@inproceedings{varadarajan-etal-2025-consistent,
title = "The Consistent Lack of Variance of Psychological Factors Expressed by {LLM}s and Spambots",
author = "Varadarajan, Vasudha and
Giorgi, Salvatore and
Mangalik, Siddharth and
Soni, Nikita and
Markowitz, Dave M. and
Schwartz, H. Andrew",
editor = "Alam, Firoj and
Nakov, Preslav and
Habash, Nizar and
Gurevych, Iryna and
Chowdhury, Shammur and
Shelmanov, Artem and
Wang, Yuxia and
Artemova, Ekaterina and
Kutlu, Mucahid and
Mikros, George",
booktitle = "Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "International Conference on Computational Linguistics",
url = "https://aclanthology.org/2025.genaidetect-1.8/",
pages = "111--119",
abstract = "In recent years, the proliferation of chatbots like ChatGPT and Claude has led to an increasing volume of AI-generated text. While the text itself is convincingly coherent and human-like, the variety of expressed of human attributes may still be limited. Using theoretical individual differences, the fundamental psychological traits which distinguish people, this study reveals a distinctive characteristic of such content: AI-generations exhibit remarkably limited variation in inferrable psychological traits compared to human-authored texts. We present a review and study across multiple datasets spanning various domains. We find that AI-generated text consistently models the authorship of an {\textquotedblleft}average{\textquotedblright} human with such little variation that, on aggregate, it is clearly distinguishable from human-written texts using unsupervised methods (i.e., without using ground truth labels). Our results show that (1) fundamental human traits are able to accurately distinguish human- and machine-generated text and (2) current generation capabilities fail to capture a diverse range of human traits"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="varadarajan-etal-2025-consistent">
<titleInfo>
<title>The Consistent Lack of Variance of Psychological Factors Expressed by LLMs and Spambots</title>
</titleInfo>
<name type="personal">
<namePart type="given">Vasudha</namePart>
<namePart type="family">Varadarajan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Salvatore</namePart>
<namePart type="family">Giorgi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Siddharth</namePart>
<namePart type="family">Mangalik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikita</namePart>
<namePart type="family">Soni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dave</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Markowitz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">H</namePart>
<namePart type="given">Andrew</namePart>
<namePart type="family">Schwartz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Firoj</namePart>
<namePart type="family">Alam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Preslav</namePart>
<namePart type="family">Nakov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nizar</namePart>
<namePart type="family">Habash</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Iryna</namePart>
<namePart type="family">Gurevych</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shammur</namePart>
<namePart type="family">Chowdhury</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Artem</namePart>
<namePart type="family">Shelmanov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuxia</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Artemova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mucahid</namePart>
<namePart type="family">Kutlu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Mikros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Conference on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, the proliferation of chatbots like ChatGPT and Claude has led to an increasing volume of AI-generated text. While the text itself is convincingly coherent and human-like, the variety of expressed of human attributes may still be limited. Using theoretical individual differences, the fundamental psychological traits which distinguish people, this study reveals a distinctive characteristic of such content: AI-generations exhibit remarkably limited variation in inferrable psychological traits compared to human-authored texts. We present a review and study across multiple datasets spanning various domains. We find that AI-generated text consistently models the authorship of an “average” human with such little variation that, on aggregate, it is clearly distinguishable from human-written texts using unsupervised methods (i.e., without using ground truth labels). Our results show that (1) fundamental human traits are able to accurately distinguish human- and machine-generated text and (2) current generation capabilities fail to capture a diverse range of human traits</abstract>
<identifier type="citekey">varadarajan-etal-2025-consistent</identifier>
<location>
<url>https://aclanthology.org/2025.genaidetect-1.8/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>111</start>
<end>119</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The Consistent Lack of Variance of Psychological Factors Expressed by LLMs and Spambots
%A Varadarajan, Vasudha
%A Giorgi, Salvatore
%A Mangalik, Siddharth
%A Soni, Nikita
%A Markowitz, Dave M.
%A Schwartz, H. Andrew
%Y Alam, Firoj
%Y Nakov, Preslav
%Y Habash, Nizar
%Y Gurevych, Iryna
%Y Chowdhury, Shammur
%Y Shelmanov, Artem
%Y Wang, Yuxia
%Y Artemova, Ekaterina
%Y Kutlu, Mucahid
%Y Mikros, George
%S Proceedings of the 1stWorkshop on GenAI Content Detection (GenAIDetect)
%D 2025
%8 January
%I International Conference on Computational Linguistics
%C Abu Dhabi, UAE
%F varadarajan-etal-2025-consistent
%X In recent years, the proliferation of chatbots like ChatGPT and Claude has led to an increasing volume of AI-generated text. While the text itself is convincingly coherent and human-like, the variety of expressed of human attributes may still be limited. Using theoretical individual differences, the fundamental psychological traits which distinguish people, this study reveals a distinctive characteristic of such content: AI-generations exhibit remarkably limited variation in inferrable psychological traits compared to human-authored texts. We present a review and study across multiple datasets spanning various domains. We find that AI-generated text consistently models the authorship of an “average” human with such little variation that, on aggregate, it is clearly distinguishable from human-written texts using unsupervised methods (i.e., without using ground truth labels). Our results show that (1) fundamental human traits are able to accurately distinguish human- and machine-generated text and (2) current generation capabilities fail to capture a diverse range of human traits
%U https://aclanthology.org/2025.genaidetect-1.8/
%P 111-119
Markdown (Informal)
[The Consistent Lack of Variance of Psychological Factors Expressed by LLMs and Spambots](https://aclanthology.org/2025.genaidetect-1.8/) (Varadarajan et al., GenAIDetect 2025)
ACL