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Abstract
Machine-generated text (MGT) detection has
gained critical importance in the era of large
language models, especially for maintaining
trust in multilingual and cross-domain applica-
tions. This paper presents Task 3 Subtask B:
Adversarial Cross-Domain MGT Detection
for in the COLING 2025 DAIGenC Workshop.
Task 3 emphasizes the complexity of detecting
AI-generated text across eight domains, eleven
generative models, and four decoding strate-
gies, with an added challenge of adversarial
manipulation. We propose a robust detection
framework transformer embeddings utilizing
Domain-Adversarial Neural Networks (DANN)
to address domain variability and adversarial
robustness. Our model demonstrates strong
performance in identifying AI-generated text
under adversarial conditions while highlighting
condition scope of future improvement.

1 Introduction

2 Introduction

The advent of large-scale generative language mod-
els, such as GPT (Generative Pre-trained Trans-
former) (Liang et al., 2023) based systems, has
revolutionized text generation by producing out-
puts that closely mimic human writing. These ad-
vancements have significantly impacted various
fields, including content creation, education, and
customer service, by providing highly coherent and
contextually relevant text. However, this progress
has also introduced new challenges, particularly
in detecting MGT across diverse domains and lan-
guages. The widespread use of these models has
raised concerns in areas like academic integrity,
misinformation, and malicious use of AI-generated
content.

While there are existing models result mention in
Raid1, still struggle with cross-domain issues and

1https://gitlab.com/genai-content-detection/genai-
content-detection-coling-2025

adversarial attacks (manipulations of input data to
fool machine learning models).

To tackle these issues, The COLING 2025 Work-
shop on DAIGenC2 (Dugan et al., 2025) "Task 3:
Cross-domain Machine-Generated Text Detection"
binary problem formulation as Task 1 however
the texts will come from 8 different domains, 11
generative models, and four decoding strategies.
This challenge is divided into two sub-tasks: Non-
Adversarial and Adversarial. We solve one subtask,
Subtask B, which is Adversarial Cross-Domain
MGT detection.

Our contributions include a pipeline that inte-
grates XLM-RoBERTa (Liu, 2019) embeddings
for enhanced text representation, domain adapta-
tion using Domain-Adversarial Neural Networks
(DANN) to minimize domain-specific biases and
improve generalization across diverse text domains,
and adversarial robustness through incorporating
adversarial attack classification to detect and mit-
igate manipulative techniques. Additionally, we
focus on label prediction for improved model ac-
curacy. Experimental results demonstrate strong
detection performance, particularly in the same do-
main and against zero-width space attacks. Our
findings from experimental results highlight the
strengths of the proposed approach while identi-
fying areas for improvement, such as achieving
consistent performance across all domains and all
attack types. These results emphasize the impor-
tance of balanced datasets, adaptive techniques,
and comprehensive evaluation to advance the field
of MGT detection.

3 Background

Over the last few years, numerous approaches have
been proposed to tackle the task of AI-generated
text detection. Detecting machine-generated text

2https://github.com/liamdugan/COLING-2025-
Workshop-on-MGT-Detection-Task-3

https://gitlab.com/genai-content-detection/genai-content-detection-coling-2025
https://gitlab.com/genai-content-detection/genai-content-detection-coling-2025
https://github.com/liamdugan/COLING-2025-Workshop-on-MGT-Detection-Task-3
https://github.com/liamdugan/COLING-2025-Workshop-on-MGT-Detection-Task-3
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is primarily formulated as a binary classification
task (Zellers et al., 2019; Gehrmann et al., 2019;
Ippolito et al., 2019), naively distinguishing be-
tween human-written and machine-generated text.
In general, there are three main approaches: the
supervised methods (Wang et al., 2023; Uchendu
et al., 2021; Zellers et al., 2019; Zhong et al., 2020;
Liu et al., 2023, 2022), the unsupervised ones, such
as zero-shot methods (Solaiman et al., 2019; Ip-
polito et al., 2019; Mitchell et al., 2023; Su et al.,
2023; Hans et al.; Shijaku and Canhasi, 2023), and
Adversarial measures on detection accuracy (Susn-
jak and McIntosh, 2024; Liang et al., 2023), espe-
cially within the education domain. For example,
(Antoun et al., 2023) evaluates the robustness of de-
tectors against character-level perturbations or mis-
spelled words, focusing on French as a case study.
(Krishna et al., 2024) train a generative model (DIP-
PER) to paraphrase paragraphs to evade detection.
Although supervised approaches yield relatively
better results, they are susceptible to overfitting
(Mitchell et al., 2023; Su et al., 2023).

There are some techniques like feature-based,
fusion, and ensemble methods Neural based or
finetuned (Solaiman et al., 2019; Kumarage et al.,
2023b; Shah et al., 2023; Mindner et al., 2023; ?).
Therefore, researchers combine statistics-based and
deep learning-based techniques to gain adversar-
ial robustness and high performance (Kushnareva
et al., 2021; Crothers et al., 2022; Uchendu et al.,
2023).Some studies attempt to address the chal-
lenges of cross-domain detection and adversar-
ial attacks (Krishna et al., 2024; Kumarage et al.,
2023a).

4 System Overview

We present our proposed Adversarial Cross-
Domain MGT Detection which combines adapt-
ability across diverse domains, attacks and genera-
tive models.

4.1 Data

For Task 3, we used the dataset provided by the
shared task organizers (Dugan et al., 2025), which
consists of a training set with 5,615,820 rows
and a test set with 672,000 rows. The train-
ing dataset includes the following features: id,
adv_source_id, source_id, model, decoding,
repetition_penalty, attack, domain, title,
prompt, and generation. Table 1 provides the
unique counts for each feature in the training set.

The diversity of these features indicates a wide
range of model outputs, domains, and text varia-
tions, making the dataset well-suited for evaluating
model performance in multilingual MGT detection.
The test dataset, used only for evaluation, includes
the id and generation fields.

Feature Unique Count
id 5,615,820
adv_source_id 467,985
source_id 13,371
model 12
decoding 2
repetition_penalty 2
attack 12
domain 8
title 13,221
prompt 26,500
generation 4,975,574

Table 1: Unique Counts of Training Dataset Features

4.2 Methodology

4.2.1 Data Preprocessing and Feature
Engineering

Use Tokenizer (Liu, 2019) to represent text (e.g.,
generation, title, prompt). Let X ∈ Rm×n be
the matrix of tokenized sequences, where m is the
number of samples and n is the maximum sequence
length. Encode categorical features (domain,
model, decoding, etc.) using embeddings as
Edomain, Emodel, Edecoding ∈ Rd where d is the em-
bedding dimension. Concatenate embeddings to
form a vector representation for each text instance
as defined xfeatures = [Edomain, Emodel, Eattack, . . .].
Final input representation for each sample:

xinput = [X;xfeatures] ∈ Rm×(n+d) (1)

first Feature Extraction Using transformer encoders
as Gf to learn domain-invariant representations Eq.
2

h = Gf (xinput) ∈ Rk (2)

where k is the latent representation dimensionality.

4.2.2 Domain Adaptation
Domain adaptation refers to the process of enabling
machine learning models to generalize well on a tar-
get domain that differs from the source domain on
which the model was initially trained. To address
this, domain adaptation techniques aim to minimize
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Figure 1: Proposed Detector model architecture: fusing stylometric features with a PLM embedding.

the discrepancy between source and target domain
distributions by learning representations that are
invariant to domain-specific characteristics while
retaining task-relevant features. We use Domain-
Adversarial Neural Networks (DANN) to improve
cross-domain robustness.

Calculate the Adversarial Loss for Domain Clas-
sifier. The domain classifier Gd aims to predict the
domain D of the input text. We apply a gradient
reversal layer with the following objective:

Ldomain = − 1

m

m∑
i=1

|domains|∑
j=1

di,j logGd(hi) (3)

where di,j is the true domain label.

4.2.3 Adversarial Attack Classifer for
Robuestness

To classify attack types, we introduce an attack
classifier Ga, which predicts the specific attack
type (e.g., homography, whitespace). The attack
types are encoded as categorical labels, and Ga out-
puts probabilities for each attack type. The cross-
entropy loss for attack classification is defined as:

Lattack = − 1

m

m∑
i=1

|attacks|∑
j=1

ai,j logGa(hi) (4)

where ai,j is the true attack label.

4.2.4 Label Classifier and Loss Functions
The MGT classifier Gy is trained to predict whether
text is human-Written or machine-generated, using
binary cross-entropy (BCE) loss:

Ll = − 1

m

m∑
i=1

(yi log(Gy(hi)) + (1− yi) log(1−Gy(hi)))

(5)

4.2.5 Final Model

The feature extractor Gf is a transformer-based en-
coder XLM-RoBERTa (Liu, 2019) that processes
tokenized text and generates domain-agnostic la-
tent representations, capturing high-level semantic
information. It produces embedding vector, which
is passed through two fully connected (FC) layers.

Each of these FC layers is followed by an ac-
tivation function such as ReLU to introduce non-
linearity. The final output layer for the Domain
Classifier Gd and Attack Classifier Ga uses the soft-
max activation to generate a probability distribution
over the respective classes. For the Label Classifier
Gy, the output layer uses a sigmoid activation func-
tion, producing a probability score. The model is
trained using a combination of binary cross-entropy
loss for classification, adversarial loss for domain
adaptation, and attack classification loss. During
training, we perform backpropagation to update the
weights of the feature extractor, domain classifier,
attack classifier, and MGT classifier. The optimizer
minimizes the total loss as Equation 6, and we mon-
itor the performance calculating probability that a
given text is predicted to be machine-generated..
Early stopping is used to prevent overfitting.

Ltotal = Ll + α · Ldomain + γ · Lattack (6)

where α and γ control the contributions of attack
classification losses. During testing, the trained
model is evaluated on a test set, where it provides
the probability that a given text is predicted to be
machine-generated.
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Model Config 1 Config 2 Config 3 Config 4 Config 5 Config 6

chatgpt 0.361 0.364 0.388 0.319 0.306 0.333
gpt4 0.330 0.325 – 0.300 0.295 –
gpt3 0.307 0.335 – 0.295 0.300 –
gpt2 0.360 0.365 – 0.315 0.285 –
mistral 0.323 0.313 0.340 0.282 0.245 0.295
mistral-chat 0.369 0.378 0.390 0.329 0.325 0.300
cohere 0.386 0.390 0.415 0.359 0.365 0.410
cohere-chat 0.370 0.370 – 0.352 0.335 –
llama-chat 0.372 0.385 – 0.285 0.275 –
mpt 0.350 0.365 0.375 0.305 0.287 0.305
mpt-chat 0.384 0.385 0.440 0.369 0.287 0.310

Table 2: Performance metrics for adversarial cross-domain MGT detection across various configurations. Key:
Config 1: Wiki + All Decoding Strategies + All Repetition Penalties + Zero-width Space, Config 2: Wiki + Greedy
Decoding Strategy + All Repetition Penalties + Zero-width Space, Config 3: Wiki + Greedy Decoding Strategy +
Yes Repetition Penalty + Zero-width Space, Config 4: Wiki + All Decoding Strategies + All Repetition Penalties +
Homoglyph, Config 5: Wiki + Greedy Decoding Strategy + All Repetition Penalties + Homoglyph, Config 6: Wiki
+ Greedy Decoding Strategy + Yes Repetition Penalty + Homoglyph.

5 Experimental Setup

We utilize the dataset mentioned in Section 4.1
Further details of experimental setup and hyperpa-
rameters are presented in the Appendix section A.1.
Our model was implemented using PyTorch.

6 Results

As mentioned in Table 2, Our detector performs
best on the Wikipedia domain but struggles with
other domains. We analyze the data set, revealing
that the average generation length in the Wikipedia
domain is higher than in different domains, as illus-
trated in Fig. 2. Similarly, our detector performs
better against two adversarial attacks—Homoglyph
and Zero-Width Space. However, it struggles to de-
tect text affected by other adversarial attacks. Fig.
3 highlights that Zero-Width Space attacks produce
the most extended average text length compared to
different attack types.

Among the generated model texts, our detector
most effectively identifies the text generated by
mpt-chat. Further analyses, as shown in Fig. 4
and Fig. 5, indicate that the detector is particularly
effective for the Wikipedia domain and the mpt-
chat model.

In summary, our detector demonstrates optimal
performance in the Wikipedia domain, with the
greedy decoding strategy, the repetition penalty
enabled, the zero-width space adversarial attacks,
and text generated by the mptchat model. All

details of results are mentioned in the Raid cooling
shared task leaderboard.

7 Conclusion

This paper introduces a robust approach to Adver-
sarial Cross-Domain MGT Detection, leveraging
transformer embeddings and domain adaptation to
address the challenges of domain variability and
adversarial robustness. The proposed architecture,
based on Domain-Adversarial Neural Networks,
demonstrates strong performance, particularly in
detecting machine-generated text from specific do-
mains like Wikipedia and against attacks like ho-
moglyphs and zero-width space manipulations. but
still fail to generalization. Future work should fo-
cus on curating more balanced datasets, enhanc-
ing model adaptability to diverse attack types, and
exploring lightweight architectures for real-time
applications. These steps are crucial to advance
the reliability and scalability of MGT detection sys-
tems in multilingual and cross-domain scenarios.
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A Example Appendix

A.1 Details of Experimental Setups
Table 3 lists key hyperparameters: learning rates
(1×10−5 to 1×10−3), batch sizes (16–64), epochs
(50–200), and dropout rates (0.1–0.5), with some
parameters experimentally fine-tuned.

Hyperparameter Typical Values
Learning Rate (η) 1e− 5 to 1e− 3

Batch Size 16, 32, 64
Number of Epochs 50 to 200
Dropout Rate 0.1 to 0.5
Embedding size 768
First FC & Second
FC

512 & 256

Optimizer (Adam) Beta1: 0.9, Beta2:
0.999, Epsilon: 1e− 8

Learning Rate Scheduler

Table 3: List of Hyperparameters for the Experiment

A.2 Dataset Analysis Details
As mentioned in Fig. 2, 3, 4, 5, analysis of the
distribution of columns over text or other columns.

Figure 2: Average Generation Length per Domain

Figure 3: Average Generation Length per attack

Figure 4: Average Generation Length per model type

Figure 5: Average similarity score between prompt and
text generated by each model.
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