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Abstract
This paper presents a lightweight and efficient
approach to AI-generated content detection us-
ing small autoregressive fine-tuned decoders
(AFDs) for secure, on-device deployment. Mo-
tivated by resource-efficiency, syntactic aware-
ness, and bias mitigation, our model employs
small language models (SLMs) with autoregres-
sive pre-training and loss fusion to accurately
distinguish between human and AI-generated
content while significantly reducing computa-
tional demands. The system achieved highest
macro-F1 score of 0.8186, with the submitted
model scoring 0.7874–both significantly out-
performing the task baseline while reducing
model parameters by ≈60%. Notably, our ap-
proach mitigates biases, improving recall for
human-authored text by over 60%. Ranking 8th
out of 36 participants, these results confirm the
feasibility and competitiveness of small AFDs
in challenging, adversarial settings, making
them ideal for privacy-preserving, on-device de-
ployment suitable for real-world applications.

1 Introduction

Advancements in Generative AI (GenAI) pow-
ered by large language models (LLMs) have
significantly improved natural language genera-
tion (NLG) capabilities. AI-generated text, often
indistinguishable from human writing, presents
risks to information integrity, trust, and security
(Gehrmann et al., 2019; Ippolito et al., 2020; Wu
et al., 2024). The widespread availability of open-
source, user-friendly LLMs enables individuals
with minimal expertise to conduct misinformation,
disinformation, and phishing campaigns, highlight-
ing the need for accurate AI content detection.
However, most research rallies behind sophisti-
cated, resource-intensive solutions, often overlook-
ing the security and privacy aspect of AI content
detection. Most solutions require cloud connectiv-
ity or extensive computational resources, making
them impractical for secure, on-device deployment.

Many existing approaches depend on complex
architectures, including large pre-trained models
(PLMs) like RoBERTa-large and Longformer (Li
et al., 2024), or leverage larger LLMs like LLaMA
(Hans et al., 2024) through techniques such as
instruction-tuning (Wang et al., 2024a). Others
employ ensemble methods that combine multiple
LLMs (Sheykhlan et al., 2024; Abburi et al., 2023;
Lai et al., 2024; El-Sayed and Nasr, 2023; Sar-
vazyan et al., 2024), that can significantly increase
latency. In contrast, we focus on lightweight mod-
els that are optimized for secure, on-device de-
ployment. On-device processing supports real-time
analysis, essential for fast-paced environments,
while also enhancing privacy by retaining sensi-
tive data locally and reducing risks associated with
transmitting information to external servers (Xu
et al., 2024). This is particularly important for
security-sensitive fields such as defense, health-
care, finance, and personal communications, where
protecting data from unauthorized access is critical.
This study evaluates the feasibility of small autore-
gressive fine-tuned decoders (AFDs) for efficient
and secure AI-generated content detection.

Our approach is guided by three motivations:
First, using SLMs (≤135M parameters) suitable
for on-device deployment, enabling privacy, real-
time processing, and accessibility; Second, lever-
aging an autoregressive pre-training objective that
mirrors the sequential nature of language produc-
tion, enhancing syntactic awareness essential for
detecting structural nuances to differentiate human
and machine language; and third, employing a loss
fusion strategy to learn from difficult examples and
encourage class separation for bias mitigation.

The proposed system, using SmolLM, achieved
the highest macro-F1 score of 0.8186 on the test
set, significantly outperforming the task baseline
(macro-F1 of 0.7568) under similar settings, while
also reducing the number of parameters by ≈60%.
Our submitted model (selected based on validation



219

performance) attained a macro-F1 score of 0.7874,
ranking 8th among 36 participants. These results
underscore the potential of small AFDs for effec-
tive on-device AI-content detection.

2 Task Description

In the COLING Workshop on Detection AI Gen-
erated Content, Task 1 posed a binary classifica-
tion problem: determining whether a given text is
machine- or human-authored (Wang et al., 2025).
Our investigation focused on Subtask A, which
targets English-only MGT detection and extends
the SemEval Shared Task 8 (Subtask A)(Wang
et al., 2024b). Table 1 shows summary statis-
tics for the provided datasets. From our analysis,
this task presented three key challenges to test the
model generalizability involving unfamiliar data
sources, unknown LLMs as well as adversarially
modified texts from Mixset (Zhang et al., 2024),
LLM-DetectAIve (Abassy et al., 2024), and CU-
DRT (Tao et al., 2024).

Table 1: Summary statistics of shared task subsets

Property Train Val Dev Test

#Sources 3 3 2 6
#LLMs 40 40 5 14

Human #Samples 228,922 98,328 13,371 34,675
Avg Len 302 303 339 270

Machine #Samples 381,845 163,430 19,186 39,266
Avg Len 273 272 417 411

3 System Overview

Our approach centers on fine-tuning small autore-
gressive decoders combined with a loss fusion strat-
egy to enhance classification performance. Antici-
pating the presence of surprise domains and LLMs
in the test set, we experimented with two distinct
loss functions to optimize performance, particu-
larly on challenging examples.

3.1 Model Selection
The selection of AFDs is driven by two core rea-
sons: bias mitigation and syntactic awareness.

Related research indicates that models like
RoBERTa, though powerful, tend to display a
bias toward synthetic text, resulting in a high
rate of false negatives when classifying human-
generated text (Ciccarelli et al., 2024). This
suggests that machine-generated content has an
identifiable structural pattern that models such as
RoBERTa -which are not specifically optimized for

language generation- might misinterpret as “non-
human”. In contrast, autoregressive language mod-
els are trained with a next-token prediction objec-
tive, which naturally aligns with human language
composition, making them more attuned to syn-
tactic patterns typical of human writing. This syn-
tactic awareness is particularly valuable for dis-
tinguishing subtle linguistic cues that differentiate
human from machine-generated text. Additionally,
the “LLM race” has led to the development of in-
creasingly compact SLMs, such as MobileLLM,
SmolLM, and GPT-Neo, that achieve high perfor-
mance on various text generation and reasoning
tasks with fewer parameters, enabling efficient, on-
device deployment (Xu et al., 2024). These qual-
ities make small AFDs effective and practical for
real-world AI-content detection.

3.2 Loss Fusion

As an additional measure for bias mitigation, we
employ a loss fusion strategy. We experiment
with two primary loss functions: Cross-Entropy
(Mao et al., 2023), which minimizes classification
errors by measuring the divergence between pre-
dicted probabilities and true labels, and Focal Loss
(Mukhoti et al., 2020), which addresses class im-
balance by penalizing misclassifications on harder-
to-classify examples or ambiguous cases. Addi-
tionally, following Ai et al. (2022), we incorporate
Contrastive Loss as an auxiliary loss that struc-
tures the embedding space by pulling similar sam-
ples closer and pushing dissimilar ones apart (Dipta
and Shahriar, 2024). The final loss is a linear com-
bination of the primary and auxiliary losses.

To evaluate the impact of the auxiliary loss, we
also conduct ablation-like experiments using pri-
mary loss alone. Thus, our experiments include
four different loss configurations: two primary
losses (cross-entropy and focal) applied alone and
also combined with contrastive loss.

4 Experimental Setup

We evaluate five different SLMs (≤135M parame-
ters), selected for their suitability for on-device de-
ployment (Lu et al., 2024). These include SmolLM
(Allal et al., 2024), GPT2 (Radford et al., 2019),
GPT-Neo (Black et al., 2021), OPT (Zhang et al.,
2022) and MobileLLM (Liu et al., 2024). Since the
task baseline (RoBERTa-Large) has significantly
more parameters than our selected models, we also
include RoBERTa-Base as a baseline for fair per-
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Table 2: Summary of results: Best-performing systems per phase are highlighted, and second-best underlined.

System Details Macro-F1 Test-Recall

Model #Param. Loss Val Dev Test %Gain Human LLM

Roberta-L3 406M

CE1 0.9489 0.8017 0.7139 2.20↑ 0.4951 0.9465
Task CE + Con2 0.9473 0.7823 0.7475 5.57↑ 0.5437 0.9581
Baseline Focal 0.9699 0.8677 0.7568 4.94↑ 0.5863 0.9293

Focal + Con 0.9611 0.8122 0.7516 1.59↑ 0.5697 0.9371

Roberta-B4 125M

CE 0.9362 0.7898 0.6919 0.00 0.4507 0.9558
Our CE + Con 0.9324 0.7653 0.6918 0.00 0.4540 0.9514
Baseline Focal 0.9408 0.7795 0.7074 0.00 0.4675 0.9670

Focal + Con 0.9489 0.8166 0.7358 0.00 0.5455 0.9323

SmolLM 135M

CE 0.9683 0.8642 0.8104 11.58↑ 0.7218 0.8953
Proposed CE + Con 0.9793 0.8679 0.7874* 9.56↑ 0.6669 0.9051
System Focal 0.9627 0.8678 0.8186 11.12↑ 0.7509 0.8830

Focal + Con 0.9690 0.8777 0.8135 7.78↑ 0.7281 0.8953

GPT2 117M

CE 0.9354 0.7904 0.7085 1.67↑ 0.4765 0.9581
CE + Con 0.9361 0.7889 0.6670 2.48↓ 0.4092 0.9574
Focal 0.9235 0.7754 0.6867 2.07↓ 0.4369 0.9626
Focal + Con 0.9580 0.8210 0.7314 0.43↓ 0.5420 0.9274

GPT-Neo 125M

CE 0.9665 0.8062 0.7886 9.68↑ 0.7603 0.8160
CE + Con 0.9461 0.8240 0.7464 5.46↑ 0.6832 0.8079
Focal 0.9583 0.8166 0.7812 7.38↑ 0.7401 0.8207

System Focal + Con 0.9656 0.8277 0.8070 7.13↑ 0.7935 0.8204
Alternatives

OPT 125M

CE 0.9647 0.8121 0.7024 1.05↑ 0.5252 0.8872
CE + Con 0.9622 0.7946 0.7115 1.97↑ 0.5906 0.8332
Focal 0.9588 0.8346 0.7243 1.69↑ 0.5262 0.9311
Focal + Con 0.9649 0.8400 0.7041 3.17↓ 0.5614 0.8498

MobileLLM 125M

CE 0.9608 0.8187 0.7225 3.06↑ 0.6007 0.8446
CE + Con 0.9593 0.8131 0.7164 2.46↑ 0.6002 0.8328
Focal 0.9620 0.8187 0.7276 2.02↑ 0.6067 0.8485
Focal + Con 0.9622 0.8246 0.7078 2.80↓ 0.6121 0.8030

Abbrev: 1 Cross-Entropy Loss; 2 Contrastive Loss; 3 Roberta-Large;
4 Roberta-Base. Note: %Gain represents the performance improvement over our baseline (RoBERTa-base), with arrows
(↑/↓) indicating increase or decrease. Test performance of the submitted system is marked with (*).

formance comparison. To align with our objective
of testing the feasibility of small AFDs, we adopt
a simple architecture: a single linear layer added
on top of the frozen AFDs for classification, with
a dropout layer (dropout rate = 0.3) applied be-
fore classification. Each text sample is represented
using mean pooling of all token embeddings. Max-
imum length is set to 512 tokens, with shorter sam-
ples padded and longer samples truncated to max
length.

We use a 50:50 split of the provided validation
dataset for validation and testing. Training employs
early stopping (with patience = 2), retaining the
model with the lowest validation loss. Optimization
is performed using the AdamW optimizer with a
linear warmup scheduler (10% warmup steps). The
learning rate is set to 2 × 10−5, with a batch size
of 32. Although the maximum training epochs are
set to 15, early stopping is usually triggered within
4 epochs in practice. Mixed-precision training with
gradient scaling is used to speed-up training. No
further hyperparameter tuning is performed. We re-

lease our data and source code for reproducibility1.

5 Results

Table 2 presents the results from our comprehen-
sive evaluation of five recent AFDs. Three key in-
sights emerge: First, most of the AFDs outperform
baseline models by a significant margin, confirm-
ing our hypothesis. Second, the best-performing
system demonstrates effective bias mitigation. Fi-
nally, contrastive learning appears unnecessary, as
AFDs demonstrate inherent class separability.

We evaluated 20 models across four loss con-
figurations and five AFDs, with 15 achieving a
positive gain over the baseline—a 75% success
rate, validating our hypothesis and highlighting
the effectiveness of small AFDs for AI-generated
content detection. The highest performance was
achieved with the SmolLM model, likely due to
its training on the high-quality SmolLM-Corpus
(Ben Allal et al., 2024), which includes a mix of

1https://github.com/AvantiB/
AAIG-at-GenAI-Detection-Task-1

https://github.com/AvantiB/AAIG-at-GenAI-Detection-Task-1
https://github.com/AvantiB/AAIG-at-GenAI-Detection-Task-1
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human and synthetically generated text.
To analyze performance imbalance between the

human and LLM classes, we examined their Re-
call scores on the test set. While baseline models
achieve high recall for the LLM class, they per-
form poorly on the human class - confirming the
bias reported in previous studies. In contrast, AFD
models show a slight decrease in LLM recall but
deliver a substantial improvement in recall for the
human class - effectively mitigating bias. Our best
model increases human recall by 60% and 28%
over our and task baselines, with minor LLM recall
reductions of 9% and 5%, respectively.

Focal loss consistently outperforms cross-
entropy, but the addition of contrastive loss does
not always lead to performance improvements.
While contrastive loss occasionally enhances the
performance of PLMs, AFDs generally show a de-
cline when it is applied. This can be attributed
to the already well-separated nature of AFD em-
beddings where further enforcing separation may
over-penalize instances near class boundaries. This
observation reinforces the suitability of AFDs, as
their inherent syntactic awareness provides strong
separability, making additional loss optimization
redundant and reducing computational overhead.

Can ensembling AFDs improve performance?
Although the primary goal of this paper is to

demonstrate that small LMs are as capable, if not
superior, to LLMs, the variability in performance
between models raises the question of whether en-
sembling them could improve results. For instance,
GPT-2 performs better than SmolLM in detecting
the LLM class, while SmolLM outperforms GPT-
2 for the Human class. This suggests that if the
models leverage different aspects of the text for
detecting AI-generated content, ensembling them
might lead to performance gains.

We test this hypothesis by experimenting with
all combinations (N=1,2,3,4,5) of AFDs using ma-
jority voting on the test set. Figure 1 presents a
box-and-whisker plot of performance across differ-
ent ensemble configurations, where a wider spread
reflects greater variability based on the combina-
tion of AFDs in the ensemble. Although no signif-
icant improvement over the proposed single AFD
system is observed, some performance gains are
evident, particularly in the Focal+Contrastive loss
setup, which achieves the highest macro-F1 score
of 0.8295– 9.37 %Gain over the baseline.

Two main findings from the ensemble testing
arise: First, performance tends to degrade as the

number of models in the ensemble increases, with
the best performance achieved at N=2, and second,
the combination of SmolLM and GPT-2 consis-
tently delivers strong results. As previously noted,
their complementary strengths make this ensemble
particularly robust, with each model enhancing the
other’s performance. Additionally, some improve-
ments are observed when SmolLM is combined
with GPT-Neo or OPT.

This suggests that the success of the ensem-
ble relies heavily on the proposed system using
SmolLM, whose complementary strengths enhance
other models, highlighting its potential for refine-
ment in low-resource setups.

6 Discussion

Given the test set’s significant differences from
the training set, namely, unfamiliar data sources,
adversarially modified text, and unknown LLMs,
it is imperative to analyze their impact on model
performance.

Figure 2 presents a box-and-whisker plot of
model performance by data source, with greater
spread indicating variability. Overall, the Human
class shows lower performance compared to the
LLM class, with variations across sources. Mixset
and CUDRT have the highest misclassification rate
for the LLM class, likely due to the inclusion of
adversarially perturbed text samples. For the Hu-
man class, Mixset, DetectAIve, and ieltsduck show
the lowest performance. DetectAIve and ieltsduck
contain IELTS test takers’ data, likely written by
non-native English speakers, contributing to mis-
classifications. In Mixset, LLM-modified samples
labeled as human may also lead to errors.

The perturbation operations performed on each
dataset are described in Table 3 with the perfor-
mance per operation depicted in Figure 3. Overall,
adversarial perturbations increase susceptibility to
misclassifications. Notably, the “summary” oper-
ation from the CUDRT dataset results in highest
misclassification rate, likely due to concise nature
of text, providing insufficient information for ac-
curate classification. Similarly, the “polish” and
“complete” operations also degrade performance.
However, recent studies suggest that incorporating
small amounts of adversarial examples in training
can improve detectors’ ability to handle perturbed
AI-generated content (Zhang et al., 2024).

Detection accuracy for each LLM in the test set
is depicted in Figure 4. Variations of the Chat-
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(a) Loss: Cross-Entropy

(b) Loss: Cross-Entropy+Contrastive

(c) Loss: Focal

(d) Loss: Focal+Contrastive

Figure 1: Ensemble of AFDs using majority voting
across different loss function configurations. Red
dashed line represents the performance of proposed (sin-
gle AFD) system. Spread of boxes represents perfor-
mance variability due to choice of AFDs in ensemble.

Figure 2: Model performance by source of data

Figure 3: Performance across adversarial perturbations

Figure 4: Model performance per LLM in test set

GPT family demonstrate stronger detection, likely
due to the inclusion of related models from the
same family in the training set. Nevertheless, the
generalization of performance across data sources
underscores our model’s effectiveness. Moreover,
ChatGPT’s detectability aligns with existing re-
search (Bhandarkar et al., 2024), ensuring safety
against misuse of most widely used chatbot. In con-
trast, lesser-known models like Dolly and Baichuan
show lower detection rates, highlighting areas for
improvement.

7 Conclusion

This paper addresses the challenge of secure on-
device AI content detection by proposing a sim-
ple yet effective solution leveraging small AFDs.
With their resource-efficient design and syntactic
alignment enabled by autoregressive pre-training,
the proposed approach-combining AFDs with loss
fusion, particularly focal loss-outperforms larger,
resource-intensive models by a large margin while
reducing model size. Our proposed approach mit-
igates bias, maintains generalization, and handles
challenging data, including unknown domains, un-
seen LLMs, and adversarially modified text. These
results highlight the potential of small AFDs as
efficient backbones or ensemble components, espe-
cially in scenarios requiring data privacy and faster
AI-content detection.
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A Appendix

Table 3: Perturbation Operations from Various Datasets.
(*) denotes LLM-generated text labeled as human

Operation Description Source

Mixset DetectAIve CUDRT

Polish Improve quality,
fluency, accuracy;
includes refine,
rewrite,
paraphrase, etc.

! ! !

Complete Generate part
LLM, part
human text by
completing a
given text portion

! !

Q/A LLMs act as
expert to provide
detailed answers
to questions.

!

Summary Generate concise
summary,
highlighting
main points and
key information.

!

Humanize Add human-like
noise (e.g., typos,
grammatical
errors, tags).

!* !
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