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Abstract

Advancements in Large Language Models
(LLMs) blur the distinction between human
and machine-generated text (MGT), raising
concerns about misinformation and academic
dishonesty. Existing MGT detection methods
often fail to generalize across domains and gen-
erator models. We address this by framing
MGT detection as a text classification task us-
ing transformer-based models. Utilizing Distil-
RoBERTa-Base, we train four classifiers (bi-
nary and multi-class, with and without class
weighting) on the RAID dataset (Dugan et al.,
2024). Our systems placed first to fourth in
the COLING 2025 MGT Detection Challenge
Task 3 (Dugan et al., 2025). Internal in-domain
and zero-shot evaluations reveal that applying
class weighting improves detector performance,
especially with multi-class classification train-
ing. Our best model effectively generalizes to
unseen domains and generators, demonstrat-
ing that transformer-based models are robust
detectors of machine-generated text.

1 Introduction
The rapid advancement of Large Language Mod-

els (LLMs) has made it increasingly difficult to
distinguish between human-written and machine-
generated text. This challenge poses significant
risks in areas such as misinformation dissemina-
tion, academic dishonesty, and the breach of trust in
online communications. Existing detection meth-
ods often rely on small datasets and struggle to
generalize across different domains and generator
models.

We formulate the detection task as both binary
and multi-class classification, and examine the use
of class weighting to investigate the impact of class
imbalance on detection performance. We build
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and evaluate four Distil-RoBERTa-Base1 based
models trained with RAID dataset (Dugan et al.,
2024), which contains over 6 million text samples
from 11 generator models across 8 domains. To
assess generalizability, we conduct additional cross-
domain evaluations using the MGT Detection Task
1 dataset (Wang et al., 2025), which includes texts
from 41 models not seen during training. Our re-
sults demonstrate that incorporating class weight-
ing improves detection accuracy and that our mod-
els perform effectively across both familiar and un-
familiar domains and generator models. According
to the COLING 2025 MGT Detection Challenge
Task 3 (Dugan et al., 2025) official evaluation, our
models surpass commercial MGT detection tools
and achieved top rankings.

2 Related Work
Authorship attribution has a long history, and

machine authorship is a recent focus. For exam-
ple, IARPA’s recent HIATUS program (Human
Interpretable Attribution of Text using Underly-
ing Structure)2 takes both human and machine au-
thorship into consideration. According to Leidos’
experience in HIATUS, we found that with suffi-
cient training data, transformer-based encoder mod-
els can effectively learn features that discriminate
authorship and consistently outperformed feature-
based approaches.

There are more efforts treating MGT detection as
a classification problem. For example, Xiong et al.
2024 addressed multilingual MGT detection in
SemEval-2024 Task 8, which includes binary clas-
sification (human vs. machine) and model attribu-
tion. Their study found that fine-tuned transformer-
based models significantly outperformed tradi-
tional machine learning methods, demonstrating su-
perior effectiveness in accurately detecting and at-

1https://huggingface.co/distilroberta-base
2https://www.iarpa.gov/research-programs/hiat

us
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tributing machine-generated content across various
contexts. LLM-DetectAIve (Abassy et al., 2024)
categorizes machine-generated texts into four types:
purely human-written, entirely machine-generated,
machine-generated then humanized, and human-
written then machine-polished. This nuanced ap-
proach is impactful in educational and academic
settings where subtle LLM edits may hide machine
involvement. However, its reliance on the narrows
scope of the M4GT-Bench (Wang et al., 2024)
dataset may cause LLM-DetectAIve to perform
accurately within familiar domains but struggle
with unfamiliar ones, leading to high false positive
rates and reduced accuracy in diverse real-world
scenarios.

Dugan et al. 2024 introduced RAID, a compre-
hensive benchmark with over 6 million text sam-
ples from 11 models across 8 domains, incorporat-
ing adversarial attacks and diverse decoding strate-
gies. Evaluating 12 detectors under a fixed 5%
false positive rate revealed that open-source detec-
tors often misclassified human-written texts and
lacked robustness against minor text modifications
and adversarial attacks. The study highlighted that
while detectors perform well on familiar data, they
struggle to generalize to unseen domains and mod-
els, underscoring the need for more resilient MGT
detection methods.

3 Method
We approach MGT detection as a classifica-

tion task using Transformer-based models. Our
base model, Distil-RoBERTa-Base3 (Sanh et al.,
2019), is a parameter-efficient, distilled variant of
RoBERTa (Liu, 2019) that enables robust detec-
tion with limited resources. We train four MGT
detectors to evaluate both binary and multi-class
classification, exploring the effects of class weight-
ing to address dataset imbalance, to distinguish
human-written from machine-generated text.

1. Binary Classifier without Class Weighting
(BC): Human vs. Machine, trained without
applying class weights.

2. Binary Classifier with Class Weighting
(BW): Similar to the BC model but trained
with class weights to address class imbalance.

3. Multi-class Classifier without Class Weight-
ing (MC): A multi-class classifier that pre-
dicts which generator model produced the text

3https://huggingface.co/distilroberta-base

or if it was human-written, trained without
class weights.

4. Multi-class Classifier with Class Weighting
(MW): The same as the MC model but trained
with class weights to mitigate class imbalance.

For the BW and MW models, we compute bal-
anced class weights using the following formula:

wi =
N

C × ni

Where N is the total number of samples in the
dataset, C is the total number of classes and ni is
the number of samples in class i. This formula
distributes weights evenly across classes by nor-
malizing with the total number of classes, which
helps prevent extreme weighting in cases of high
imbalance.

We select this method to balance the loss con-
tributions across classes due to its simplicity and
effectiveness in enhancing the model’s generaliz-
ability. Alternative strategies, such as oversam-
pling underrepresented classes or using synthetic
data augmentation techniques, can address class
imbalance but add complexity and pose the risk
of overfitting (Hassanat et al., 2022). Another al-
ternative is Focal Loss (Lin, 2017) that dynami-
cally adjusts the loss based on sample difficulty.
This approach can be effective, but demands exten-
sive hyper-parameter tuning, which is impractical
given our resource constraints. Our class weight-
ing scheme, though static and less adaptable to
extreme imbalance, is resource-efficient and easy
to implement.

Baseline (OD) As a baseline, we apply
the RoBERTa-Large-OpenAI-Detector4, an open-
source model that is also featured as a baseline on
the shared task, directly to our test sets in a zero-
shot manner. This enables us to gauge the models
performance on our unofficial test sets.

3.1 Data
Randomly sampling from the main training split

of RAID (Dugan et al., 2024), we reserve 50K
examples for validation and 400K examples for
testing, with the remaining examples forming our
training set.

To further assess the robustness of our MGT de-
tectors, we also leverage Task 1 dataset (Wang et al.,

4https://huggingface.co/openai-community/rober
ta-large-openai-detector

https://huggingface.co/distilroberta-base
https://huggingface.co/openai-community/roberta-large-openai-detector
https://huggingface.co/openai-community/roberta-large-openai-detector
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2025) for cross-domain evaluation. Although there
is minimal overlap between the generator models
in RAID and those in Task 1, the datasets differ
in domains and generation techniques, effectively
rendering Task 1 out-of-domain (OOD) relative to
a model trained solely on RAID. Additional details
on the Task 1 dataset composition can be found on
their official GitHub page5. For our evaluation, we
merge the Task 1 training and development sets,
excluding models with fewer than 10K examples.
From the remaining models, we sample 10K ex-
amples each, ensuring equal representation across
different sources. Table 2 details model and source
distributions in our cross-domain evaluation.

4 Results
This section presents two sets of results: 1)

performances of our four MGT detectors against
RAID-derived test set, and 2) performances of the
best-performing model according to 1) against out-
of-domain task 1 dataset to further demonstrate
model’s robustness.

For each input example, a machine-likelihood
score is calculated as S = 1− p("human"|x), rep-
resenting the probability that the input sample x is
machine-generated. The share task adopts the same
evaluation metric in RAID (Dugan et al., 2024) to
measure how well each detector identifies machine-
generated text while only misclassifying 5% of
human-written text. Specifically, it is the true posi-
tive rate (TPR) after calibrating the decision thresh-
olds to ensure a false positive rate (FPR) of 5%.
If the FPR can be optimized to less than 5%, the
evaluation script will attempt to do so.

4.1 In-Domain
Table 1 shows the overall performance of our

four submissions across all domains and gener-
ator models, for both subtask A and B. Among
the approaches, the Multi-class Classifier with
Class Weighting (MW) detector outperforms the
best when detecting MGT with adversarial attacks,
more than 84% improvement over the baseline
model in our self-evaluation. This suggests that
training detectors with large multi-domain and
multi-generator data is necessary for achieving ro-
bust performance on challenging benchmark like
RAID. All four detectors achieve excellent perfor-
mance when detecting MGT without adversarial
attacks, exceeding 0.99 TPR at 5% FPR in the

5https://github.com/mbzuai-nlp/COLING-2025-W
orkshop-on-MGT-Detection-Task1/

official evaluation. In all results, class-weighted de-
tectors demonstrate a slight performance advantage
over their non-weighted counterparts.

Detector Adversarial Non-Adversarial
Self Official Self Official

BC(1.0.1) 0.986 0.957 0.997 0.991
BW(1.0.3) 0.989 0.972 0.998 0.994
MC(1.0.4) 0.986 0.976 0.997 0.992
MW(1.0.2) 0.992 0.977 0.997 0.993

OD 0.539 N/A 0.582 N/A

Table 1: Overall TPR at 5% FPR in our internal and
the share task official evaluation, for Subtask A (Non-
adversarial cross-domain MGT detection) ans Sub task
B (Adversarial). Note: The detector version in ‘( )’
corresponds to our submission ‘Leidos Detector v1.0.x’.

In a heatmap, Figure 1 illustrates the perfor-
mance of our best model (MW) for Subtask B.
The model generally maintains high performance
cross domains and generators, except for the Co-
here generator model with Reviews domain text.
As evidenced by the leaderboard, most submissions
see performance drop on this subset, highlights a
challenging aspect of Cohere generated review text
and necessitates further analysis.

Figures 2 and 3 depict the impact of genera-
tor decoding strategies and specific adversarial
attacks on the performance of the MW detector.
While random sampling, a common technique to
increase the diversity of generated text, marginally
hinders detection compared to greedy decoding;
a repetition penalty, another diversity-enhancing
method, shows no significant impact on our de-
tector. Overall, our model remains robust against
different forms of text manipulation: most types of
adversarial attack did not impact MGT detection,
except for paraphrase (2.5% drop) and zero-width
space (0.5% drop) attacks. In the RAID data, LLM
paraphrased human-written text remains label as
“human”, which we argue is a gray area and may
potentially contributes to our detector’s decreased
performance for this attack.

4.2 Cross-Domain
Figure 4 illustrates the aggregate performance

of our best-performing model (MW) on the cross-
domain dataset derived from Task 1 (Wang et al.,
2025). We observe that our detector maintains
high performance across both new domains and
never-before-seen generator models. The results
suggest that our detector effectively generalize to
different application domains and generator models

https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1/
https://github.com/mbzuai-nlp/COLING-2025-Workshop-on-MGT-Detection-Task1/
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Figure 1: Heatmap measuring TPR at 5% FPR of our Multiclass Weighted (MW) detector across generators and
domains, using our RAID-derived test set.

Figure 2: Impact of decoding strategy (x-axis) on MW
detector performance (y-axis).

not encountered during training.
Our detector’s strong performance may result not

only from its generalization capabilities but also
from training data overlap among generator models.
LLMs are trained on massive datasets, that often
overlap, causing them to generate similar outputs
by drawing from the same underlying data (a phe-
nomenon known as memorization or data leakage).
This similarity might lead our detector to recognize
common patterns across different generators.

5 Conclusion
In this paper, we address the challenges of detect-

ing machine-generated text (MGT) from multiple
domains and different generators. Four variants of
the DistilRoBERTa-Base model are trained on large
and diverse RAID dataset, all achieving highly

Figure 3: Impact of adversarial attack strategy on MW
detector performance.

promising results. Specifically, the multi-class clas-
sifier with class weighting (MW) performs the best
in both multi-domain and cross-domain evaluations
despite of adversarial attacks. This suggests that
our approach generalizes well across multiple dif-
ferent domains, unseen generator models, and text
manipulations.

Our study demonstrates that transformer-based
models with class weighting are effective for MGT
detection, representing a significant step toward ro-
bust and generalizable detection techniques. How-
ever, the strong performance may be influenced by
factors limiting true generalizability. Specifically,
shared training data among LLM generators might
lead detectors to recognize common patterns rather
than genuinely generalize across different genera-
tors. Additionally, the current evaluation method
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sets decision thresholds based on a 5% FPR during
testing, whereas in practice, thresholds are learned
and fixed during training. These aspects require
further investigation to ensure detection reliability.
In future work, we aim to address these limitations
and extend experiments to quantify the impact of
training data size.

6 Ethical Considerations and Limitations
Our models may inherit biases present in the

training data, which could result in unfair per-
formance across various demographics or content
types. This bias poses an ethical concern, as it may
lead to higher rates of misclassification of human-
written text, especially for underrepresented groups.
To mitigate these issues, it is important that datasets
are high-quality and diverse. Evaluating model
performance across various subgroups and imple-
menting techniques to detect and reduce bias in
both models and datasets are essential for model
development.

MGT detectors could be misused to infringe
on privacy or suppress free speech. Broad adop-
tion may also discourage creative or assistive uses
of language models if content is misclassified as
machine-generated. While misclassifications may
be rare with highly accurate detectors, bias can per-
sist if the majority of the training data isn’t written
by professional authors. To prevent misuse and
protect individual rights, establishing ethical guide-
lines and usage policies is crucial. Clear policies
are needed to differentiate between unethical prac-
tices and acceptable uses, governing the ethical
deployment of MGT detectors.

The complexity of transformer-based models
poses challenges for transparency and explainabil-
ity. Incorporating explainable AI techniques can
help users understand and trust the detector’s deci-
sions. These methods can make model decisions
more interpretable and are important as they en-
able accountability and encourage human-machine
collaboration.

Although our models performed well on the eval-
uation datasets, they may not generalize to all fu-
ture models or domains due to the quick evolution
of language models. Data overlap among language
models may contribute to the detectors recognizing
patterns rather than truly generalizing, potentially
inflating performance metrics. Continuous updates
and retraining are necessary to maintain perfor-
mance. Minimizing data overlap is important to

better assess true generalization capabilities.
Our goal is to responsibly contribute to the de-

velopment of MGT detection technologies that are
fair, transparent, and beneficial to society.
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A Appendix

A.1 Cross-Domain Evaluation Composition
Table 2 provides the exact number of examples

per model and source used in our corss-domain
evaluation.

Model Source # Examples
Bloomz M4GT 10000
Cohere M4GT 10000
Davinci M4GT 10000
Dolly M4GT 10000

Gemma-2-9B-it M4GT 10000
Gemma-7B-it M4GT 10000

GPT-3.5 HC3 10000

GPT-3.5-Turbo
M4GT 5000
Mage 5000

GPT-4 M4GT 10000
GPT-4o M4GT 10000

Human
HC3 3333

M4GT 3333
Mage 3333

LLaMa-3-70B M4GT 10000
LLaMa-3-8B M4GT 10000
Mixtral-8x7B M4GT 10000

Text-Davinci-002 Mage 10000

Table 2: Number of examples per model and source in
our Task-1-derived test set.

A.2 Cross-Domain Evaluation Results
Figure 4 illustrates the aggregate performance

of our best-performing model (MW) on the cross-
domain dataset derived from Task 1.
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Figure 4: Heatmap measuring Accuracy at FPR 5% of our Multiclass Weighted (MW) detector across generators
and domains using our Task-1-derived test set. Empty cells of the heatmap ("n/a") correspond to model and source
combinations that are not present in the COLING 2025 MGT Detection Challenge Task 1 dataset.
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