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Abstract

Detecting AI-generated text in the field of
academia is becoming very prominent. This
paper presents a solution for Task 2: AI vs. Hu-
man – Academic Essay Authenticity Challenge
in the COLING 2025 DAIGenC Workshop 1.
The rise of Large Language models (LLMs)
like ChatGPT has posed significant challenges
to academic integrity, particularly in detecting
AI-generated essays. To address this, we pro-
pose a fusion model that combines pre-trained
language model embeddings with stylometric
and linguistic features. Our approach, tested
on both English and Arabic, utilizes adaptive
training and attention mechanisms to enhance
F1 scores, address class imbalance, and capture
linguistic nuances across languages. This work
advances multilingual solutions for detecting
AI-generated text in academia.

1 Introduction

The exponential growth of Large Language Mod-
els (LLMs) has led to widespread applications, in-
cluding language translation, question answering,
text generation, and beyond. However, their unau-
thorized use by students to complete homework,
write essays, and write content-specific questions
compromises academic integrity, highlighting the
need for AI-driven LLM text detection. Using AI-
generated content in academic contexts also poses
challenges related to plagiarism (Liao, 2020).

The existing literature proposes various methods
for AI-generated text detection, including feature-
based models, supervised, zero-shot, and adversar-
ial approaches. All of these models are designed
to improve the result of detection in different lan-
guages and styles. Despite achieving decent overall
accuracy, these methods still suffer from high false
positives, where human-generated text is misclas-
sified as AI-generated. Furthermore, class-wise

1https://gitlab.com/genai-content-detection/genai-
content-detection-coling-2025

accuracy remains a challenge, indicating room for
improvement in distinguishing between human-
generated text and AI-generated text.

To address these issues, The COLING 2025
Workshop on DAIGenC (Chowdhury et al., 2025)
Task 2, "AI vs. Human – Academic Essay Authentic-
ity Challenge" aims to identify machine-generated
essays to safeguard academic integrity and prevent
misuse of LLMs in education.

The task, framed as—"Given an essay, identify
whether it is generated by a machine or authored
by a human"—is a binary classification challenge
divided into two sub-tasks: Subtask A for English
essays and Subtask B for Arabic.

Our final model is a fusion of feature-based
models and PLM embeddings. Initially, the PLM
showed poor performance with a bias toward the
majority class. By integrating linguistic and stylis-
tic features, we improved the overall Macro F1
score. Our focus addressed three key challenges:
capturing feature dependencies, handling class im-
balance, and optimizing training to preserve linguis-
tic representations in lower layers while enabling
higher layers to capture task-specific (Essay) stylis-
tic differences.

2 Related Work

Over the last few years, numerous approaches have
been proposed to tackle the task of AI-generated
text detection. Detecting machine-generated text
is formulated primarily as a binary classification
task (Zellers et al., 2019; Gehrmann et al., 2019;
Ippolito et al., 2019), naively distinguishing be-
tween human-written and machine-generated text.
In general, there are three main approaches: the
supervised methods (Wang et al., 2023; Uchendu
et al., 2021; Zellers et al., 2019; Zhong et al., 2020;
Liu et al., 2023, 2022), the unsupervised ones, such
as zero-shot methods (Solaiman et al., 2019; Ip-
polito et al., 2019; Mitchell et al., 2023; Su et al.,

https://gitlab.com/genai-content-detection/genai-content-detection-coling-2025
https://gitlab.com/genai-content-detection/genai-content-detection-coling-2025
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Figure 1: Proposed detector model architecture: fusion stylometric features with a PLM embedding.

2023; Hans et al.; Shijaku and Canhasi, 2023) and
adversarial measures on detection accuracy (Sus-
njak and McIntosh, 2024; Liang et al., 2023), es-
pecially within the education domain. For exam-
ple, (Antoun et al., 2023) evaluates the robustness
of the detectors against character-level perturba-
tions or misspelled words, focusing on French as
a case study. (Krishna et al., 2024) train a genera-
tive model (DIPPER) to paraphrase paragraphs to
evade detection. Although supervised approaches
yield relatively better results, they are susceptible
to overfitting (Mitchell et al., 2023; Su et al., 2023).

There are some techniques like feature-based,
fusion, and ensemble methods, such as word count,
vocabulary richness, and readability concatenated
ML, Neural based or finetuned (Solaiman et al.,
2019; Kumarage et al., 2023; Shah et al., 2023;
Nguyen-Son et al., 2017; Mindner et al., 2023; Ku-
marage and Liu, 2023).

3 Proposed Model

We use a fusion model that combines stylometric
features with PLM embeddings, fine-tuned together
for binary classification of AI vs. human text.

3.1 Stylometric Features
The stylometric features aim to capture different
stylistic signals within a given text. As mentioned
in Table 1, the stylometric features capture stylis-
tic signals in three categories: Phraseology (how
the author organizes words and phrases), Lexical
Diversity (measures how varied the author’s vocab-
ulary), and Syntactic Diversity (author structured
sentences and conveying emotions), definition of
these features mentioned in Section A.2.1

3.2 Model
For each text input instance, we first extract the
stylometric features as vector sF ∈ RF where F

is the number of stylometric features as mentioned
in Table 1 then apply LIME (Local Interpretable
model-agnostic Explanations) to select the most
distinguishing feature as a vector sf ∈ Rf , where f
is the number of important features. These features
help distinguish between human and AI-texts.

To capture the dependencies within the stylo-
metric features, we apply a self-attention mecha-
nism over the stylometric features, producing an
attention-weighted vector satt = Attention(sf ).
This attention function assigns weights to each
stylometric feature based on its relevance to the
dependency between the features.

In parallel, we obtain the CLS token embedding
from the final hidden layer of the PLM, denoted
as hCLS. This embedding captures the semantic
meaning of the entire input text.

Next, we concatenate the attention-weighted sty-
lometric vector satt with the CLS token embedding
hCLS to create a combined feature vector fconcat,
defined equation 1. This vector is then passed
through the classification network which is layer-
wise freezing during fine-tuning. Let the PLM
layers be represented as l1, l2, . . . , ln, where l1 is
the lowest layer and ln is the highest. We freeze the
parameters θl1 , . . . , θlk of the lower layer, which
are initialized with pre-trained weights that pre-
serve general linguistic representations, and update
θlk+1

, . . . , θln for higher layers, as in equation 2,
Here, k is a hyperparameter that determines how
many of the lower layers of the pre-trained model
remain frozen, retaining their general linguistic rep-
resentations while the higher layers are fine-tuned.

fconcat = [satt;hCLS] (1)

Lfine-tune =
n∑

i=k+1

L(θli) (2)

The parameters θlk+1
, . . . , θln transform fconcat
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Stylometry Analysis Feature Sets

Phraseology
Word count, Sentence count, Paragraph count, Mean, Standard deviation
of word count per sentence, Word count per paragraph, Total punctuation
count, Exclamation count and Sentence count per paragraph

Lexical Diversity
Syllables count, Comma count, Stopwords count, Unique words count,
Lexical Diversity, Type token ratio, Flesch reading ease, Flesch Kincaid
grade and Gunning fog

Syntactic Diversity Sentiment polarity, Sentiment subjectivity, Proportion of nouns, Proportion
of verbs, Proportion of adjectives and Proportion of adverbs

Table 1: Different stylometric feature categories and corresponding feature sets (Mindner et al., 2023) (defined in
A.2.1 and for detail result A.3)

into r, which is then passed through the final layer
ln for classification.

The final layer ln generates the output represen-
tation r, which is then passed through a softmax
activation function to compute the class probabil-
ities pθ(y|r), where y ∈ 0, 1 indicates the class
of the text (0 for "human-written" and 1 for "AI-
generated"). The softmax function is defined as:

pθ(y|r) =
exp(WT

y r+ by)∑
y′ exp(W

T
y′r+ by′)

(3)

To address class imbalance, we apply focal loss,
which modifies the cross-entropy loss by focusing
more on difficult-to-classify examples. The focal
loss for an input r and label y is given by:

Lfocal = −α(1− pθ(y|r))γ log(pθ(y|r)) (4)

Here, α is a balancing factor for class importance,
and γ is a focusing parameter that down-weights
easy examples. The focusing parameter γ is typi-
cally set between 0 and 5, with higher values mak-
ing the model focus more on hard-to-classify in-
stances. Specifically, γ controls the rate at which
the modulating factor (1 − pθ(y|r))γ reduces the
loss for well-classified examples. The model is
trained using focal loss and optimized through
backpropagation.

In the testing phase, each text input instance is
passed to the the trained model and the output r is
processed by the softmax function to predict the
class ŷ = argmaxy pθ(y|r).

Model performance is evaluated using accuracy,
Macro precision, Macro recall, and Macro F1-score
which are discussed in Results section.

4 Experiments

4.1 Dataset

For each task, there are three datasets provided
by (Chowdhury et al., 2025): Train, Dev and Test.
Training and development data with labels (AI or
human) for the development phase and for the eval-
uation phase, testing data without labels for both
tasks. All descriptions with respect to the size of
data set is mentioned in Table 2.

Data Train Dev w/o label

#AI #Human #AI #Human #Dev #Test

English 1467 629 391 1235 567 1130

Arabic 925 1145 299 182 293 886

Table 2: Dataset count distribution across training, de-
velopment, and testing set.

4.2 Experimental Setup

For both Subtasks, the hyperparameters include an
epoch size ranging from 50 to 250, while the batch
size is fixed at 32, determined by the available GPU
resources. Further details of the experimental setup
are presented in Section A.1.

4.3 Feature and Model Selection

To improve model interpretability, we use LIME as
mentioned (Ribeiro et al., 2016) for feature selec-
tion, helping identify the most influential features
for detecting AI-generated text. Feature details of
LIME are presented in Appendix A.2.1.

For subtask A (English essays), calculate the lin-
guistic and stylometric characteristics mentioned in
Table 1. LIME highlights such as average sentence
length, number of stop words, type token ration,
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model Feature F1

Baseline (n-gram) - 0.478
RoBERTa-base - 0.462
BERT-base-uncased - 0.567
DeBERTa-base - 0.617
BERT-base-uncased Yes 0.818
RoBERTa-base Yes 0.796
DistilBERT-base-uncased Yes 0.931
DeBERTa-base Yes 0.978

Table 3: model Performance of Macro F1 on test Data
with and without Features for Subtask A English

etc., are the top 12 most discriminative character-
istics. For subtask B (Arabic essays), 11 features
such as Sentiments and Flesch reading ease are
highly discriminative features after applying LIME.
However, certain features, such as part-of-speech
(POS) tags are less straightforward in Arabic due
to its rich morphology, lack of strict word order,
and complex inflectional system compared to lan-
guages like English.. Details of features are given
in Section A.3.

For this experiment, we consider pretrained lan-
guage models such as RoBERTa (Liu, 2019), BERT
(Devlin, 2018), DeBERTa (He et al., 2020), and
DistilBERT (Sanh, 2019) for Subtask A, which fo-
cuses on English essays. For Subtask B, we use
multilingual pretrained language models, includ-
ing XLM-RoBERTa (Wiciaputra et al., 2021) and
AraBERT (Antoun et al., 2020), both of which are
transformer-based models designed for understand-
ing the Arabic language.

5 Results and Analysis

Table 3 (for English) and Table 4 (for Arabic) show
the results of the test dataset. The baseline re-
sults were provided by the organizer, while all
other results are based on our experimental findings.
For Subtask A, our proposed model, the fusion
of DeBERTa-base and the symmetry characteris-
tics, achieves the highest score of 0.978 on testing
dataset. For Subtask B, our proposed model, Fu-
sion of AraBERT and Stylometry features, achieves
the best performance with an F1 score of 0.9429.
Notably, in Subtask A, other models also show
competitive performance when combined with fea-
tures. In Subtask B, AraBERT without features
achieves an impressive F1 score of 0.9214, lever-
aging its design tailored to the Arabic language

to effectively capture its unique linguistic features.
Such Arabic-specific models are optimized for the
language’s morphology and syntax, often providing
slight performance advantages in specialized tasks.
Figure 2 illustrates the confusion matrix for the de-
velopment dataset using our proposed models for
both subtasks. It can be observed that Arabic data
tend to be misclassified more frequently compared
to English data.

Table 5 highlights the strong performance of
our final models, which secured 10th position in
Subtask A (English) and 13th position in Subtask
B (Arabic) in the official task rankings.

model Feature F1

Baseline (n-gram ) - 0.4605
XLM-RoBERTa-base - 0.9188
AraBERT v02 - 0.9214
XLM-RoBERTa-base Yes 0.9414
AraBERT v02 Yes 0.9429

Table 4: model performance of Macro F1 on Test Data
with and without Features for Subtask B Arabic

Figure 2: Performance Metrics on development Dataset

Task Acc. P R F1 Rank

A-English 0.978 0.968 0.984 0.975 10
B-Arabic 0.942 0.949 0.919 0.932 13

Table 5: Leadboard Score of Our Final model

6 Conclusion

The unethical misuse of LLMs in academic con-
texts poses challenges to integrity, highlighting the
need for effective AI-generated text detection. Our
fusion model, combining stylometric features with
PLM embeddings, addresses 3 key challenges iden-
tifying highly discriminative ones using LIME, fo-
cal loss for addressing class imbalance and apply
layer-wise freezing during fine tuning to capture
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task-specific stylistic differences in essays. These
strategies have significantly improved model per-
formance. For Subtask A (English), our DeBERTa
+ features model achieved a Macro F1 score of
0.978, while for Subtask B (Arabic), the AraBERT
+ features model scored 0.9429. Future work may
refine these techniques to further enhance model’s
classwise F1 and generalization.
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A Example Appendix

A.1 Details of Experimental Setups
As mention in Table 6, We employ two experi-
mental setups. In the first, we fine-tune the Pre-
Trained Language model (PLM) independently for
each subtask over 50 epochs, using the Adam op-
timizer with a learning rate of 2 × 10−5 and L2
regularization (weight decay 0.01). The second
setup uses the PLM for training with batch nor-
malization, and 0.5 dropout. The model is trained
with a 2 × 10−5 learning rate, L2 regularization
of 0.01, and early stopping after 25 epochs. Fo-
cal loss addresses class imbalance, emphasizing
hard-to-classify examples. All experiments are im-
plemented in PyTorch (Paszke et al., 2019), for
efficient training and handling of large datasets.

Hyperparameter Setup: Fine-tuning
PLM

Epochs 10-250
Batch Size 5
k 6 layer
Learning Rate 2× 10−5

Optimizer Adam
L2 Regularization Weight decay: 0.01
Loss Function Focal Loss

Table 6: Hyperparameter settings for Setup 1: Fine-
tuning PLM.

Figure 3: LIME Explanation for Subtask B as men-
tioned in (Ribeiro et al., 2016)

A.2 Stylometry Analysis Feature Sets
A.2.1 Phraseology
The phraseology features analyze the structure of
the text, such as word, sentence, and paragraph

https://api.semanticscholar.org/CorpusID:259145150
https://api.semanticscholar.org/CorpusID:259145150
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counts, along with punctuation-related features like
exclamation counts. These features help in under-
standing how the text is organized and how fre-
quently punctuation marks are used.

A.2.2 Lexical Diversity
• Type-Token Ratio (TTR): A measure of

lexical variety, ratio of UWC and WC, where
UWC is the number of unique words and
WC is the total word count.

• Flesch Reading Ease (FRE): A readability
test:

FRE = 206.835−1.015×
(
WC

SC

)
−84.6×

(
SC

Syllables

)

• Flesch-Kincaid Grade (FKG): A readability
metric indicating the U.S. school grade level
required to understand the text:

FKG = 0.39×
(
WC

SC

)
+11.8×

(
Syllables
WC

)
−15.59

• Gunning Fog Index (GFI): A readability test
estimating the years of formal education re-
quired to understand the text:

GFI = 0.4×
(
WC

SC
+ 100× Complex Words

WC

)

where complex words are those with three or
more syllables.

A.2.3 Syntactic Diversity
Sentiment Polarity measure of the emotional
tone of the text, ranging from -1 (-ve) to 1
(+ve).Sentiment Subjectivity measure of how sub-
jective or opinion-based the text is, usually ranging
from 0 (objective) to 1 (subjective).

A.3 Features Analysis of English & Arabic
Table 8 and Table 7 compare linguistic and stylo-
metric features between AI-generated and human-
written essays in English and Arabic. For instance,
in English essays, AI texts exhibit higher average
word counts (321.37 vs. 254.0) and sentence counts
(13.22 vs. 9.0). Similarly, in Arabic essays, AI
texts display longer average word counts (215.11
vs. 251.17) but fewer unique words (136.84 vs.
169.37). Other features, such as readability scores
(e.g., Flesch Reading Ease), sentiment metrics, and
part-of-speech proportions, indicate stylistic differ-
ences, highlighting AI’s more mechanical and less
nuanced language use compared to humans.
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Figure 4: Distribution of features for AI and Human labels.

# Feature Max Min Avg

AI Human AI Human AI Human

1 num_words 1555 664 45 54 215.11 251.17
2 num_sentences 223 38 2 1 13.34 7.13
3 avg_sentence_length 453 524 5.94 5.60 17.39 73.09
4 num_syllables 1356 592 54 51 202.34 239.95
5 num_characters 6759 2996 164 199 1042.74 1130.41
6 num_stopwords 444 196 0 9 44.75 61.10
7 num_unique_words 254 442 8 42 136.84 169.37
8 flesch_reading_ease 117.26 116.45 -336.55 -382.23 105.15 53.02
9 flesch_kincaid_grade 172.50 190.00 -2.00 -1.70 2.64 22.80
10 avg_word_length 8.23 6.77 3.64 3.22 4.87 4.42
11 type_token_ratio 0.92 0.91 0.01 0.44 0.66 0.70
12 comma_count 23 57 0 0 0.14 0.73
13 period_count 222 97 2 0 13.33 7.72
14 exclamation_count 1 14 0 0 0.00 0.18
15 lexical_diversity 0.92 0.91 0.01 0.44 0.66 0.70

Table 7: Feature Statistics for AI and Human Texts for Arabic Essay (Subtask B).

# Feature Max Min Avg

AI Human AI Human AI Human

1 #words 471.0 254.0 321.37 449.0 174.0 332.21
2 #sentences 19.0 9.0 13.22 30.0 3.0 13.68
3 avg. sentence length 33.22 17.78 24.48 92.0 12.74 26.16
4 #syllables 770.0 372.0 504.96 680.0 218.0 467.32
5 #characters 2412.0 1254.0 1609.69 2212.0 703.0 1518.70
6 #stopwords 169.0 82.0 118.84 209.0 77.0 141.71
7 #unique words 243.0 89.0 149.73 251.0 101.0 168.19
8 flesch reading ease 69.31 2.85 34.67 81.93 13.35 53.25
9 flesch kincaid grade 17.8 8.3 13.71 25.6 5.5 11.17
10 gunning fog 18.68 9.72 13.89 26.74 6.72 12.52
11 #comma 42.0 10.0 22.42 38.0 1.0 15.72
12 #period 23.0 9.0 13.52 31.0 4.0 14.58
13 #exclamation 0.0 0.0 0.0 3.0 0.0 0.03
14 type token ratio 0.602 0.312 0.466 0.663 0.352 0.508
15 lexical diversity 0.602 0.312 0.466 0.663 0.352 0.508
16 sentiment polarity 0.380 -0.023 0.155 0.355 -0.138 0.130
17 sentiment subjectivity 0.709 0.208 0.445 0.722 0.284 0.472
18 pos proportion noun 0.330 0.171 0.255 0.322 0.144 0.230
19 pos proportion verb 0.180 0.064 0.113 0.193 0.067 0.119
20 pos proportion adj 0.179 0.049 0.112 0.176 0.038 0.089
21 pos proportion adv 0.088 0.006 0.040 0.098 0.011 0.048

Table 8: Linguistic and Stylometric Features Comparison in English Essays.
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