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Abstract

This paper presents the approach we proposed
for GenAI Detection Task 2, which aims to clas-
sify a given text as either machine-generated or
human-written, with a particular emphasis on
academic essays. We participated in subtasks
A and B, which focus on detecting English and
Arabic essays, respectively. We propose a sim-
ple and efficient method for detecting machine-
generated essays, where we use the Llama-3.1-
8B as a proxy to capture the essence of each
token in the text. These essences are processed
and classified using a refined feature classifica-
tion network. Our approach does not require
fine-tuning the LLM. Instead, we leverage its
extensive multilingual knowledge acquired dur-
ing pretraining to significantly enhance detec-
tion performance. The results validate the effec-
tiveness of our approach and demonstrate that
leveraging a proxy model with diverse multilin-
gual knowledge can significantly enhance the
detection of machine-generated text across mul-
tiple languages, regardless of model size. In
Subtask A, we achieved an F1 score of 99.9%,
ranking first out of 26 teams. In Subtask B, we
achieved an F1 score of 96.5%, placing fourth
out of 22 teams, with the same score as the
third-place team.

1 Introduction

The capabilities of large language models (LLMs)
are advancing rapidly, with models like, Chat-
GPT (OpenAI, 2022), GPT-4 (OpenAI et al.,
2024), Google Gemini (Team et al., 2024), and
Llama3.1 (Dubey et al., 2024) generating increas-
ingly fluent and human-like text. Students can
easily leverage these models to produce coher-
ent, logical texts for assignments or essays, which
profoundly impacts traditional educational meth-
ods of learning and evaluation, leading to issues
in academic integrity and a weakening of criti-
cal thinking skills. However, humans perform
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only slightly better than random chance in distin-
guishing between machine-generated and human-
written text (Mitchell et al., 2023), underscoring
the urgent need for an automated system to iden-
tify machine-generated content. To address this,
(Chowdhury et al., 2025) organized the GenAI De-
tection Task 2, a challenge focused on detecting
machine-generated academic essays in English and
Arabic to uphold academic authenticity and prevent
the misuse of LLMs in educational contexts.

Most current methods for detecting machine-
generated text can be generally categorized into
two approaches (Taguchi et al., 2024): zero-shot
detection and supervised detection. The former
is time-consuming and suffers from performance
degradation when the generation model is un-
known, while the latter like RoBERTa-based de-
tection (Guo et al., 2023) requires fine-tuning
large models, which is resource-intensive and of-
ten lacks multilingual capabilities. In contrast, we
employed a multilingual model, such as Llama-3.1-
8B (Dubey et al., 2024), as a proxy. By extract-
ing high-dimensional token essences and classify-
ing them with a convolutional neural network, our
model achieves high accuracy even without knowl-
edge of the generation model. Furthermore, it does
not require fine-tuning and effectively utilizes the
multilingual knowledge embedded in the LLM’s
pretraining, making it a simple, efficient solution
for detecting machine-generated text in both En-
glish and Arabic.

In Subtask A, our model achieved an F1 score of
0.999, ranking first among 26 teams. In Subtask B,
we obtained an F1 score of 0.965, securing fourth
place among 22 teams. In short, our contribu-
tions are as follows: (1) Utilizing the last-layer
essences of proxy LLMs as features enhances de-
tection performance. (2) The scale of the proxy
LLMs does not significantly improve detection ac-
curacy. (3) Proxy LLMs with broader multilingual
knowledge exhibit higher detection accuracy.
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Figure 1: System Architecture

2 Related Work

Machine-generated text detection methods can gen-
erally be divided into two categories. The first
category is zero-shot detection, where the sim-
plest approach involves calculating the average log-
likelihood of a text (Solaiman et al., 2019b), es-
tablishing a strong baseline for many zero-shot de-
tection methods. More advanced techniques, such
as DetectGPT (Mitchell et al., 2023) and its im-
proved version Fast-DetectGPT (Bao et al., 2023),
have shown that machine-generated text tends to
fall within regions of negative probability curva-
ture, effectively enabling machine-generated text
detection. However, these approaches are often
time-intensive and experience a significant perfor-
mance drop when the generation model is unknown.
The second category involves supervised detec-
tion methods. For instance, (Zhan et al., 2023)
employed a fine-tuned RoBERTa-large (Liu et al.,
2019) as a detector, but found it challenging to
generalize effectively across different generation
models. The T5-sentinel (Chen et al., 2023) ad-
dresses text detection by leveraging the next-token
prediction capability of T5 (Raffel et al., 2023). Ad-
ditionally, (Hu et al., 2023) introduced an iterative
training process involving both a paraphraser and
a detector, aiming to enhance robustness against
paraphrasing attacks.

(Bhattacharjee and Liu, 2024) integrated the text
to be detected into the prompt and directly asked
ChatGPT whether the text is machine-generated
or human-written, which is similar to our method,
as both approaches leverage LLMs. However, our
method does not directly inquire whether a text
is machine-generated using LLM, nor does it re-
quire fine-tuning the LLM. Instead, it harnesses the
high-dimensional multilingual representation capa-
bilities of Llama-3.1-8B and the text is simply input
into Llama-3.1-8B to extract token essences (refer
to the last layer hidden states) as features, which

are then fed into a classifier for final classification.

3 System Overview

To obtain a meaningful representation for the in-
put text, we feed it into a proxy LLM, Llama-3.1-
8B (Dubey et al., 2024), to extract essences from
the last layer of the proxy LLM and subsequently
pass the average of the essences through the Re-
fined Feature Classification Network (RFCN), the
overall model structure is shown in Figure 1.

The original text to be detected is first tok-
enized, with shorter sequences padded and longer
ones truncated to a maximum length of 1024 to-
kens, resulting in the tokenized sequence x =
{x1, x2, . . . , xn}, the procedure is as follows:

Token essences from the Proxy LLM The tok-
enized sequence x is input into the Llama-3.1-8B
model, which supports text across multiple lan-
guages. As x passes through the proxy LLM,
it generates hidden states for each token at each
layer. We specifically focus on the last-layer token
essences (hidden states) of the proxy LLM, which
serve as the high-level representations of each to-
ken. These token essences encapsulate both their
individual meanings and the broader context within
the text. Here, the representation quality across
different languages is consistent. Supplementary
details can be found in the Appendix B. To derive
a single representation h of the input text, we take
the average of the essences across all n tokens.

Refined Feature Classification Network The
averaged representation h is then input into the
RFCN for classification. In the first stage, the CNN
extracts relevant features from the input through
three convolutional and pooling layers, progres-
sively capturing more complex patterns informa-
tion. In the second stage, the refined features are
passed through three fully connected layers, where
each layer fine-tunes the representations by learn-
ing complex relationships and interactions between
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Team F1
starlight 0.997
saehyunMa 0.993
Fsf 0.993
Team_1-800-SHARED-TASKS 0.990
tesla 0.986
Baseline 0.478
CMI-AIGCX (ours) 0.999

w/o LLM 0.673
w/o RFCN 0.982

Table 1: Top: performance on English track. Bottom:
ablation study about LLM and RFCN.

features, ultimately outputting the class probabili-
ties p. The detailed design concept can be found in
the Appendix C. The model is trained by minimiz-
ing the cross-entropy loss.

4 Experimental setup

4.1 Datesets and Evaluation Metrics

Datasets The dataset consists of essays written by
humans and generated by AI, with a specific ex-
ample shown in Appendix A. The human-written
essays were curated from the ETS Corpus of Non-
Native Written English (Blanchard et al., 2014).
For the AI-generated essays, the organizers used
seven models, including GPT-3.5-Turbo (OpenAI,
2022), GPT-4o (OpenAI et al., 2024), GPT-4o-
mini (OpenAI et al., 2024), Gemini-1.5 (Team
et al., 2024), Llama-3.1 (Dubey et al., 2024), Phi-
3.5-mini (Abdin et al., 2024), and Claude-3.5 (An-
thropic, 2024), to generate academic essays. The
detailed data distribution is provided in Tables 5
and 6 in Appendix E.

Evaluation Metrics For both Subtask A and
Subtask B, the primary evaluation metric is macro-
F1, calculated as the harmonic mean of precision
and recall.

4.2 Training

We utilize Llama as the proxy LLM for obtaining
token essences, with the maximum length set to
1024. For the CNN, the input channel is set to
1, where three convolutional layers are employed,
with the number of kernels being 32, 64, and 96
respectively. The sizes of their corresponding ker-
nels are 24, 16, and 8. More details are provided in
Appendix D.

Team F1
msmadi 0.984
Team_USTC-BUPT 0.972
starlight 0.965
apricity 0.960
Team_AAST-NLP 0.957
Team_1-800-SHARED-TASKS 0.952
Baseline 0.461
CMI-AIGCX (ours) 0.965

w/o LLM 0.606
w/o RFCN 0.934

Table 2: Top: performance on Arabic track. Bottom:
ablation study about LLM and RFCN.

5 Results

In this section, we present the results of our fi-
nal submission to demonstrate the effectiveness
of our approach, comparing our system’s perfor-
mance with that of several top-performing teams,
and highlight key insights from our analysis.

5.1 Subtask A: English track

A total of 26 teams participated in the English track.
Due to space constraints, this paper compares and
analyzes the systems of several notable teams, in-
cluding starlight, saehyunMa, Fsf, Team_1-800-
SHARED-TASKS, and tesla. The official results
are presented in Table 1. Our system achieved an
accuracy, recall, and F1 score of 99.9%, securing
first place in the official rankings. This outstanding
performance underscores the significant superiority
and effectiveness of our approach in the detection
of machine-generated English texts.

5.2 Subtask B: Arabic track

A total of 22 teams participated in the Arabic track
of the competition. This paper only compares and
analyzes the systems of selected teams, includ-
ing msmadi, Team_USTC-BUPT, starlight, CMI-
AIGCX (ours), apricity, Team_AAST-NLP, and
Team_1-800-SHARED-TASKS. According to the
official results (as shown in Table 2), Our system
achieved an F1 score of 96.5%, ranking fourth.
This result highlights that our approach excels not
only in detecting machine-generated English texts
but also proves highly effective for Arabic texts,
underscoring its robust cross-lingual applicability
and efficiency.
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5.3 Ablation Study

We conducted a comprehensive ablation experi-
ment to separately assess the effectiveness of LLM
token essences and RFCN components within our
model. The experimental outcomes, presented in
Tables 1 and 2, reveal significant insights. When
LLM token essences were excluded and tokens
from the XLM-RoBERTa (Solaiman et al., 2019a)
were directly input into the RFCN, the F1 scores for
Subtasks A and B declined to 67.3% and 60.6%,
respectively. This suggests that the multilingual
knowledge encoded in LLM token essences during
pretraining provides superior feature representa-
tions for detecting machine-generated text. Ad-
ditionally, substituting the RFCN with an MLP
resulted in F1 scores of 98.2% and 93.4% for Sub-
tasks A and B, respectively. This underscores the
capability of CNNs to capture local dependencies
and recognize repetitive patterns across different
positions in the text—essential features that enable
the RFCN to effectively integrate token essences
across entire text sequences. These findings sub-
stantiate both the effectiveness and necessity of the
components within our proposed approach.

5.4 Scale and Multilingual Knowledge of
Proxy Model

We conducted extensive experiments using LLM
of varying scales, including 8 billion and 70 bil-
lion parameters, and models with different levels
of multilingual knowledge, such as Llama-2 and
Llama-3.1, as proxy models for subtasks A and B.

The experimental results are presented in Ta-
bles 3 and 4. Notably, the Llama-3-8B model,
despite being approximately one-tenth the size of
Llama-2-70B, achieved F1 scores of 99.2% and
93.8% for Subtasks A and B, respectively, outper-
forming Llama-2-70B by 7.1% and 1.9%. When
comparing Llama-3-8B to Llama-3-70B, despite
the latter’s larger scale, the performance improve-
ment was marginal, with increases of only 0.2%
and 1.4% for Subtasks A and B, respectively. These
results suggest that the scale of the proxy model
is not the primary determinant of performance in
detecting machine-generated text.

Furthermore, when the proxy model was Llama-
3.1-8B, the F1 score for subtask A was 99.9%,
which was 7.8% higher than Llama-2-70B and
0.5% higher than Llama-3-70B. For subtask B, the
F1 score was 96.5%, which was 4.6% more than
Llama-2-70B and 1.3% more than Llama-3-70B.

Proxy Model F1
Llama-2-70B 0.921
Llama-3-8B 0.992
Llama-3-70B 0.994
Llama-3.1-8B (ours) 0.999

Table 3: Performance on English track using different
scale and multilingual knowledge of proxy model.

Proxy Model F1
Llama-2-70B 0.919
Llama-3-8B 0.938
Llama-3-70B 0.952
Llama-3.1-8B (ours) 0.965

Table 4: Performance on Arabic track using different
scale and multilingual knowledge of proxy model.

This indicates that the performance of multilingual
machine-generated text detection is not solely de-
pendent on the scale of the model but is signifi-
cantly influenced by the richness of multilingual
knowledge within the LLMs.

Upon further analysis, we found that Llama-2-
70B’s training data was primarily in English, which
limits its multilingual capabilities. While Llama-3-
8B and 70B were pre-trained on multilingual data,
they were initially intended for English use. In
contrast, the Llama-3.1 series was pre-trained on
a corpus of 15 trillion multilingual tokens, mak-
ing it a more effective proxy model for detecting
machine-generated essays in both English and Ara-
bic. More details are in Appendices F.1 and F.2.

6 Conclusion

This paper presents our approach and results for the
GenAI Detection Task 2, where our system ranked
first in the English track and tied for third in the
Arabic subtask. We adopted an efficient strategy,
using proxy LLM to generate fused token essences,
which were then classified via a refined feature
classification network. This method capitalizes on
the multilingual representational capacity of LLMs
without fine-tuning, enhancing performance in de-
tecting machine-generated text. Our findings fur-
ther underscore that proxy models with extensive
multilingual knowledge markedly improve detec-
tion in multilingual contexts. Future work will ex-
plore the broader application of multilingual LLMs
in language generation detection and investigate op-
timized strategies to leverage LLM token essences.
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Limitations

Given the limited number of languages in the
dataset, we validated the effectiveness of our model
only on machine-generated texts in English and
Arabic. Future experiments will extend this valida-
tion to a broader range of languages. Our model has
demonstrated outstanding performance on Llama-
3.1-8B. Furthermore, an analysis of the results
from Llama-3-8B and Llama-3-70B indicates that
increasing the model size does not significantly
improve performance, which is why we did not
conduct experiments on Llama-3.1-70B. Moving
forward, we plan to experiment with additional
LLMs on more diverse datasets to determine which
proxy LLM is most effective for detecting machine-
generated texts. Since the official has not released
the true labels of the test data, it is impossible to
analyze the specific error cases. We will further
optimize our results after the true labels of the test
dataset are released.
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Mohiuddin, Georgios Mikros, and Firoj Alam. 2025.
GenAI content detection task 2: AI vs. human – aca-
demic essay authenticity challenge. In Proceedings
of the 1st Workshop on GenAI Content Detection
(GenAIDetect), Abu Dhabi, UAE. International Con-
ference on Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Roziere, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Gregoire Mi-
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen,
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,

https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://www.microsoft.com/en-us/research/publication/phi-3-technical-report-a-highly-capable-language-model-locally-on-your-phone/
https://www.anthropic.com/news/claude-3-5-sonnet
https://catalog.ldc.upenn.edu/LDC2014T06
https://catalog.ldc.upenn.edu/LDC2014T06
https://doi.org/10.18653/v1/2023.emnlp-main.810
https://doi.org/10.18653/v1/2023.emnlp-main.810


295

Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone,
Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuen-
ley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Lau-
rens van der Maaten, Lawrence Chen, Liang Tan, Liz
Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira,
Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh,
Manohar Paluri, Marcin Kardas, Mathew Oldham,
Mathieu Rita, Maya Pavlova, Melanie Kambadur,
Mike Lewis, Min Si, Mitesh Kumar Singh, Mona
Hassan, Naman Goyal, Narjes Torabi, Nikolay Bash-
lykov, Nikolay Bogoychev, Niladri Chatterji, Olivier
Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan
Zhang, Pengwei Li, Petar Vasic, Peter Weng, Pra-
jjwal Bhargava, Pratik Dubal, Praveen Krishnan,
Punit Singh Koura, Puxin Xu, Qing He, Qingxiao
Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon
Calderer, Ricardo Silveira Cabral, Robert Stojnic,
Roberta Raileanu, Rohit Girdhar, Rohit Patel, Ro-
main Sauvestre, Ronnie Polidoro, Roshan Sumbaly,
Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh,
Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy,
Sheng Shen, Shengye Wan, Shruti Bhosale, Shun
Zhang, Simon Vandenhende, Soumya Batra, Spencer
Whitman, Sten Sootla, Stephane Collot, Suchin Gu-
rurangan, Sydney Borodinsky, Tamar Herman, Tara
Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
Scialom, Tobias Speckbacher, Todor Mihaylov, Tong
Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor
Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent
Gonguet, Virginie Do, Vish Vogeti, Vladan Petro-
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-
ney Meers, Xavier Martinet, Xiaodong Wang, Xiao-
qing Ellen Tan, Xinfeng Xie, Xuchao Jia, Xuewei
Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine
Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue
Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng
Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh,
Aaron Grattafiori, Abha Jain, Adam Kelsey, Adam
Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva
Goldstand, Ajay Menon, Ajay Sharma, Alex Boesen-
berg, Alex Vaughan, Alexei Baevski, Allie Feinstein,
Amanda Kallet, Amit Sangani, Anam Yunus, An-
drei Lupu, Andres Alvarado, Andrew Caples, An-
drew Gu, Andrew Ho, Andrew Poulton, Andrew
Ryan, Ankit Ramchandani, Annie Franco, Apara-
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-
dan, Beau James, Ben Maurer, Benjamin Leonhardi,
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,
Brian Gamido, Britt Montalvo, Carl Parker, Carly
Burton, Catalina Mejia, Changhan Wang, Changkyu
Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu,
Chris Cai, Chris Tindal, Christoph Feichtenhofer, Da-
mon Civin, Dana Beaty, Daniel Kreymer, Daniel Li,
Danny Wyatt, David Adkins, David Xu, Davide Tes-
tuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Hol-
land, Edward Dowling, Eissa Jamil, Elaine Mont-

gomery, Eleonora Presani, Emily Hahn, Emily Wood,
Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan
Smothers, Fei Sun, Felix Kreuk, Feng Tian, Firat
Ozgenel, Francesco Caggioni, Francisco Guzmán,
Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
Gil Halpern, Govind Thattai, Grant Herman, Grigory
Sizov, Guangyi, Zhang, Guna Lakshminarayanan,
Hamid Shojanazeri, Han Zou, Hannah Wang, Han-
wen Zha, Haroun Habeeb, Harrison Rudolph, He-
len Suk, Henry Aspegren, Hunter Goldman, Ibrahim
Damlaj, Igor Molybog, Igor Tufanov, Irina-Elena
Veliche, Itai Gat, Jake Weissman, James Geboski,
James Kohli, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen,
Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong,
Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill,
Jon Shepard, Jonathan McPhie, Jonathan Torres,
Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou
U, Karan Saxena, Karthik Prasad, Kartikay Khan-
delwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kun
Huang, Kunal Chawla, Kushal Lakhotia, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro
Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng
Yu, Liron Moshkovich, Luca Wehrstedt, Madian
Khabsa, Manav Avalani, Manish Bhatt, Maria Tsim-
poukelli, Martynas Mankus, Matan Hasson, Matthew
Lennie, Matthias Reso, Maxim Groshev, Maxim
Naumov, Maya Lathi, Meghan Keneally, Michael L.
Seltzer, Michal Valko, Michelle Restrepo, Mihir
Patel, Mik Vyatskov, Mikayel Samvelyan, Mike
Clark, Mike Macey, Mike Wang, Miquel Jubert Her-
moso, Mo Metanat, Mohammad Rastegari, Mun-
ish Bansal, Nandhini Santhanam, Natascha Parks,
Natasha White, Navyata Bawa, Nayan Singhal, Nick
Egebo, Nicolas Usunier, Nikolay Pavlovich Laptev,
Ning Dong, Ning Zhang, Norman Cheng, Oleg
Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pa-
van Balaji, Pedro Rittner, Philip Bontrager, Pierre
Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratan-
chandani, Pritish Yuvraj, Qian Liang, Rachad Alao,
Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
Raghu Nayani, Rahul Mitra, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Rohan Mah-
eswari, Russ Howes, Ruty Rinott, Sai Jayesh Bondu,
Samyak Datta, Sara Chugh, Sara Hunt, Sargun
Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Verma,
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind-
say, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shiva Shankar, Shuqiang
Zhang, Shuqiang Zhang, Sinong Wang, Sneha Agar-
wal, Soji Sajuyigbe, Soumith Chintala, Stephanie
Max, Stephen Chen, Steve Kehoe, Steve Satterfield,
Sudarshan Govindaprasad, Sumit Gupta, Sungmin
Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury,
Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Kohler, Thomas Robinson, Tianhe Li,
Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook
Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal
Mangla, Vítor Albiero, Vlad Ionescu, Vlad Poenaru,
Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li,



296

Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will
Constable, Xiaocheng Tang, Xiaofang Wang, Xiao-
jian Wu, Xiaolan Wang, Xide Xia, Xilun Wu, Xinbo
Gao, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li,
Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam,
Yu, Wang, Yuchen Hao, Yundi Qian, Yuzi He, Zach
Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen,
Zhenyu Yang, and Zhiwei Zhao. 2024. The llama 3
herd of models. Preprint, arXiv:2407.21783.

Biyang Guo, Xin Zhang, Ziyuan Wang, Minqi Jiang,
Jinran Nie, Yuxuan Ding, Jianwei Yue, and Yupeng
Wu. 2023. How close is chatgpt to human experts?
comparison corpus, evaluation, and detection. arXiv
preprint arXiv:2301.07597.

Xiaomeng Hu, Pin-Yu Chen, and Tsung-Yi Ho. 2023.
Radar: Robust ai-text detection via adversarial learn-
ing. Advances in Neural Information Processing
Systems, 36:15077–15095.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023. De-
tectgpt: Zero-shot machine-generated text detection
using probability curvature. In International Con-
ference on Machine Learning, pages 24950–24962.
PMLR.

OpenAI. 2022. Chatgpt: Optimizing language models
for dialogue.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,

Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie
Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2023. Exploring the limits

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
http://web.archive.org/ web/20230109000707/https://openai.com/ blog/chatgpt/
http://web.archive.org/ web/20230109000707/https://openai.com/ blog/chatgpt/
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1910.10683


297

of transfer learning with a unified text-to-text trans-
former. Preprint, arXiv:1910.10683.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Radford,
Gretchen Krueger, Jong Wook Kim, Sarah Kreps,
Miles McCain, Alex Newhouse, Jason Blazakis, Kris
McGuffie, and Jasmine Wang. 2019a. Release strate-
gies and the social impacts of language models.
Preprint, arXiv:1908.09203.

Irene Solaiman, Miles Brundage, Jack Clark, Amanda
Askell, Ariel Herbert-Voss, Jeff Wu, Alec Rad-
ford, Gretchen Krueger, Jong Wook Kim, Sarah
Kreps, et al. 2019b. Release strategies and the so-
cial impacts of language models. arXiv preprint
arXiv:1908.09203.

Kaito Taguchi, Yujie Gu, and Kouichi Sakurai. 2024.
The impact of prompts on zero-shot detection of ai-
generated text. arXiv preprint arXiv:2403.20127.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
Millican, David Silver, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, Timothy Lillicrap, Ange-
liki Lazaridou, Orhan Firat, and James Molloy. 2024.
Gemini: A family of highly capable multimodal mod-
els. Preprint, arXiv:2312.11805.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023. Llama 2: Open foundation and fine-
tuned chat models. Preprint, arXiv:2307.09288.

Haolan Zhan, Xuanli He, Qiongkai Xu, Yuxiang
Wu, and Pontus Stenetorp. 2023. G3detector:
General gpt-generated text detector. Preprint,
arXiv:2305.12680.

A Example of English and Arabic essays

We randomly select an essay from the English and
Arabic datasets, as shown in Figures 2 and 3.

Figure 2: English machine-generated essay

Figure 3: Human-written Arabic essay

B Ensure consistent representation
quality across different languages

The Llama-3.1-8B model is pretrained on a large-
scale multilingual corpus, which enables it to learn
the structures, syntactic patterns, and semantic re-
lationships across a variety of languages. This
multilingual training allows the model to gener-
ate token embeddings that capture both language-
specific and language-independent features. Even
though the model encounters tokens from different
languages, it maps them into a shared embedding
space, ensuring that semantically similar words are
represented in a comparable way. This approach
ensures consistent representation quality across dif-
ferent languages.

C The detailed design concept of the
RFCN

The motivation behind designing the RFCN is to
better leverage the local features of the text for clas-
sification, which are essential for distinguishing be-
tween human and machine-generated text. For the
task of AI-generated text detection, the choice of
three convolutional layers and specific kernel sizes
(24, 16, 8) is aimed at effectively extracting text
features. Using three convolutional layers allows
for the extraction of progressively complex features
from the text. In AI-generated text detection, this is
crucial for capturing both simple language patterns
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and more complex syntactic structures and seman-
tic information. Each layer’s features enhance the
model’s ability to detect subtle differences in AI-
generated text. The first kernel (24-sized) has a
smaller receptive field, primarily capturing smaller
local text patterns. The second kernel (16-sized)
provides a medium receptive field, targeting phrase-
level structural patterns. The last kernel (8-sized)
features the largest receptive field, integrating more
contextual information to focus on long-range de-
pendencies. These specific kernel sizes and their
corresponding receptive fields enable the model to
extract features at multiple levels of granularity.

D Detailed Experimental Setup

We use the AdamW optimizer with a linear warmup
decay learning schedule and a dropout of 0.1. The
batch size and learning rate are set to 128 and 3e-4,
and the model is trained for 20 epochs. During the
training of our model, the training and validation
datasets for Subtasks A and B were merged at a ra-
tio of 19:1 to form new training and validation sets.
We monitored the accuracy on the validation set
to select the checkpoint with the best performance.
The final training dataset consisted of the complete
training and validation sets for each subtask, with
the entire validation set evaluated after each train-
ing epoch. We selected the model that performed
best on the validation set as the final model.

E Datasets

Datasets The detailed distribution of data cate-
gories in the dataset is as follows. The proportion of
human and AI categories in the test set has not yet
been disclosed, and as such, the table only presents
the total number of samples in the test set. For a
comprehensive breakdown of the data distribution,
please refer to (Chowdhury et al., 2025).

Train Dev Test
human 629 1235

AI 1467 391
Total 2096 1626 1129

Table 5: Dataset division of subtask A.

F Llama

In this section, we provide an overview of the pre-
training corpora of Llama-2, Llama-3, and Llama-
3.1, along with their intended purposes, which

Train Dev Test
human 1145 182

AI 925 299
Total 2070 481 293

Table 6: Dataset division of subtask B.

helps to explain the differences in their perfor-
mance on multilingual tasks.

F.1 Llama-2
Llama-2 (Touvron et al., 2023), released by Meta
in 2023, is an open-source suite of LLMs available
in configurations of 7 billion (7B), 13 billion (13B),
and 70 billion (70B) parameters. The model’s pre-
training involved approximately 2 trillion tokens,
marking a 40% increase in data volume compared
to Llama-1. These tokens were drawn from pub-
licly accessible online sources, explicitly excluding
data from the products or services of Meta. In ad-
dition to an expanded context window, increasing
from 2,048 to 4,096 tokens, the 70B model also
implemented Grouped-Query Attention (GQA) to
enhance inference capabilities and computational
efficiency. However, the pre-training corpus of
Llama-2-70B is primarily in English, making it
unsuitable for multilingual tasks.

F.2 Llama-3 and Llama-3.1
Llama-3 (Dubey et al., 2024) represents Meta’s
most recent advancement in LLM technology,
launched in 2024 with parameter configurations of
8 billion (8B), 70 billion (70B), and later extended
to 405 billion (405B) parameters in the Llama-3.1
series. Although Llama-3-8B and 70B were pre-
trained on multilingual data, they were intended
for commercial and research use in English, which
made them more optimized for English-language
tasks. In contrast, the Llama-3.1 series was pre-
trained on a significantly larger corpus compris-
ing approximately 15 trillion tokens (Dubey et al.,
2024), far exceeding the corpus size of Llama-2.
This expanded corpus includes data across a diverse
set of over 30 languages, such as English, German,
French, Italian, Portuguese, Hindi, Spanish, and
Thai. Llama 3.1 is intended for commercial and re-
search use in multiple languages, which we believe
significantly enhances its adaptability to multilin-
gual tasks when employed as a proxy model.
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