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Abstract

This paper details our methods for address-
ing Task 1 of the GenAI Content Detection
shared tasks, which focus on distinguishing
AI-generated text from human-written content.
The task comprises two subtasks: Subtask A,
centered on English-only datasets, and Subtask
B, which extends the challenge to multilingual
data. Our approach uses a fine-tuned XLM-
RoBERTa model for classification, comple-
mented by features including perplexity and TF-
IDF. While perplexity is commonly regarded
as a useful indicator for identifying machine-
generated text, our findings suggest its limita-
tions in multi-model and multilingual contexts.
Our approach ranked 6th in Subtask A, but a
submission issue left our Subtask B unranked,
where it would have placed 23rd.

1 Introduction

The rapid proliferation of large language mod-
els (LLMs) has brought both remarkable advance-
ments and significant challenges to the field of
natural language processing (NLP). While these
models enable unprecedented levels of fluency and
coherence in generated text, their potential for mis-
use—ranging from generating misleading informa-
tion to creating plagiarized content—necessitates
robust detection methods. Distinguishing between
human-written and machine-generated text has thus
become a critical area of research, especially in
multilingual and multi-model contexts.

Task 1 of the GenAI Content Detection shared
tasks (Wang et al., 2025), addresses these chal-
lenges by focusing on the development of robust
classifiers capable of identifying AI-generated text.
This task is divided into two subtasks: Subtask A,
which deals with English-only datasets, and Sub-
task B, which extends detection to multilingual
datasets.

In this paper, we present our approaches for Sub-
task A and Subtask B. For Subtask A, we relied on

a fine-tuned version of the XLM-RoBERTa model,
achieving competitive performance. For Subtask B,
we explored the integration of additional features
such as perplexity and term frequency-inverse doc-
ument frequency (TF-IDF). While perplexity has
traditionally been considered a valuable metric for
identifying machine-generated text (Varshney et al.,
2020), we found its effectiveness limited in com-
plex, multilingual scenarios.

Our approaches were ranked 6th place out of 35
participants in Subtask A. Unfortunately, due to a
submission-related issue, our entry for Subtask B
was not officially ranked. However, it would have
placed 23rd out of 26 participants.

2 Related Work

The advance of LLMs has necessitated the devel-
opment of robust methods for detecting machine-
generated text. This has become a critical research
area due to the potential misuse of LLMs for gen-
erating misleading or plagiarized content (Adelani
et al., 2019; Pan et al., 2023). Early zero-shot de-
tection methods, relying on statistical features like
log probability and rank (Solaiman et al., 2019;
Gehrmann et al., 2019; Ippolito et al., 2020), are
computationally efficient but often lack robustness
as models improve in generating text that closely
resembles human writing (He et al., 2024).

More sophisticated zero-shot approaches have
been proposed to address these shortcomings. De-
tectGPT (Mitchell et al., 2023) use the concept
of probability curvature, comparing the log proba-
bility of a text with perturbed versions to identify
machine-generated content.

Supervised detection, training classifiers on la-
beled data, has also been investigated (Uchendu
et al., 2020; Guo et al., 2023). However, these
methods suffer from limitations related to data
requirements and generalization across domains
and LLMs. Similarly, watermarking techniques
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(Kirchenbauer et al., 2023; Keleş et al., 2023),
while promising, have shown vulnerability to para-
phrasing attacks (Krishna et al., 2024; Sadasivan
et al., 2023).

3 Proposed Approach

For both Subtask A and Subtask B, we fine-tuned
the Facebook XLM-RoBERTa base model123 (Con-
neau et al., 2020).

In Subtask A, we submitted the labels from the
bare fine-tuned classifier, as we were unable to
improve its performance using additional features
including perplexity. For Subtask B, we aimed to
enhance the classifier’s performance by incorpo-
rating additional features including TF-IDF, the
source language as a one-hot encoded feature, and
perplexity values derived from the Llama 3.2 1B
model (Dubey et al., 2024). These combined fea-
tures were fed into an XGBoost classifier to im-
prove overall performance. While our goal was to
evaluate the effectiveness of perplexity as a predic-
tive metric, we found it to be a suboptimal measure
in this multi-source, multi-language context.

3.1 Perplexity
Perplexity (PPL) is a key metric used to evaluate
how well a language model predicts a sequence
of text, making it particularly useful for detect-
ing machine-generated content. For a tokenized
sequence X = (x1, x2, . . . , xN ), perplexity is cal-
culated as:

PPL(X) = exp

(
− 1

N

N∑
i=1

logPθ(xi | x<i)

)

where:

• N is the total number of tokens in the se-
quence.

• Pθ(xi | x<i) is the model’s predicted proba-
bility of token xi given all preceding tokens
x<i.

Lower perplexity scores indicate that the text
is more predictable according to the model. In
the context of machine-generated text, since the

1https://huggingface.co/FacebookAI/
xlm-roberta-base

2https://huggingface.co/keles/fine_tuned_xlm_
roberta_for_en

3https://huggingface.co/keles/fine_tuned_xlm_
roberta_for_mgtd2

generation process often samples tokens based on
higher probability from the model’s vocabulary, the
output tends to include more likely tokens. This re-
sults in lower perplexity scores, which can suggest
machine generation. On the other hand human-
generated text often exhibits higher perplexity be-
cause humans do not always use the most statis-
tically probable words; instead, they may choose
words that are less predictable, adding creativity
and nuance to the text. This higher perplexity re-
flects the diversity and unpredictability inherent in
human language. Figure 1 shows the distribution
of perplexity scores for AI-generated and human-
written texts on the shared-task data.

Figure 1: Distribution of perplexity scores for AI-
generated (orange) and human-written (blue) texts for
Subtask B’s validation and test set combined.

Perplexity scores are influenced by various fac-
tors, including the specific language model, tok-
enization methods, and the language of the text.
Models may assign higher perplexity to less com-
mon languages due to their under-representation
in training data. While perplexity offers insights
into text predictability, it has limitations as a sole
indicator of text quality. Research indicates that
perplexity is unreliable for evaluating text quality,
as it can be affected by text length, repetition, and
punctuation (Wang et al., 2022). These limitations
also apply when using perplexity to detect machine-
generated text.

4 Experiments

4.1 Perplexity as a Predictive Metric

As shown in Figure 1, Table 1, and Table 2, AI-
generated texts generally exhibit lower perplexity
scores compared to human-written texts. How-
ever, this trend varies significantly depending on

https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/FacebookAI/xlm-roberta-base
https://huggingface.co/keles/fine_tuned_xlm_roberta_for_en
https://huggingface.co/keles/fine_tuned_xlm_roberta_for_en
https://huggingface.co/keles/fine_tuned_xlm_roberta_for_mgtd2
https://huggingface.co/keles/fine_tuned_xlm_roberta_for_mgtd2
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the language and the source model. Although the
distributions differ, there is no clear distinction or
clustering between the two types of texts.

Lang Type Min Max Median Mean

en AI 1.20 31589.12 9.71 17.39
Human 2.35 2235.15 19.29 28.17

zh AI 1.35 1e5 11.74 240.60
Human 3.69 1.4e6 57.74 1622.03

it AI 4.39 53.35 9.56 12.54
Human - - - -

de AI 4.47 50.41 11.43 13.15
Human 4.05 17.68 11.14 11.36

ur AI 1.60 6.93 3.51 3.67
Human 3.63 23.06 9.17 9.44

bg AI 4.71 25.12 10.09 10.66
Human 4.43 65.97 14.40 15.58

id AI 4.46 17.07 7.07 7.39
Human 5.58 41.96 13.04 13.80

ar AI 7.23 53.82 15.29 18.04
Human 14.05 46.83 21.08 23.27

ru AI 4.44 42.49 11.39 12.89
Human 4.00 31.47 8.27 9.73

Table 1: Perplexity statistics from the Llama-3.2-
1B model across various languages, comparing AI-
generated and human-written texts. Notably, Italian (it)
lacks human-written text statistics due to the absence of
such instances in the training set. Overall, AI-generated
texts generally exhibit lower mean perplexity scores
than human-written texts in most languages, with Rus-
sian (ru) and German (de) being notable exceptions.

Model Min Max Median Mean

human 2.35 1.4e6 19.79 148.00
gpt-3.5-turbo 1.60 132.66 7.35 9.27
gpt-35 2.15 1e5 6.03 132.77
davinci 1.35 4671.52 9.77 13.76
cohere 1.61 32.47 5.58 6.14
bloomz 1.52 140.70 12.06 13.05
text-davinci-003 2.36 348.87 8.42 10.90
mixtral-8x7b 2.37 12074.41 6.14 17.99
text-davinci-002 2.70 320.81 8.31 12.65
llama3-70b 2.56 102.10 6.63 9.40
gemma-7b-it 4.02 115.08 11.03 13.68
llama3-8b 1.99 55.92 7.01 9.93
gpt4o 2.68 21.80 7.33 7.52
gpt4 2.95 18.88 5.96 6.31

Table 2: Perplexity statistics from the Llama-3.2-1B
model across different text generation models and hu-
man writing.

Due to space constraints, we have not detailed
all the models tested for perplexity calculations, but
our experiments revealed surprising findings about
model size. Larger models, including those with
up to 9 billion parameters, did not demonstrate any
meaningful improvement in discrimination ability.
These results suggest that model size may not be

a critical factor in the effectiveness of perplexity-
based detection methods.

4.2 Implementation Details

4.2.1 Subtask A
As can be inferred from Table 3, perplexity as an
additional did not measurably improve the overall
performance.

Methodology F1 Score
XGBoost (FTC + TF-IDF + Perplexity) 0.974
XGBoost (FTC + TF-IDF) 0.973
FTC 0.969

Table 3: F1 Scores for Various Feature Combinations on
the Validation Set for Subtask A. FTC refers to the labels
produced by the fine-tuned classifier. When used with
XGBoost, the probability assigned by the fine-tuned
classifier to the positive label is included as a feature.

4.2.2 Subtask B
As can be inferred from Table 4, perplexity as an
additional feature did not measurably improve the
overall performance.

Methodology F1 Score
XGBoost (FTC + TF-IDF + Perplexity) 0.972
XGBoost (FTC + TF-IDF) 0.972
FTC 0.966

Table 4: F1 Scores for Various Feature Combinations on
the Validation Set for Subtask B. FTC refers to the labels
produced by the fine-tuned classifier. When used with
XGBoost, the probability assigned by the fine-tuned
classifier to the positive label is included as a feature.

4.3 Dataset

4.3.1 Subtask A
This subtask focuses solely on English data sourced
from various origins. Of this data, 62.5% is labeled
as AI-generated, while 37.5% is labeled as human-
written. The datapoints were randomly shuffled and
then divided into 90% for training, 8% for testing,
and 2% for validation.

The given train set was randomly shuffled and
then divided into 90% for training, 8% for testing,
and 2% for validation. We observed that the num-
ber of positive cases in the test-development set is
much less than the one in the trainset. So we set
the decision boundary to 0.97.

4.3.2 Subtask B
The train and the leaderboard test datasets for sub-
task B, as shown in Figures 2 and 3 respectively,
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both exhibit significant language imbalances, al-
beit with notably different distributions. While
the training set is dominated by English texts, the
leaderboard test set presents an entirely different
skew. We determined the language distribution of
the test dataset using the langdetect library (Shuyo,
2010), which employs Naive Bayesian filtering for
automatic language identification. The detection
revealed Chinese (zh) as the dominant language
with approximately 60,000 samples (39.8% of the
dataset), followed by Urdu (ur) with 30,504 sam-
ples (20.1%) and Russian (ru) with 29,036 samples
(19.2%). This substantial shift in language distri-
bution between train and test sets, particularly the
pivot from Indo-European languages in training to
a test set dominated by Asian languages, presents
an interesting challenge for fairly evaluating the
model’s cross-lingual generalization capabilities
and robustness to language distribution shifts.

Figure 2: Distribution of AI-generated and human-
written texts across different languages in the train
dataset. The plot shows a clear imbalance in the dataset,
with English (en) having the highest number of samples.

Figure 3: Distribution of AI-generated and human-
written texts across different languages in the test
dataset. The plot shows a clear imbalance in the dataset,
with Chinese (zh) having the highest number of sam-
ples.

Figure 4: Distribution of AI-Generated vs Human-
Written Samples for Subtask B

4.4 Results
The results of our submissions are summarized in
Table 5. For Subtask A, which focuses on English-
only datasets, our approach achieved an F1 score
of 0.85 on the development set and 0.80 on the
test set, reflecting a competitive performance. For
Subtask B, encompassing multilingual data, the F1
scores were 0.65 and 0.64 on the development and
test sets, respectively.

Subtask Development (F1) Test (F1)
Subtask A 0.85 0.80
Subtask B 0.65 0.64

Table 5: F1 scores for Subtask A and Subtask B on
the development and test datasets, demonstrating the
model’s performance in detecting AI-generated versus
human-written text.

5 Conclusions

In this paper, we presented our approach to the
GenAI Content Detection shared tasks, focusing on
distinguishing AI-generated from human-written
text in both monolingual and multilingual contexts.
Our primary findings indicate that while fine-tuned
XLM-RoBERTa models can achieve competitive
performance, the incorporation of additional fea-
tures such as perplexity scores did not yield sig-
nificant improvements in detection accuracy. This
was particularly evident in the multilingual context,
where perplexity’s effectiveness varied consider-
ably across different languages and source models.
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