features, such
as syntactic complexity, readability metrics, and
lexical diversity, added a complementary layer of
information that enhanced the ensemble’s overall
effectiveness.

Limitations

Although the result in Section 5.1 shows that us-
ing linguistic features improves the model’s per-
formance, we have not investigated each feature.
Furthermore, no additional linguistic features spe-
cific to each language are analyzed regarding the
multilingual track. Future work could be research
such features, including syntax-specific markers,
morphological distinctions, and domain-specific
language idiosyncrasies for each language to pro-
vide valuable insights and boost classification ac-
curacy.
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Table 7: Summary of monolingual training dataset for
subtask A

Src Train Dev

Human Machine Human Machine

hc3 39140 18091 16855 7917
m4gt 86782 181081 37220 71197
mage 103000 182673 44253 84316

total 228922 381845 98328 163430

Table 8: Summary of multilingual training dataset for
subtask B

Lan Train Dev

Human Machine Human Machine

ar 344 1770 150 756
bg 4205 3886 1795 1694
en 223911 386877 98041 163808
de 231 4462 102 1957
id 1895 2081 886 917
it 0 4174 0 1843
ru 684 630 316 284
ur 2085 1676 853 720
zh 19315 15969 8023 6749

total 257968 416115 110166 178728

A. Data Analysis

The task provides datasets in multiple domains
and multi-model and multilingual text. The or-
ganizer extends this dataset from the one provided
in SemEval-2024 Task 8. Details of the English-
only subtask are in Table 7. The ratio of text for
each class human or machine is consistent in both
the train and dev set, around 37 %. Table 8 illus-
trates the distribution of the number of each class
per language in two datasets. We see an imbalance
across languages that more than 90 % of the text
in the training dataset is English. This could cause
the model to find it hard to identify each language
because using an external dataset is not allowed by
the organizer.

Regarding text’s length, as we see in Figure 3,
while around 70% of the text has a length of 250,
the rest are in a range from there to more than
20000 words per text. Using linguistic features can
gain valuable information from the truncated part,
which small language models ignore.
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(a) Train Dataset

(b) Dev Dataset

Figure 3: Distribution of number of words per text in
English datasets
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