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Preface

Welcome to the 1st Workshop on GenAl Content Detection (GenAlDetect), co-located with COLING
2025 and hosted in Abu Dhabi, UAE. The GenAlDetect workshop provides a platform to bring together
researchers working on all aspects of generative Al content detection across text, image, audio, video,
and multimodal data. The aim is to create a space for the entire GenAl content detection community to
present and exchange theories, algorithms, software, datasets, and tools.

In its first edition, the workshop offers a rich and diverse full-day program, including keynotes, oral
paper, and poster presentation sessions, and a panel discussion. The presented papers cover a broad
spectrum of topics, including datasets and benchmarks, watermarking, and various modeling techniques
such as graph-based approaches. The workshop also attracted notable contributions across multiple
modalities, including image, and text.

In this first edition of the GenAl Content Detection Workshop, we received 20 submissions. Each
paper was rigorously peer-reviewed by two to three expert reviewers in the field. Of these submissions,
11 papers were accepted, resulting in a 55% acceptance rate, all of which were selected for oral
presentation. Notably, we made no distinction in quality between long and short papers or between oral
and poster presentations.

The workshop featured three shared tasks: (1) Binary Multilingual Machine-Generated Text Detection
(Human vs. Machine), (2) Al vs. Human — Academic Essay Authenticity Challenge, and (3) Cross-
Domain Machine-Generated Text Detection. All tasks were well received, attracting strong participation.
For Tasks 1, 2, and 3, we received 17, 7, and 7 system description papers, respectively, resulting in a
total of 31 system description papers and 3 overview papers.

The overview paper for the shared tasks was peer-reviewed by at least three expert reviewers, while the
system description papers were reviewed by two to three reviewers. The proceedings include research
track papers, as well as shared task overview and system description papers.

Finally, we thank all the contributors of papers and the 54 members of the Program Committee for
their dedication to providing high-quality reviews in a timely manner. We also extend our gratitude
to the COLING 2025 workshop chairs, Katsuhito Sudoh and Mo El-Haj, for organizing the COLING
workshop program.

The GenAlDetect Organizers,

Firoj Alam, Preslav Nakov, Nizar Habash, Iryna Gurevych, Shammur Chowdhury, Artem Shelmanov,
Yuxia Wang, Ekaterina Artemova, Mucahid Kutlu, George Mikros

Workshop website: https://genai-content-detection.gitlab.io
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Keynote: Detectability of Language Model Generated Content: Myths,
Challenges, and Opportunities
Rakesh M. Verma,
University of Houston, Houston, TX, USA

rmverma2 @central.uh.edu

Abstract: Large language models (LLMs) have captured the imagination of researchers and users
worldwide, and led to a capacity race. We start with some myths on the detectability of LLM generated
content. We then consider LLMs through the alignment-utility tradeoff perspective and reveal some
surprising consequences of aligning LLLM models for different purposes, such as 1) ability to mimic
humans on natural language tasks and 2) safety.. Throughout the talk, we shall highlight the challenges
and opportunities for research with respect to detecting LLM generated content for the different purposes
of alignment.

Background: The rapid development of Large language models (LLMs) has captured the imagination of
researchers and users worldwide and led to a capacity race with bigger models coming out every couple of
months. Concomitantly, there is growing concern about their potential for misuse in several different fields.
Maintaining the integrity of digital communication platforms such as Reddit has become increasingly
vital due to these advancements in LLM abilities. While the threat of misuse has always been around, the
scale at which they can now disseminate disinformation, hate speech, and create spear phishing attacks
has grown alarmingly. This development poses significant challenges distinguishing between human and
machine-generated content, especially on social media, where generative Al can serious consequences.

In this keynote, we will present some myths on the detectability of LLM generated content. We will also
present the strengths of LLMs and their limitations. Notable strengths include the ability to leverage
world knowledge that has been documented in their training dataset and new knowledge through retrieval
augmented generation (RAG). Notable limitations include staying on task, which has been called different
terms such as hallucination, etc., and vulnerability to different kinds of attacks.

In the second part of the talk, we consider LLMs through the alignment-utility perspective and reveal
some surprising consequences of aligning LLM models for different purposes, such as 1) ability to mimic
humans on natural language tasks and 2) safety. We will examine the challenges of creating datasets
to examine the generative capabilities of LLMs and reflect upon our recent effort to create a dataset of
tweets involving both censored and uncensored models. The talk will include brief results of our recent
experiments with this datasets and four prominent LLMs including Llama and GPT4o,

We will conclude the talk with challenges and opportunities for research with respect to detecting LLM
generated content including for the different purposes of alignment.

Acknowledgments: This research is joint with my PhD students at the University of Houston, especially
Bryan Tuck and Fatima Z. Qachfar. Research partly supported by NSF grants 2210198 and 2244279
and ARO grants W911NF-20-1-0254 and W911NF-23-1-0191. Verma is the founder of Everest Cyber
Security and Analytics, Inc.

Bio: Rakesh Verma is a Professor of Computer Science at the University of Houston, where he teaches
a course on security analytics. He has made research contributions in equational logic programming,
algorithm design and analysis, computer security, and data science. He is the author of Cybersecurity
Analytics (CRC Press, 2019) (Verma and Marchette, 2019); a cybersecurity section associate editor of the
Frontiers in Big Data Journal; and co-organizer of the ACM Annual International Workshop on Security
and Privacy Analytics (IWSPA) since 2015.
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SilverSpeak: Evading AI-Generated Text Detectors using
Homoglyphs

Aldan Creo
Dublin, Ireland
aldan.creo@rai.usc.es

Abstract

The advent of Large Language
Models (LLMs) has enabled the
generation of text that increasingly
exhibits human-like characteristics.
As the detection of such content is
of significant importance, substan-
tial research has been conducted
with the objective of developing
reliable Al-generated text detectors.
These detectors have demonstrated
promising results on test data, but
recent research has revealed that they
can be circumvented by employing
different techniques. In this paper,
we present homoglyph-based attacks
(‘A — Cyrillic ‘A’) as a means of
circumventing existing detectors.
We conduct a comprehensive
evaluation to assess the effectiveness
of these attacks on seven detectors,
including ArguGPT, Binoculars,
DetectGPT, Fast-DetectGPT,
Ghostbuster, OpenAI’s detector,
and watermarking techniques, on
five different datasets. Our findings
demonstrate that homoglyph-based
attacks can effectively circumvent
state-of-the-art detectors, leading
them to classify all texts as either
Al-generated or human-written
(decreasing the average Matthews
Correlation Coefficient from 0.64 to
-0.01). Through further examination,
we extract the technical justification
underlying the success of the attacks,
which varies across detectors.
Finally, we discuss the implications
of these findings and potential
defenses against such attacks.

Shushanta Pudasaini
Institute of Engineering (IOE)
Kathmandu, Nepal
shushanta574@gmail . com

1 Introduction

LLMs have soared in popularity in a wide
variety of domains as their text generation
capabilities become increasingly human-
like (Bin-Nashwan et al., 2023). For in-
stance, it is estimated that the percent-
age of arXiv articles whose abstract has
been revised by ChatGPT is around 35%
(GENG and Trotta, 2024). While LLMs
can prove beneficial (Ngo, 2023), there
is growing concern about their potential
misuse (Sullivan et al., 2023; Yan et al.,
2024, Li et al., 2023; Sebastian, 2023).

Thus, a number of approaches to detect
Al-generated text have been proposed, in-
cluding zero-shot classifiers (Gehrmann
et al., 2019; Mitchell et al., 2023; Bao
et al., 2024; Hans et al., 2024; Su et al.,
2023), binary classifiers (Solaiman et al.,
2019; Verma et al., 2024; Liu et al., 2023),
and watermarking techniques (Zhu et al.,
2024; Giboulot and Teddy, 2024; Zhang
and Koushanfar, 2024; Molenda et al.,
2024; Wu et al., 2023).

At the same time, research has been
conducted on methods for circumventing
Al-generated text detectors. Some popu-
lar techniques include paraphrasing (Kr-
ishna et al., 2023; Peng et al., 2023), wa-
termark stealing (Jovanovic et al., 2024),
Substitution-based In-Context example
Optimization (Lu et al., 2024), reinforce-
ment learning (Nicks et al., 2023) or space
infiltration (Cai and Cui, 2023). In this
paper, we study an alternative technique

1
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tokenize(text) rewrite(text) — text’ tokenize(text’)

{ = \ { . \
[9023, 13, 8171, 88, 84524, 11, 264, [9023, 13, 8171, 88, 84524, 11, 264,
2107, 88, 25062, 20426, 904, 1023, 2107, 3865, 25062, 20426, 459, 3865,
11, 12025, 13382, 279, 12624, 4029, 8008, 123, 700, 11, 12025, 28654,
449, 813, 64955, 3495, 304, 12025, 37153, 279, 12624, 4029, 449, 813,
22761, 17688, 13, 3161, 813, .. . ] 5015, 1347, 1532, 587, 27385, ... 1]

+ +

Prediction: Al

Prediction: Human

Figure 1: Homoglyph-based attack. The left box shows the original text, adapted from (Hans
et al., 2024), and the right box shows the text after rewriting some of its characters. The bottom
boxes show the tokenized versions from (OpenAl, 2024b). Differences are shown in red.

based on homoglyphs.

Homoglyphs are visually similar
characters with different encodings (e.g.,
Latin ‘a’ and Cyrillic ‘a’) (Ginsberg and
Yu, 2018). This allows us to generate
rewritten versions of any given text that
can evade Al-generated text detectors
(Figure 1). Kirchenbauer et al. (2023)
identified the usage of homoglyphs as a
potential avenue for evading Al-generated
text detectors. However, to the best of our
knowledge, no study has yet conducted
a comprehensive evaluation of the effec-
tiveness of this approach across diverse
datasets and detectors, nor has it provided
insights into the technical justification of
homoglyph-based attacks, a gap that we
aim to fill in this paper.

Our main contributions are:

* What are homoglyph-based attacks?
We introduce them as a way to evade
Al-generated text detectors.

e How much can homoglyph-based at-
tacks affect Al-generated text detec-
tors? We evaluate their effectiveness
on five datasets and seven detectors
in Section 2. In Section 3, we show
that they can bring average Matthews
Correlation Coefficients from 0.64
to -0.01. This shows a complete eva-

sion, discussed in Section 4.1.

e Why do homoglyph-based attacks
work? We analyze and justify such
performance decline in Section 4.2.

e What are the ethical implications of
these findings? We discuss them in
Section 6, along with possible de-
fenses against such attacks.

* Additionally, we introduce the
first publicly available dataset of
homoglyph-based attacks targeting
Al-generated text detectors.

2 Methods

In this section, we delineate our experi-
mental approach, along with a description
of the detectors and datasets employed.
We make our code and datasets pub-
licly available at https://github.com/
ACMCMC/silverspeak, under CC BY-SA
4.0 and ODC-BY licenses. Furthermore,
we ensured that our study adheres to
the intended usages of the detectors and
datasets presented, for which we include
licensing information below.

2.1 Experiments

As shown in Figure 2, we evaluate the ef-
fectiveness of homoglyph-based attacks
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Figure 2: Our experimental process. First, we generate a set of rewritten datasets by applying
homoglyph-based attacks, with varying replacement percentages, on all original datasets. Then,
we run the detectors on the original and attacked datasets to get the metrics presented.

on seven detectors and five datasets, each
with 2,000 samples (1,000 human and
1,000 AI). We used the original text and
five attacked versions, generated by re-
placing 5%, 10%, 15%, and 20% of ran-
domly chosen characters in the text (ran-
dom attack), or all of the possible charac-
ters that can be replaced (greedy attack).

We also conducted initial experiments
on an optimized setting where we perform
replacement only on tokens that have the
highest loglikelihoods (those that are most
likely to be Al-generated) when evaluated
by an LLM. However, given that the pre-
vious attacks are already effective (Sec-
tion 3), we decided to focus on them for
the rest of the experiments, as they are
less computationally expensive and do not
vary depending on the choice of the LLM.

We utilized the homoglyphs provided
in (Davis and Suignard, 2023). We based
our code on the Hugging Face Transform-
ers and Datasets libraries with PyTorch as
backend (Wolf et al., 2019; Paszke et al.,
2019).We executed the experiments on a
NVIDIA A100, for which we present uti-
lization by each detector in Table 1.

Detector Time Space

ArguGPT 2 5.2

Binoculars 6 34.2
DetectGPT 276 10.8
Fast-DetectGPT 25 19.5

Ghostbuster 240 0

OpenAl 2 52
Watermark 3 8.6

Table 1: Approximate requirements on time
and space for one experiment, in minutes and
gigabytes. We report on the unattacked reuter
dataset as times do not vary significantly
across datasets. For a full experiment suite on
a detector, the time requirement is multiplied
by the number of attacks and datasets.

2.2 Detectors

We conduct experiments on:

¢ ArguGPT: A RoBERTa-based classi-
fier trained on a dataset of human
and Al-generated arguments (Liu
et al., 2023). We utilize the sentence-
level model under a MIT license.

* Binoculars: Computes a ratio of
the perplexity measured on an LLM



and its cross-entropy with the per-
plexity of another. The text is
determined to be Al-generated or
not by comparing the ratio with
a chosen threshold. We utilize
the code (BSD 3 license), de-
fault threshold (Low-fpr), and mod-
els (observer falcon-7b; performer
falcon-7b-instruct) provided by
the authors (Hans et al., 2024).

DetectGPT: Compares the likeli-
hood of an input text with a series of
Al-perturbed versions, assuming that
loglikelihoods will drop more for
Al-generated texts (Mitchell et al.,
2023). We utilize the open-source
implementation (MIT license) by
(Tayyab, 2023), with GPT-2-Medium
and T5-Large as scoring and rewrit-
ing models (Radford et al., 2019;
Raffel et al., 2020).

Fast-DetectGPT: An optimization
that measures the conditioned prob-
ability of each token against its al-
ternatives, rather than among texts.
This means that only one forward
pass is needed to score the perturbed
tokens, rendering it much faster (Bao
et al., 2024). It has been released un-
der a MIT license.

Ghostbuster: A classifier trained
on a set of forward-selected fea-
tures based on token probabilities
measured on weak language models
(Verma et al., 2024), licensed under
CCBY 3.0. We use its web interface,
as described in Section 7.

OpenAI’s detector: A ROBERTa-
based classifier trained on a large
dataset of human and Al-generated
texts (Solaiman et al., 2019). We uti-
lize the large variant (MIT license).

Watermark: Based on a lefthash al-
gorithm, which computes a hash of

the previous token and uses it to shift
the next token logits, so that this
skewed distribution can be detected
(Kirchenbauer et al., 2023). We use
the Hugging Face implementation
(Apache 2.0) (Wolf et al., 2019).

2.3 Datasets

‘We derived our datasets as follows:

* essay, writing prompts, reuter: De-
rived from (Verma et al., 2024),
also utilized by (Hans et al., 2024).
The essay dataset consists of essays
from IvyPanda. The writing prompts
dataset consists of prompts from the
subreddit r/WritingPrompts. The
reuter dataset consists of news ar-
ticles from the Reuters 50-50 author-
ship identification dataset. They are
licensed under CC BY 3.0.

* CHEAT: Abstracts of academic pa-
pers, derived from (Yu et al., 2024)
under a MIT license.

* realnewslike: Derived from the C4
realnewslike dataset (Raffel et al.,
2020) (ODC-BY license). We gener-
ate 200-token watermarked comple-
tions with OPT-1.3B (Zhang et al.,
2022), as in (Kirchenbauer et al.,
2023), taking 8 minutes and 23.9
GB on a NVIDIA A100. The nature
of this dataset is such that it is only
used to test the Watermark detector,
as others cannot detect watermarks.

To ensure that all datasets have the
same number of examples, we randomly
select 1,000 human and 1,000 Al-written
examples from each source dataset. We
do not split the datasets as our study does
not require training any model.

3 Results

We summarize our experimental results
in Table 2. Full results are reported in



Dataset |

Detector | Original | 5%

| 10% | 15% | 20% | Greedy |

ArguGPT
Binoculars
DetectGPT
Fast-DetectGPT
Ghostbuster
OpenAl
ArguGPT
Binoculars
DetectGPT
Fast-DetectGPT
Ghostbuster
OpenAl
ArguGPT
Binoculars
DetectGPT
Fast-DetectGPT
Ghostbuster
OpenAl
ArguGPT
Binoculars
DetectGPT
Fast-DetectGPT
Ghostbuster
OpenAl
Watermark

CHEAT

essay

reuter

writing prompts

realnewslike

Average | 0.64

Standard deviation | 0.36

Table 2: Matthews Correlation Coefficient (MCC) of all detectors on all datasets for all attack
configurations. The color of the cell represents its value, clipped between 0 (red) and 1 (green).

Appendices A and B, with the raw results
available in our released datasets.

The results correspond to a single run,
as we confirmed that the scores obtained
are identical across multiple executions.

It should be noted that some conven-
tional metrics employed to assess the effi-
cacy of detectors may prove to be decep-
tive in this particular setting. For exam-
ple, Figure 13e shows a confusion matrix
where the F1 score is 0.67, but the detec-
tor is classifying almost all examples as
Al-generated. We argue that the Matthews
Correlation Coefficient (MCC) is better
suited (in this case, 0.08), placing greater
emphasis on class balance (Baldi et al.,
2000). Therefore, we use it as our main
metric, and advise caution when interpret-
ing the results based on other metrics in
the appendices. MCC yields values from
-1 (inverse correlation) to 1 (perfect corre-

lation), with O representing no correlation.

4 Discussion

In this section, we discuss the results ob-
tained from the experiments conducted on
different Al-generated text detectors us-
ing homoglyph-based attacks. Then, we
analyze the effectiveness of the attacks
and their technical justifications.

4.1 Effectiveness of the attacks

Baseline performance varies across de-
tectors and datasets. Before the attacks,
MCC values range from -0.21 to 0.94,
with an average of 0.64 and a standard
deviation of 0.36.

Binoculars and Fast-DetectGPT
show consistently high MCCs. ArguGPT
and Ghostbuster show a wider range of
MCCs across datasets, with DetectGPT
and the OpenAI detector having lower



baseline scores. The Watermark detector
shows a high baseline MCC, albeit only
tested on the realnewslike dataset.

We performed a side exploration on the
low scores of DetectGPT and the OpenAl
detector. We found that their scores can
be improved by adapting their classifica-
tion thresholds to each dataset they are ap-
plied on. However, including these results
would mean deviating from the original
implementations, so we abstained from
changing the thresholds in our study.

Interestingly, not all detectors are af-
fected in the same way by the attacks.
Generally, we observe two distinct trends
when applying the attacks:

* The detector tends to classify the
examples as human-written, even
when they are Al-generated. This
happens on all replacement percent-
ages, but even more prominently as
the percentage of replacements in-
creases. This is the case for ArguGPT,
Binoculars, Fast-DetectGPT, the
OpenAlI detector, and Watermark.

* The detector classifies more ex-
amples as human-written on low
replacement percentages (5% or
10%). However, as the percentage
of replacements increases, the detec-
tor starts classifying the examples as
Al-generated. On intermediate re-
placement percentages, the detector
tends to behave as a random classi-
fier. This temporarily increases the
MCC, as some examples are classi-
fied correctly. Then, the tendency
reaches a plateau and higher per-
centages (20%, greedy attack) cause
the detector to classify almost all ex-
amples as Al-generated. This is the
case for DetectGPT, which plateaus
around 15%, and Ghostbuster,
which plateaus around 10%.

While the behavior of the detectors

varies, the effectiveness of the attacks
is consistent across all detectors and
datasets, showing a pronounced decline
in performance. Lowest MCCs are ob-
served in the greedy replacement setting,
where the attack consistently (standard
deviation of 0.08) renders detectors in-
effective (average of -0.01).

4.2 Technical justification

In this section, we provide insights into
the effectiveness of the attacks, separately
exploring each group of detectors.

4.2.1 Perplexity-based models

Binoculars, DetectGPT and
Fast-DetectGPT are based on per-
plexity, shown in Equation 1 (Alon
and Kamfonas, 2023). Let N be the
number of tokens in the text, and p(¢;) the

probability of token ¢; given t1,...,%;—1,
according to an LLM.
1N
Perplexity = exp !_N z; log p(t;)
1=
ey

As homoglyphs have different encod-
ings, tokenizers treat them differently.
Two observations can be made:

1. Since the training corpora used to
train popular tokenizers (such as
those based on Byte-Pair Encoding
(Sennrich et al., 2016)) do not of-
ten contain sequences that mix char-
acters from different alphabets, it is
likely that attacked tokens will be
split into smaller ones: [V increases.

2. Since the attacked sequence of to-
kens does not resemble the training
data, the loglikelihoods for attacked
tokens will generally be lower.

Therefore, the summation contains more
tokens (T N) with lower loglikelihoods

( log p(t;)), increasing perplexity.
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Figure 3: Token loglikelihoods for the text in Figure 1 on BLOOM-560m (Le Scao et al., 2023).
The attacked text (10% replacement) has a distribution shifted towards more negative values.

Figure 3 illustrates the impact of
homoglyph-based attacks on tokens and
their associated log likelihoods. In this
example, modifying 10% of the charac-
ters in the text changes their tokenization
70% of the time. The attacked text ex-
hibits a more negative loglikelihood dis-
tribution than the original text, as shown
in Figure 3b. Therefore, the attacked text
appears “more likely to be human” when
the perplexity is evaluated with an LLM,
while keeping the same appearance. In
summary, homoglyph-based attacks are
effective at shifting the distribution of
loglikelihoods towards more negative
values, which can evade detection.

4.2.2 Classification models

ArguGPT and the OpenAl detector are
RoBERTa-based models with a classifica-
tion head (Liu et al., 2023; Solaiman et al.,
2019). We hypothesize that the presence
of homoglyphs in the text causes the out-
put embeddings to become much less dis-
criminative, as the model is unable to un-
derstand the semantics of the text.

To test this hypothesis, we remove the
classification head from ArguGPT and ob-
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Figure 4: Embeddings from ArguGPT. While
the original texts are well-separated, the em-
beddings of the attacked texts are mixed and
placed in a different subspace.

tain the mean of the embeddings for the
original and attacked texts (10% replace-
ment) on the CHEAT dataset. We then
reduce their dimensionality to 2D with
UMAP (Mclnnes et al., 2018). We set the
local connectivity to 5, minimum distance
to 0.1, and number of neighbors to 15. We
plot the embeddings in Figure 4.

Three clusters can be observed. Two
of them correspond to the original texts,
where Al and human texts are clearly sep-
arated. However, the third cluster (green



and purple) corresponds to the attacked
texts, where embeddings are mixed. This
indicates that the classification head is fed
with discriminative embeddings in a nor-
mal scenario, but with homoglyphs, the
embeddings are less discriminative and
placed in an unseen region of the space,
therefore leading to misclassifications.
As for Ghostbuster, a similar justifi-
cation to Section 4.2.1 can be made. The
model is based on a linear classifier, and
while it does not use perplexity, the fea-
tures it is trained on are based on the prob-
ability of generating each token in the text
under several weaker language models
(Verma et al., 2024). Therefore, the same
principles apply: the presence of homo-
glyphs in the text alters the calculation of
the probabilities, leading to a shift in the
distribution of the features used by the
classifier that evades detection.

4.2.3 Watermarking

The Watermark detector is a special case,
as it is not designed to analyze the seman-
tics of the text, or any of its features, other
than the presence of a watermark. The
probability of a text having been gener-
ated with a watermark is calculated with
a one-proportion z-test, as shown in Equa-
tion 2. Given a text, |s|g is the num-
ber of green (“expected”) tokens and T'
is the total number. -y is a hyperparame-
ter, the probability of a token being green
(Kirchenbauer et al., 2023).

a—T)/VTy(1=7v) ()

If the text is generated with knowledge
of the watermark rule, we can expect |s|a
to deviate significantly from 47'; i.e. the
sample mean will be higher than the ex-
pected mean, leading to a high z value.
This is the case for the original texts,
where the watermark is easily detected.

However, results show that watermarks
are highly sensitive to changes in the text.

z=(|s

This is due to the fact that the lefthash wa-
termarking algorithm is based on a simple
scheme where a list of green tokens is
generated using the previous token ¢t — 1
(Kirchenbauer et al., 2024). This list is
used to shift the logits of the current to-
ken t, so that the distribution is skewed
towards green tokens. As homoglyph-
based attacks alter tokenization, many of
the green lists are generated with different
seeds, and the probability of ¢ being green
becomes 7, as in a human-written text.
Moreover, even if ¢ — 1 remains the same,
if ¢ is changed, its probability of being
green is also 7. The two factors combined
lead to a significant decrease in the num-
ber of green tokens, thus reducing 2z and
rendering the watermark undetectable.

5 Conclusion

This paper demonstrated that homoglyph-
based attacks can evade state-of-the-art
Al-generated text detectors. We per-
formed a systematic evaluation of the ef-
fectiveness of these attacks on seven dif-
ferent detectors and five different datasets.
Our results showed that homoglyph-based
attacks are very effective, to the point that
their MCC drops to around O (no correla-
tion) in all of them, albeit at different re-
placement percentages. We then analyzed
the internal mechanisms of the detectors
to provide a technical justification for the
effectiveness of the attacks. Furthermore,
we have publicly released our implemen-
tation and datasets, which we hope will
facilitate further research on Al-generated
text detection algorithms. The effective-
ness of these attacks adds to the existing
evidence that existing Al-generated text
detectors are unfit for purpose, highlight-
ing the need for more robust detection
mechanisms. The proposed attacks can
be employed to assess the resilience of
future Al-generated text detectors and to
develop more effective solutions.



6 Ethical impact and safeguards

Our work has significant ethical implica-
tions, including the potential for increased
instances of academic misconduct, misin-
formation, and social engineering (Ma-
jumdar et al., 2024).

Furthermore, while alternative methods
such as paraphrasing necessitate the use of
LLMs (Krishna et al., 2023), homoglyph-
based attacks can be conducted with a
simple script and minimal computational
resources. This lower barrier for access
exacerbates their potential impact.

It is not our intention to encourage mali-
cious usage; rather, we seek to contribute
to the growing evidence on the unreliabil-
ity of current detectors (Sadasivan et al.,
2024; Yan et al., 2024) and promote the
design of sturdier ones. It is deeply con-
cerning that a number of commercially
available tools like Undetectable (2024)
are widely used in sectors like academia,
yet they are vulnerable to an attack that
can be executed with minimal effort.

Fortunately, it is possible to forestall
these attacks by incorporating additional
safeguards into the detection process. In-
put constraints, such as limiting the char-
acter set that can be utilized (Ginsberg and
Yu, 2018) or mapping them to a standard
form (Alvi et al., 2017), can be an effec-
tive mitigation strategy in several cases.

Other contexts may require more So-
phisticated solutions. For instance, sci-
entific articles frequently contain Greek
symbols in their discourse, which should
not be treated as indicators of homoglyph-
based attacks. Instead, one possibility is
to analyze loglikelihood scores (Figure
3) (Alon and Kamfonas, 2023), while an-
other is to consider architectures based on
neural networks (Woodbridge et al., 2018)
or optical character recognition (Ginsberg
and Yu, 2018). No universal solution ex-
ists, and the choice should be based on
the nature of the text and detector.

7 Limitations

Our work has some limitations that should
be considered when interpreting results.

Optimized attacks As our aim was to
justify and assess the extent to which
homoglyph-based attacks are able to
evade Al-generated text detectors, we did
not attempt to optimize (Section 2.1). It
may be possible to achieve the same eva-
sion rates with lower replacement percent-
ages by strategically selecting the charac-
ters to replace. Additionally, there may be
merit in studying character sets other than
homoglyphs (Boucher et al., 2022).

Datasets We are confident that the num-
ber of samples per dataset (2,000) is
enough to demonstrate the effectiveness
of the attacks, as the results do not elicit
the need for further exploration (we ob-
serve a complete evasion of the detec-
tors with a low standard deviation). How-
ever, generalizability to languages other
than English remains to be studied, where
homoglyphs may be naturally present.
Nonetheless, if detectors tend to misclas-
sify non-native English writing samples as
Al-generated (Liang et al., 2023), we ex-
pect that homoglyph-based attacks would
be effective in other languages as well.

Ghostbuster deprecation Another
limitation is that Ghostbuster is based
on the deprecated ada and davinci
models (OpenAl, 2024a). This prevents
us from running it on our infrastructure,
and while we have tried to contact the
authors for a solution, we have not
received a response yet. Surprisingly, the
web interface provided by the authors
remains operational, enabling us to
evaluate the detector. However, we are
unable to confirm the models currently
in use, and therefore cannot guarantee
that the results are consistent with those
presented in the original paper, nor that
they will remain reproducible.
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Appendices

A Detection metrics

The detection metrics are reported in the
following tables. The metrics include the
MCC, accuracy, F1 score, precision and
recall for each detector and dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.94 | 0.97 0.97 | 0.96 0.98
5% 0.0 0.5 0.0 |00 0.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | 0.0 0.5 0.0 |00 0.0

Table 3: Results for ArguGPT on the CHEAT dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.93 | 0.96 0.96 | 0.94 0.99
5% 0.37 | 0.62 0.39 | 0.24 1.0
10% 0.11 0.51 0.05 | 0.03 1.0
15% 0.04 |05 0.01 | 0.0 1.0
20% 0.02 |05 0.0 |00 1.0
Greedy | 0.13 | 0.52 0.11 | 0.06 0.84

Table 4: Results for Binoculars on the CHEAT dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.14 | 0.52 0.08 | 0.04 0.95
5% -0.02 | 0.5 0.0 |00 0.0
10% 0.03 | 0.51 0.13 | 0.08 0.55
15% 0.13 | 0.56 0.59 | 0.62 0.56
20% 0.06 | 0.52 0.64 | 0.86 0.51
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 5: Results for DetectGPT on the CHEAT dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.9 0.95 0.95 | 0.94 0.95
5% 023 | 0.55 0.19 | 0.1 0.99
10% 0.04 |05 0.01 | 0.0 1.0
15% 0.02 |05 0.0 |00 1.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | -0.01 | 0.5 0.13 | 0.07 0.48

Table 6: Results for Fast-DetectGPT on the CHEAT dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.64 0.8 0.83 | 0.99 0.71
5% 0.41 0.69 0.63 | 0.53 0.79
10% 0.32 0.61 0.71 | 0.97 0.57
15% 0.12 0.52 0.67 | 1.0 0.51
20% 0.06 0.5 0.67 | 1.0 0.5
Greedy | 0.02 0.5 0.67 | 1.0 0.5
Table 7: Results for Ghostbuster on the CHEAT dataset.
Type MCC | Accuracy | F1 Precision | Recall
Original | 0.47 0.7 0.61 | 0.46 0.9
5% 0.0 0.5 0.0 | 0.0 0.0
10% 0.0 0.5 0.0 | 0.0 0.0
15% 0.0 0.5 0.0 | 0.0 0.0
20% -0.02 | 0.5 0.0 | 0.0 0.0
Greedy | 0.0 0.5 0.0 | 0.0 0.0
Table 8: Results for OpenAI on the CHEAT dataset.
Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 0.96 0.96 | 0.95 0.96
5% 0.0 0.5 0.0 | 0.0 0.0
10% 0.0 0.5 0.0 | 0.0 0.0
15% 0.0 0.5 0.0 | 0.0 0.0
20% 0.0 0.5 0.0 | 0.0 0.0
Greedy | 0.0 0.5 0.0 | 0.0 0.0
Table 9: Results for ArguGPT on the essay dataset.
Type MCC | Accuracy | F1 Precision | Recall
Original | 0.91 0.95 0.95 | 09 1.0
5% 0.22 0.55 0.17 | 0.1 1.0
10% 0.05 0.5 0.01 | 0.01 1.0
15% 0.0 0.5 0.0 | 0.0 0.0
20% 0.0 0.5 0.0 | 0.0 0.0
Greedy | 0.05 0.5 0.02 | 0.01 0.82

Table 10: Results for Binoculars on the essay dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.24 | 0.55 0.2 | 0.11 0.99
5% -0.01 | 0.5 0.0 |00 0.33
10% 0.11 0.53 0.16 | 0.09 0.72
15% 0.21 0.59 0.67 | 0.85 0.56
20% 0.08 | 0.51 0.67 | 0.99 0.51
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 11: Results for DetectGPT on the essay dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.88 | 0.94 0.94 | 0.89 0.99
5% 022 | 0.55 0.2 |0.12 0.93
10% 0.04 |05 0.01 | 0.0 1.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | -0.08 | 0.48 0.08 | 0.04 0.35

Table 12: Results for Fast-DetectGPT on the essay dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 | 0.96 0.96 | 0.95 0.96
5% 0.73 | 0.86 0.84 | 0.76 0.94
10% 0.51 0.71 0.77 | 0.99 0.64
15% 0.13 | 0.52 0.67 | 1.0 0.51
20% 0.0 0.5 0.67 | 1.0 0.5
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 13: Results for Ghostbuster on the essay dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | -0.21 | 0.43 0.09 | 0.06 0.22
5% 0.0 0.5 0.0 |00 0.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.5
Greedy | 0.03 | 0.5 0.0 |00 1.0

Table 14: Results for OpenAI on the essay dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 | 0.96 0.96 | 0.95 0.97
5% 0.0 0.5 0.0 |00 0.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | 0.0 0.5 0.0 |00 0.0

Table 15: Results for ArguGPT on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.8 0.89 0.88 | 0.78 1.0
5% 022 | 0.55 0.17 | 0.09 1.0
10% 0.07 | 0.51 0.02 | 0.01 1.0
15% 0.03 | 0.5 0.0 |00 1.0
20% 0.02 |05 0.0 |00 1.0
Greedy | 0.08 | 0.51 0.03 | 0.02 0.94

Table 16: Results for Binoculars on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.23 | 0.56 0.22 | 0.12 0.93
5% 0.0 0.5 0.0 |00 0.0
10% 0.03 | 0.5 0.01 | 0.0 0.8
15% 0.34 | 0.67 0.63 | 0.57 0.7
20% 0.14 | 0.54 0.67 | 0.94 0.52
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 17: Results for DetectGPT on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 | 0.96 0.96 | 0.92 1.0
5% 0.28 | 0.57 0.25 | 0.14 1.0
10% 0.1 0.51 0.04 | 0.02 1.0
15% 0.02 |05 0.0 |00 1.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | 0.04 | 0.51 0.11 | 0.06 0.58

Table 18: Results for Fast-DetectGPT on the reuter dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.93 | 0.96 0.96 | 0.94 0.99
5% 0.61 0.79 0.75 | 0.63 0.93
10% 0.51 0.72 0.78 | 0.98 0.64
15% 0.16 | 0.53 0.68 | 1.0 0.51
20% 0.04 |05 0.67 | 1.0 0.5
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 19: Results for Ghostbuster on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.27 | 0.57 0.25 | 0.14 0.98
5% 0.0 0.5 0.0 |00 0.0
10% -0.04 | 0.5 0.0 |00 0.0
15% -0.09 | 0.49 0.0 |00 0.0
20% -0.11 | 0.49 0.0 |00 0.06
Greedy | -0.06 | 0.5 0.0 |00 0.0

Table 20: Results for OpenAl on the reuter dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.39 | 0.63 0.42 | 0.26 1.0
5% 0.0 0.5 0.0 |00 0.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | 0.0 0.5 0.0 |00 0.0

Table 21: Results for ArguGPT on the writing prompts dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.85 | 0.92 091 | 0.84 1.0
5% 0.2 0.54 0.14 | 0.08 1.0
10% 0.0 0.5 0.0 |00 0.0
15% 0.0 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.0
Greedy | -0.04 | 0.5 0.01 | 0.0 0.23

Table 22: Results for Binoculars on the writing prompts dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.44 | 0.68 0.55 | 0.39 0.93
5% 0.04 |05 0.01 | 0.0 1.0
10% 0.01 0.5 0.09 | 0.05 0.52
15% 0.02 | 0.51 0.57 | 0.65 0.51
20% 0.02 | 0.51 0.66 | 0.96 0.5
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 23: Results for DetectGPT on the writing prompts dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.79 | 0.89 0.88 | 0.81 0.97
5% 0.3 0.59 0.31 | 0.19 0.96
10% 0.05 |05 0.02 | 0.01 0.83
15% -0.03 | 0.5 0.0 |00 0.0
20% 0.0 0.5 0.0 |00 0.5
Greedy | -0.33 | 0.37 0.09 | 0.07 0.17

Table 24: Results for Fast-DetectGPT on the writing prompts dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | 0.88 | 0.94 0.94 | 0.9 0.98
5% 042 | 0.66 0.49 | 0.33 0.96
10% 0.64 | 0.82 0.83 | 0.86 0.79
15% 033 | 0.6 0.71 | 0.99 0.56
20% 0.09 | 0.51 0.67 | 1.0 0.5
Greedy | 0.0 0.5 0.67 | 1.0 0.5

Table 25: Results for Ghostbuster on the writing prompts dataset.

Type MCC | Accuracy | F1 Precision | Recall
Original | -0.05 | 0.5 0.0 | 0.0 0.11
5% -0.04 | 0.5 0.0 |00 0.0
10% -0.05 | 0.5 0.0 |00 0.0
15% -0.13 | 0.48 0.0 |00 0.0
20% -0.11 | 0.49 0.01 | 0.0 0.11
Greedy | 0.01 0.5 0.01 | 0.0 0.57

Table 26: Results for OpenAl on the writing prompts dataset.
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Type MCC | Accuracy | F1 Precision | Recall
Original | 0.92 0.96 0.96 | 0.95 0.96
5% 0.18 0.54 0.14 | 0.08 0.94
10% -0.01 | 0.5 0.01 | 0.0 0.43
15% 0.0 0.5 0.01 | 0.0 0.5
20% -0.03 | 05 0.0 | 0.0 0.29
Greedy | 0.0 0.5 0.01 | 0.01 0.5
Table 27: Results for Watermark on the realnewslike dataset.
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B Confusion matrices

The following figures show the confusion
matrices for each detector and dataset. As
stated in Section 2.3, the datasets used in
the experiments are CHEAT, essay, reuter,
writing prompts, and realnewslike (only
used for the watermarking detector). Each
dataset contains 1,000 human-written ex-
amples and 1,000 Al-written examples.

21



True labels

True labels

True labels

Generated

Human

Generated

Human

Generated

- 1000
-. 7800

Human Generated
Predicted labels

(a) No attack

- 1000
- 800
1000 0
600
400
1000 0
200
i 0
Human Generated
Predicted labels
(c) Random attack (10%)
- 1000
- 800
1000
600
400
1000
200
0

Human Generated
Predicted labels

(e) Random attack (20%)

True labels

True labels

True labels

Human

Generated

Human

Generated

Human

Generated

- 1000
- 800
1000
600
400
1000
200
0

Human Generated
Predicted labels

(b) Random attack (5%)

- 1000
- 800
1000 0
600
400
1000 0
200
i 0
Human Generated
Predicted labels
(d) Random attack (15%)
- 1000
- 800
1000
600
400
1000
200
0

Human Generated
Predicted labels

(f) Greedy attack

Figure 5: Confusion matrices for the ArguGPT detector on the CHEAT dataset.
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Figure 6: Confusion matrices for the Binoculars detector on the CHEAT dataset.
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Figure 8: Confusion matrices for the Fast-DetectGPT detector on the CHEAT dataset.



True labels

True labels

True labels

Generated

Generated

°
g
o
T
4
T
©

Human Generated
Predicted labels

(a) No attack

Human Generated
Predicted labels

(c) Random attack (10%)

1000

'
Human Generated
Predicted labels

(e) Random attack (20%)

- 1000

- 800

- 1000

- 800
600
400

200

- 1000

- 800

True labels

True labels

True labels

Generated

Generated

°
g
o
T
4
T
[v]

- 859 Illl

Human Generated

(b) Random attack (5%)

Human

(d) Random attack (15%)

Human

Predicted labels

1000

Generated
Predicted labels

1000

'
Generated
Predicted labels

(f) Greedy attack

- 1000

- 800
600
400
200
0

- 1000

- 800
600
400

200

- 1000

- 800

Figure 9: Confusion matrices for the Ghostbuster detector on the CHEAT dataset.

26



True labels

True labels

True labels

Generated

Human

Generated

Human

Generated

- 1000
- 800
- 950 50
600
400
544 456
200
0

Human Generated
Predicted labels

(a) No attack

- 1000
- 800
1000 0
600
400
1000 0
200
[

Human Generated
Predicted labels

(c) Random attack (10%)

- 1000
- 800
999 1
600
400
1000 0
200
. 0

Human Generated
Predicted labels

(e) Random attack (20%)

True labels

True labels

True labels

Human

Generated

Human

Generated

Human

Generated

- 1000
- 800
1000 0
600
400
1000 0
200
' 0

Human Generated
Predicted labels

(b) Random attack (5%)

- 1000
- 800
1000 0
600
400
1000 0
200
i 0
Human Generated
Predicted labels
(d) Random attack (15%)
- 1000
- 800
1000 0
600
400
1000 0
200
' 0

Human Generated
Predicted labels

(f) Greedy attack

Figure 10: Confusion matrices for the OpenAl detector on the CHEAT dataset.
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Figure 11: Confusion matrices for the ArguGPT detector on the essay dataset.
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Figure 12: Confusion matrices for the Binoculars detector on the essay dataset.
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Figure 13: Confusion matrices for DetectGPT on the essay dataset.
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Figure 15: Confusion matrices for the Ghostbuster detector on the essay dataset.
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Figure 16: Confusion matrices for the OpenAI detector on the essay dataset.
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Figure 17: Confusion matrices for the ArguGPT detector on the reuter dataset.
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Figure 18: Confusion matrices for the Binoculars detector on the reuter dataset.



True labels

True labels

True labels

Human

Generated

Human

Generated

Generated

True labels
Human

Generated

- 1000 - 1000
- 800 - 800
990 10 - 1000 0
600 600
400 400
875 125 - 1000 0
200 200
i 0 i 0

Human Generated Human Generated
Predicted labels Predicted labels

(a) No attack (b) Random attack (5%)

-1000 -1000
- 800 - 800
999 1 i 240
600 600
400 400
996 4 428 572
200 200
0 0

Human Generated Human Generated
Predicted labels Predicted labels

True labels

Generated

(c) Random attack (10%) (d) Random attack (15%)

- 1000 - 1000
- 800 - 800
852 1000
600 " 600
il
3
o
»
2
400 = 400
P
g
936 g 1000
200 5 200
o
l 0 ! 0
Human Generated Human Generated
Predicted labels Predicted labels

(e) Random attack (20%) (f) Greedy attack

Figure 19: Confusion matrices for DetectGPT on the reuter dataset.
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Figure 20: Confusion matrices for the Fast-DetectGPT detector on the reuter dataset.
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Figure 21: Confusion matrices for the Ghostbuster detector on the reuter dataset.
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Figure 22: Confusion matrices for the OpenAI detector on the reuter dataset.
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Figure 23: Confusion matrices for the ArguGPT detector on the writing prompts dataset.
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Figure 24: Confusion matrices for the Binoculars detector on the writing prompts dataset.
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Figure 25: Confusion matrices for DetectGPT on the writing prompts dataset.
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Figure 26: Confusion matrices for the Fast-DetectGPT detector on the writing prompts dataset.
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Figure 27: Confusion matrices for the Ghostbuster detector on the writing prompts dataset.
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Figure 28: Confusion matrices for the OpenAI detector on the writing prompts dataset.
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Figure 29: Confusion matrices for the watermarking-based detector on the realnewslike dataset.
Here, “generated” refers to the watermarked versions of the texts.
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Abstract

With the advent of publicly available Al-based
text-to-image systems, the process of creating
photorealistic but fully synthetic images has
been largely democratized. This can pose a
threat to the public through a simplified spread
of disinformation. Machine detectors and hu-
man media expertise can help to differentiate
between Al-generated (fake) and real images
and counteract this danger. Although AI gen-
eration models are highly prompt-dependent,
the impact of the prompt on the fake detection
performance has rarely been investigated yet.
This work therefore examines the influence of
the prompt’s level of detail on the detectability
of fake images, both with an Al detector and
in a user study. For this purpose, we create a
novel dataset, COCOXGEN, which consists of
real photos from the COCO dataset as well as
images generated with SDXL and Fooocus us-
ing prompts of two standardized lengths. Our
user study with 200 participants shows that
images generated with longer, more detailed
prompts are detected significantly more easily
than those generated with short prompts. Sim-
ilarly, an Al-based detection model achieves
better performance on images generated with
longer prompts. However, humans and Al mod-
els seem to pay attention to different details, as
we show in a heat map analysis.

1 Introduction

State-of-the-art Al-based image generators, such as
DALL-E (Ramesh et al., 2021), Midjourney (Mid-
journey, Inc., 2024) or Stable Diffusion (Rombach
et al., 2021) have the ability to create photorealis-
tic images in a fully synthetic manner (Aziz et al.,
2024). The fact that these systems are publicly
available makes them contribute to the fast spread
of synthetic image content on the Internet. This
increases the threat of disinformation (Bontridder
and Poullet, 2021). Thus, there is a need for reli-
able detection of Al-generated images.
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Figure 1: We conduct a study with humans and an Al
model detecting real and fake images generated from
prompts with a different level of detail (short prompt
(SP), long prompt (LP)) and visualize the image areas
which led to their decisions.

Although it is well known that image generation
is highly dependent on the textual prompt (Liu and
Chilton, 2022), the impact of the prompt on the
fake detection performance has been rarely inves-
tigated yet. An exception is the work by Sha et al.
(2023) who analyze prompts regarding their topic
and structure. In particular, the level of detail in the
prompt might affect the number of artifacts as more
details might force the model to generate an image
that deviates more from its training data. Therefore,
we pose the question whether the level of detail in
the prompt has an impact on the ability of humans
and Al-models to detect generated images.

Existing research on fake image detection shows
that average human performance is not substan-
tially better than chance (Cooke et al., 2024; Lu
et al., 2024). Other works show that machine detec-
tion performance can be considered rather reliable,
at least for images generated by models that have
been included in the training data of detection sys-
tems (Baraheem and Nguyen, 2023; Epstein et al.,

Proceedings of the 1st Workshop on GenAI Content Detection (GenAlDetect), pages 47-58
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Figure 2: Our contributions are (1) the creation of COCOXGEN, a novel benchmark dataset with images created by
two different generation models based on prompts of two different levels of detail, (2) the conduction of a large-scale
user study on fake image detection, and (3) a direct comparison of human and machine detection performance and

decision rationales.

2023; Corvi et al., 2023). While these individual
evaluations of humans and Al models show interest-
ing results, it is not possible yet to directly compare
human and Al-model performance due to different
test setups (i.e. test images). Thus, another goal
of our study is to investigate whether human or
Al-model performance dominates.

Some works also investigate which aspects of the
input lead to the detection decisions: Al models, on
the one hand, tend to involve larger image areas in
their decision on real images than on synthetic ones
(Bird and Lotfi, 2024). This leads to the impression
that the detection of synthetic images is focused
on fine details while the detection of real images
is focused on more abstract contents. Humans, on
the other hand, tend to pay attention to specific
objects as well as to their general impression of the
image (Pocol et al., 2023). Again, it is not possible
to directly compare the strategies of humans and
Al-models due to different evaluation setups. Thus,
we also address the open research question whether
humans and Al models consider the same objects
and structures in an image when evaluating it as
real or fake.

To address our research questions, we present
COCOXGEN, a new dataset containing real pho-
tos from the COCO dataset (Lin et al., 2014) and
Al-generated images from SDXL (Podell et al.,
2023) and Fooocus (lllyasviel, 2024) with prompts
of two different levels of detail. Our dataset is pub-
licly available! and can be used in future work as
a benchmark dataset for evaluating fake image de-
tection performance. We conduct a user study with
200 human participants and evaluate the machine-
learning classifier Grag2021 (Corvi et al., 2023)
on our new dataset to be able to directly compare

"https://github.com/heikeadel/cocoxgen
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the detection performance (F1 scores) of humans
and a state-of-the-art AI model. In our analysis,
we visualize image areas that lead to the decisions
of humans and machine detectors in a comparable
heat map structure to investigate both qualitatively
and quantitatively whether humans and Al models
pursue similar strategies.

2 Related Work

2.1 Human Detection Performance

Previous work investigated human performance on
distinguishing Al-generated and real media con-
tent by showing humans around 50 real and 50
Al-generated images (Cooke et al., 2024; Lu et al.,
2024). They found an average accuracy of 49%
(Cooke et al., 2024) to 61% (Lu et al., 2024). None
of the works found a statistically significant effect
of previous experience with Al-generated content
of the test participants on their accuracy. Still, Lu
et al. (2024) showed a slightly higher performance
of participants with previous experience. Pocol
et al. (2023) additionally investigated how humans
come to a classification decision for deepfakes by
providing a free text field for explanations. They
found that mainly clear suspicious objects and the
general impression of the image lead to the deci-
sions. The scale of our user study is comparable
to previous works. However, we not only compre-
hensively evaluate human detection performance
including the effect of previous experience with Al-
generated content but also explicitly analyze which
image parts lead to the decision of our participants.

2.2 Machine Detection Performance

Previous research evaluated different machine-
learning approaches to detect Al-generated images
(Baraheem and Nguyen, 2023; Park et al., 2024;



Corvi et al., 2023). They found that it is possible
to achieve high performance in certain conditions
(Baraheem and Nguyen, 2023; Corvi et al., 2023)
but that true generalization to images outside of the
scope of the training data remains difficult (Epstein
et al., 2023). In addition, downsampling or com-
pressing images decreases detection performance
(Zhu et al., 2024). Bird and Lotfi (2024) found
that the actual objects of the images are of minor
importance for the decision of machine detectors.
In contrast to these works, we aim to directly com-
pare the performance of an Al model as well as the
image areas that are most relevant for its decision
to human performance and decision rationales.

2.3 Detection Performance Robustness

Prior work showed that post-generation changes
of Al-generated images could considerably de-
crease the performance of machine-learning de-
tectors (Wesselkamp et al., 2022; Carlini and Farid,
2020). Wesselkamp et al. (2022), for instance, de-
scribed different approaches of subtracting specific
frequencies from the images and Carlini and Farid
(2020) trained a model to calculate optimal per-
turbations. In practical applications, a user would
most probably mainly concentrate on altering the
content of the generated image via modifications
of the prompt. Therefore, we argue that detection
models should also be robust against changes in the
prompt. The impact of prompts on detection perfor-
mance has only rarely been investigated in previous
work. Sha et al. (2023) found that specific words
and prompt lengths can lead to lower detection per-
formance. However, they did not investigate these
effects in detail. In addition, no prior work has
considered human performance when altering Al-
generated images. In this paper, we address this
research gap and set the impact of the prompt’s
level of detail as our main research focus.

3 Dataset

To the best of our knowledge, there is no dataset
publicly available that contains real images and Al-
generated images from prompts with a controllable
level of detail. Therefore, we create and publish
COCOXGEN (COCO Extended With Generated
Images), a novel benchmark dataset for the evalua-
tion of fake image detection performance.

3.1 Dataset Creation

We choose the COCO dataset (Lin et al., 2014) as
the basis for our new dataset because it provides
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different levels of annotations for the photographs:
several 1-word “thing” (objects with a well-defined
shape) and “stuff” (amorphous background regions)
classes as well as 5 complete sentences (captions).
We use those different annotations to build prompts
of two different levels of detail as shown in Ta-
ble 1. In the following, we refer to the prompt
with less detail as “short prompt (SP)” and to the
prompt with more details as “long prompt (LP)”.
The short prompt is created by prepending “photo
of” to the most frequent element of the annotated
thing and stuff classes. The long prompt is created
by selecting the caption with the smallest differ-
ence in length to the average length of all captions
(10 words). Figure 2 shows an examplary COCO
image and the two created prompts.

SpP LP
length 3 words ~ 10 words
shape | “photo of [X]” | entire sentence

Table 1: Prompt types used for image generation; both
extracted from COCO, the "X’ of the short prompt (SP)
is a COCO thing or stuff class (e.g., “sandwich”), the
long prompt (LP) is a COCO caption.

For creating the Al-generated images, we use
two state-of-the-art methods: SDXL (Podell et al.,
2023), the latest version of the open source text-
to-image model Stable Diffusion (Rombach et al.,
2021) and Fooocus (lllyasviel, 2024), the open-
source equivalent to Midjourney (Midjourney, Inc.,
2024). For Fooocus, we choose the standard model
Juggernaut XL V82 as the base model and the most
popular model for photorealism on CIVITAI, Real-
istic Vision V63, as the refiner since we aim to gen-
erate photorealistic images. With both generators,
we create an image for each prompt. As a result,
COCOXGEN’s data contains groups of images con-
sisting of 1 real COCO image, its corresponding
short and long prompt and 4 generated images (one
per prompt type and generation model).

3.2 Datasplit and Statistics

Note that we only use COCO’s validation set
val2017 as the basis for COCOXGEN to avoid in-
cluding images which might have been used to
train detection models in our benchmark dataset.
From COCQ’s validation set, we further remove all

2https://huggingface.co/RunDiffusion/
Juggernaut-XL-v8

3https://civitai.com/models/4201/
realistic-vision-v60-b1



images that do not have a 640x480 px resolution
(standard size of photos in COCO) to ensure that
all images have the same size. This is important to
be able to exclude the image size as a confounding
variable in our experiments. While Fooocus is able
to generate 640x480 px images natively, SDXL
only supports specific resolutions for best image
quality. We select 1152x864 px as it results in the
same aspect ratio.
Table 2 provides statistics of COCOXGEN.

real Al-generated
1061 4244
LP SP
2122 2122
Fooocus | SDXL | Fooocus | SDXL
1061 1061 1061 1061

Table 2: Number of images in COCOXGEN (LP: long-
prompted images, SP: short-prompted images).

4 User Study

With this study, we measure human classifica-
tion performance (in terms of F1 score) for Al-
generated and real images. Moreover, we investi-
gate the impact of the level of detail in the prompts
on the human performance. We assume that a
more detailed prompt, i.e., a more complex de-
mand, leads to a higher chance of artifacts in the
generated images as the generation model needs to
deviate more from its training data to fulfill the in-
dividual request. Therefore we state the following
hypothesis:

H1: Humans achieve higher detection
performance for images generated with longer,
more detailed prompts, than for those generated
with short prompts.

Our datasets, which was created using two different
state-of-the-art image generation models, further
allows us to test human performance per generation
model, i.e., to investigate which model creates the
most photorealistic images from human perspec-
tive. As we assume that Fooocus images are more
photorealistic due to its task-specific refiner, we
state the following hypothesis:

Hs: Humans achieve higher detection
performance for SDXL images than for Fooocus
images.

In addition to investigating pure performance, we
further analyze which part of the image leads to the
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decision of the participants when classifying a pho-
tograph as real or fake as well as how certain they
are in doing so. Finally, we analyze whether the
participants’ experience with Al-generated images
before the study influences their detection perfor-
mance.

4.1 Study Design

We recruit 200 participants (127 female, 70 male,
3 non-binary) of ages 14 to 87 years (average age:
25.7). We reached most of them in a university con-
text. As aresult, 94.5% hold at least a high school
diploma as their highest educational achievement,
and 83.0% of the participants see Al-generated im-
ages sometimes or regularly in their daily lives.
59.5% have never or just once used image genera-
tors themselves. For our study, we randomly select
120 images from COCOXGEN and split them into
two disjoint sets of 60 images each (20 real photos,
20 images generated with short prompts, 20 images
generated with long prompts, whereby half of the
generated images are from SDXL and the other
half from Fooocus). Each participants sees one of
the sets in the study with the images in random
order. This enables us to test a larger number of
images while minimizing possible fatigue effects
during the classification process at the same time.
To ensure diverse content in the images which are
used for the user study, we make sure the short
prompts (that were created based on the “stuff” and
“thing” classes of the COCO dataset, c.f., Table 1)
do not overlap. To make sure all images of the
study dataset have the same size we further down-
sample all images generated with SDXL to the size
of the COCO and Fooocus images (640x480 px,
see above). For each image, the participants answer
the following questions (the actual questionnaire
and answer possibilities are provided in Figure 10
in the appendix):

1.
2.
3.

Is this image real or Al-generated?

How certain are you?

Is there a specific image area which has influ-
enced your decision?

If yes: Which image areas have influenced
your decision? (Participants are shown a 3x3
grid on top of the image and are asked to select
all fields with decision influence.)

4.2 Results

Impact of prompt on detection performance.
Figure 3 shows that participants have higher detec-
tion performance for images generated with long

4.



Subset | Positives F1 Recall | Precision
All Real 0.7793 | 0.8958 0.6997
All Al 0.8583 | 0.7954 0.9418
SP Al 0.8002 | 0.7400 0.8913
LP Al 0.8697 | 0.8508 0.9006

Fooocus Al 0.7857 | 0.7190 0.8880

SDXL Al 0.8822 | 0.8718 0.9030

COCO Real 0.7793 | 0.8958 0.6997

Table 3: Average F1, recall and precision scores of
all study participants for specific subsets of the study
images; “Positives” indicates the class for which the
scores were calculated.
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Figure 3: F1 scores per prompt type (SP: short prompt
with less details, LP: long prompt with more details).

prompts (LP) than for images generated with short
prompts (SP). In particular, the average and median
performance of the participants are higher for LP
images than for SP images. Thus, the participants
recognized LP images more easily as being Al-
generated than SP images. A one-sided Wilcoxon
test on our data shows that this difference is sta-
tistically significant (p = 2.1696~22), indicating
that our hypothesis H; is valid. Furthermore, the
difference in F1 scores between the image groups
of different prompt lengths can be categorized as
strong with an effect size of Cohen’s d = 0.8809.

Analysis of relevant image areas. Overall,
slightly more of the participants’ decisions were
based on the “general impression” (48.78%) rather
than on specific image areas (45.16%).* For
real images, more decisions were based on the
“general impression” (for 65.23% of all real im-
ages and 71.45% of correctly classified real im-
ages). For Al-generated images, concrete image
areas slightly outweigh the general impression for
decision-making (for 54.40% of all Al-generated

*For the remaining 6.05% of images, participants noted
they were unsure.
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Figure 4: The image area selection results show that
participants pay particular attention to clear objects.

images and 65.28% of correctly classified Al-
generated images participants named specific im-
age areas). This indicates that the participants were
able to detect suspicious areas or concrete artifacts
rather in Al-generated images than in real images.
Interestingly, for 63.31% of real images that were
incorrectly classified as Al-generated, participants
named concrete image areas as decision rationales.
This shows that participants look for suspicious
areas in the image in order to classify an image
as “Al-generated” while the decision to classify an
image as “real” rather depends on the general im-
pression. By directly analyzing the individual heat
maps for each image, we observe that the study
participants pay particular attention to objects that
can be clearly separated in the image and use these
as the basis for their decision (instead of, e.g., back-
ground structures). In case of Al-generated images,
obvious artifacts are selected as well (see Figure 4
for an example). This finding is in line with pre-
vious work which showed that people generally
concentrate on structures in a picture that strongly
stand out (Parkhurst et al., 2002).

Impact of generation model on detection per-
formance. The lower the F1 score for detecting
Al-generated images, the more photorealistic the
images are. When looking at the generator-specific
F1 scores in Figure 5, we observe lower F1 scores
for Fooocus images than for SDXL images. The
study participants therefore tended to recognize the
SDXL images more easily as Al-generated than
the Fooocus images, which indicates that Fooocus
produces more photorealistic results than SDXL.
This result is also statistically significant (one-sided
Wilcoxon test, p = 5.1944e¢~2%). This indicates
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Figure 6: F1 scores for Al-generated images by experi-
ence.

that our hypothesis Hy is valid. Furthermore, the
difference in F1 scores between different gener-
ators can be categorized as strong with an effect
size of Cohen’s d = 1.1978. Interestingly, the F1
scores of assigning COCO photos to their correct
class (i.e., “real”) are in a similar range as the F1
scores of assigning Fooocus images to their correct
class (i.e., “AI”’). This is a result of a lower preci-
sion for the “real” class, i.e., many Al-generated
images were falsely classified as real. Considering
only recall, COCO photos were best assigned to
the correct class (see Table 3).

Impact of experience on detection performance.
Participants who rated their experience with Al-
generated images higher also tended to perform
better at detecting Al-generated images (Figures
6 and 7). Interestingly, the boxes (interquartile
ranges) for “no, never” and “yes, once” as well as
the boxes for “yes, sometimes” and “yes, regularly”
fully overlap while there is a clearer difference
between “yes, once” and “yes, sometimes”.
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Figure 7: F1 scores for Al-generated images by experi-
ence with image generation.
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Figure 8: Average decision certainty of the participants
for images generated by long prompts with more details
(LP) vs. short prompts (SP).

Analysis of participants’ decision certainty.
We cannot find a considerable difference in the
decision certainty (values ranging from 1 (“very
uncertain”) to 5 (“very certain”)) of the participants
for Al-generated (average of 3.70) and real images
(average of 3.80). When comparing their average
decision certainty for LP images (average of 3.91)
and SP images (average of 3.49) (c.f., Figure 8),
the difference is larger. A one-sided Wilcoxon test
on this data shows that this difference is also sta-
tistically significant (p = 1.2486e~27). Thus, the
participants not only performed better at classifying
images generated from more detailed prompts but
were also more certain in their decisions compared
to images generated from short prompts.

5 Machine Classification Performance

For automatically distinguishing real from Al-
generated images, we apply Grag2021 (Grag-
naniello et al., 2021), a ResNet50 (He et al., 2016)
which is one of the most popular architectures
for image classification. We use the trained and
publicly available version by Corvi et al. (2023).
Grag2021 has been trained on COCO and Latent



Subset | Positives F1 Recall | Precision |
All Real 0.6957 | 1.0000 0.5333
All Al 0.7200 | 0.5625 1.0000
SP Al 0.7097 | 0.5500 1.0000
LP Al 0.7302 | 0.5750 1.0000

Fooocus Al 1.0000 | 1.0000 1.0000

SDXL Al 0.2222 | 0.1250 1.0000

COCO Real 0.6957 | 1.0000 0.5333

Table 4: F1, recall and precision scores of Grag2021
for specific subsets of the study images. ‘“Positives”
indicates the class for which the scores were calculated.

Diffusion images which fits our dataset well.

5.1 Experimental Setup

We test Grag2021 on all 120 images which have
also been selected for the study with the human
participants. Grag2021 returns a feature map of
60x80 logit values whereby negative values indi-
cate class “real” and positive values indicate class
“Al-generated”. We follow Corvi et al. (2023) and
obtain a single output value by averaging these log-
its. To transfer the output to a probability value, we
apply the sigmoid function. The resulting value x
indicates the probability for class “Al-generated”.
Therefore, if x > 0.5, the classification result is
“Al-generated”, if z < 0.5, the resulting class is
“real”.> For evaluation, we calculate the F1 scores
of the detector and visualize its output feature map
as a decision heat map for each image.® To com-
pare the model’s heat maps with the study partic-
ipants’ image area selections, we apply the same
3x3 grid of our study on the detector feature maps.
For each grid field, we add all positive and all neg-
ative values separately, resulting in two distinct
heat maps: one indicating rationales for class “real”
(per-field sum of negative values) and one indicat-
ing rationales for class “Al-generated” (per-field
sum of positive values).

5.2 Results

Table 4 shows the results of the Al detection model
Grag2021. It performs 16.11% worse in detect-
ing Al-generated images than the average human
participant. As described before, the images gen-
erated by SDXL were downsampled for the user
study. We, therefore, compare the performance on
the study images and on the original images (Table

>Note that we used the default threshold of 0.5 from logis-
tic regression for the classification decision.

5To ensure that the heat map has the same resolution as
the input image, we let each value of the output feature map
correspond to an area of 8x8 pixels in the heat map.
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5 in appendix). While the performance on origi-
nal images is very high (F1 score of 0.9744), the
performance on the study images is considerably
lower (0.7222) which can be explained with a very
poor performance on downsampled SDXL images
(0.2222). This is in line with the work of Zhu et al.
(2024) who found that downsampling or compress-
ing images decreases detection performance.

Impact of prompt on detection performance.
Similar to the results of our user study, the detec-
tion performance on images generated with long
and detailed prompts (LP) is higher than the per-
formance on images generated with short prompts
(SP). Note that this difference is independent of
downsampling but not statistically significant (ac-
cording to a permutation test).

Analysis of relevant image areas. Many heat
maps for real images (around 57.50%) show clearly
recognizable object structures or edges (Figure 9).
This means that the object edges have particularly
high activation values compared to the rest of the
image. For the remaining images including most of
the Al-generated images (70.00%), the heat maps
depict a relatively uniform noise (an exemplary
heat map is provided in the appendix, Figure 11).

When comparing the detector’s heat maps with
those from the study participants, we observe over-
laps for some images (c.f., Figure 12 in appendix).
To quantify this overlap, we calculate two Spear-
man correlation coefficients for each image (one
for overlaps of areas indicating class “Al-generated”
and one for overlaps of areas indicating class
“real”). The correlation coefficient for class “Al-
generated” corresponds to p = 0.1988 (p-value:
0.3921), the correlation coefficient for class “real”
is p = 0.2287 (p-value: 0.4269). To conclude, a
low but non-significant correlation was found be-
tween the image areas that were most relevant for
the participants’ and detector’s decisions.

Impact of generation model on detection per-
formance. Table 4 shows that real images and
fake images generated by Fooocus are recognized
perfectly by the detector when considering recall.
Considering F1 scores, Fooocus images remain
perfectly distinguished from the others while Al-
generated images with SDXL are sometimes mis-
takenly categorized as “real”, influencing the recall
on the SDXL subset as well as the precision for the
COCO class.
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Figure 9: Visualization of the model’s output feature map of 60x80 logit values for a real image from COCOXGEN.

6 Discussion

This section discusses the implications of the most
important findings of this work.

6.1 Perspective for Real-World Applications

Overall, the machine detector performed worse in
distinguishing real from Al-generated study images
than the average human study participant which
can be attributed to partially downsampling the
Al-generated images. The almost perfect results
of the machine detector under optimal conditions
(no downsampling) indicates a clear opportunity
for machine detectors to recognize Al-generated
images even when they appear photorealistic to hu-
mans. Unfortunately, downsampling is necessarily
carried out on many internet platforms, weaken-
ing the practical applicability of current machine
detectors.

6.2 Level of Detail in Prompt

Our study shows that the detection performance for
images generated with long and detailed prompts
is significantly higher than for images generated
with short prompts. We hypothesize that the image
generator has to deviate more from its training data
to fulfil the needs of a complex prompt with many
details. This might lead to more artifacts in the gen-
erated image. Thus, not only the technical imple-
mentation influences the quality and detectability
of the output images but also the prompt that was
used for generation.

6.3 Impact of Experience

Study participants who stated that they were more
experienced in viewing and creating Al-generated
images also tended to be better at detecting them.
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This suggests that the ability to recognize Al-
generated images and distinguish them from real
photos can be trained.

6.4 Rationales for Decisions

The percentage of instances for which participants
declared the “general impression” as the main de-
cision argument shows that visible artifacts do not
need to be present in the image for people to be
skeptical about the authenticity of an image. This
can be seen as an opportunity for the human ability
to detect Al-generated images, especially in light
of the fact that generation algorithms are constantly
evolving and will produce fewer and fewer visible
artifacts in the future. While humans mainly con-
centrate on clearly distinguishable objects in the
images (Parkhurst et al., 2002), the machine de-
tector gives high activations mainly to fine details
(high frequencies) or object edges. This difference
might also be the reason why we could not find
a significant overlap between the selected image
areas of humans and the most activated ones by the
machine detector. An interesting direction could
be to combine the complementary attention areas
of humans and machines in a collaborative setting.

6.5 Limitations

Findings of this work cannot be generalized to all
image generation models, especially since both
generators of this work are derived from Latent
Diffusion without considering GAN methods or
transformer architectures. Similarly, only a single
machine detection model was tested. Since we
performed a user study, we also used only 120
images from COCOXGEN in this work, while the
entire dataset consists of 5305 images.

Although we observed statistically significant



correlations in our user study, it is important to
note that the age, gender and education distribution
of our participants does not reflect the distribution
of the whole population. The same holds for the
prior experience with image generation which was
rather high for our participants on average as most
of them were recruited in a university context.

7 Conclusion and Future Work

In this work, we investigated the influence of
the prompt’s level of detail for distinguishing Al-
generated images from real ones. In particular, we
explored both the performance of humans and a ma-
chine detector and directly compared their decision
rationales. For this purpose, we created a novel
benchmark dataset COCOXGEN, which contains
Al-generated SDXL and Fooocus images created
with prompts of two different levels of detail as
well as real COCO images. We found that images
generated with prompts with more details can be
recognized more easily as fake than images gen-
erated with short prompts with less details. This
observation holds for both humans and the ma-
chine detector although their decision rationales
show only a low correlation.

Future work can expand our study by investigat-
ing more types of generation and machine detection
models. In addition, additional aspects of prompt
composition (e.g., the number of words per part-
of-speech class) and their impact on fake image
detection performance can be explored.
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A Appendix

A.1 Questionnaire

Figure 10 shows the repeated structure of questions for each image presented to the study participants.

[Q1] Is there a specific image area,which influenced your decision? *

Real image or Al-generated image?

Is this picture real or Al-generated?

Q1) * O 1am unsure.

(O ves, | will put it below.

(O Mo, it was a general impression.

[Q1] Which image areas influenced your decision?

O real
(O Argenerated
A B [+

[Q7] How certain are you? *

1 O O a

1 2 3 4 5
2 O 0O O
very uncertain O O O O O wery certain
3 O O a

Figure 10: Questions and answer possibilities for image classification in our user study.

A.2 Comparing model results on images with and without downsampling

Table 5 shows the difference in the model’s detection performance for downsampled (study images)
and original images. Note that it is the downsampled SDXL images which are influencing the overall
worse performance of the model on the study dataset. The low recall for the downsampled SDXL images
(0.1250) indicates that a lot of these images were incorrectly classified as real. This influences the
precision for real images weakening the corresponding F-score.

o Study images Original images

Subset | Positives F1 Recall | Precision F1 Recall | Precision
All Real 0.6957 | 1.0000 0.5333 | 0.9524 | 1.0000 | 0.9091
All Al 0.7200 | 0.56250 | 1.0000 | 0.9744 | 0.9500 1.0000
SP Al 0.7097 | 0.5500 1.0000 | 0.9610 | 0.9250 1.0000
LP Al 0.7302 | 0.5750 1.0000 | 0.9873 | 0.9750 1.0000
Fooocus Al 1.0000 | 1.0000 1.0000 | 1.0000 | 1.0000 1.0000
SDXL Al 0.2222 | 0.1250 1.0000 | 0.9474 | 0.9000 1.0000
COCO Real 0.6957 | 1.0000 0.5333 | 0.9524 | 1.0000 | 0.9091

Table 5: F1, recall and precision scores of Grag2021 for specific subsets of the study images. “Positives” indicates
the class for which the F1 score was calculated. “Study images” refers to the results on the study images, “Original
images” to the results on the corresponding images without downsampling.
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A.3 Model output for an Al-generated image

In contrast to Figure 9, which visualizes the output of the model for a real image, here we can see the
output for an examplary Al-generated image. Note the relatively uniform noise in contrast to the clearly
visible object edges in Figure 9.

Model output for 166642-long-fooocus.png
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Figure 11: Visualization of the model’s output feature map of 60 x 80 logit values for an Al-generated image from
the study dataset

A.4 Image area selection of the model and the participants

Figure 12 shows the most selected / activated image areas for an examplary image from the study dataset.
Note that we can see an overlap of the most activated image areas by the model and the most selected
ones by the study participants.
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Figure 12: Comparison of the most activated image areas by the detector (each grid field sums up the corresponding
logit values from the detector feature map) (top) and the most selected image areas by the test participants (bottom)
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Abstract

The use of large language models (LLMs) is
inevitable in text generation. LLMs are intel-
ligent and slowly replacing the search engines.
LLMs became the de facto choice for conver-
sation, knowledge extraction, and brain storm-
ing. This study focuses on a question: ‘Can
we utilize the generative capabilities of LLMs
to detect Al-generated content?” We present
a methodology and empirical results on four
publicly available data sets. The result shows,
with 90% accuracy it is possible to detect Al-
generated content by a zero-shot detector uti-
lizing multiple LLMs. !

1 Introduction

The rapid advancement of large language mod-
els (LLMs) has elevated their text generation ca-
pabilities to levels comparable to human writing
(OpenAl, 2024; Anthropic, 2023; Chowdhery et al.,
2023). LLMs have become integral to various as-
pects of daily life and are increasingly pivotal in nu-
merous professional workflows (Veselovsky et al.,
2023). They aid in tasks such as creating advertis-
ing slogans (Murakami et al., 2023), composing
news articles (Yanagi et al., 2020), and generat-
ing stories (Yuan et al., 2022). Additionally, the
influence of LLMs is profoundly shaping the devel-
opment of many sectors and disciplines, including
education (Susnjak, 2022), law (Cui et al., 2024),
and medicine (Thirunavukarasu et al., 2023). How-
ever, the remarkable proficiency of generative lan-
guage models in producing text has simultaneously
heightened worries about their potential misuse in
fields such as phishing, spreading misinformation,
and academic dishonesty. Regrettably, humans are
only marginally better than chance at distinguish-
ing between Al-generated text and text written by
people (Gehrmann et al., 2019a). Consequently,
“Both authors contribute equally.

!Code repository: https:/github.com/shubhamgpt007/
MirrorMinds-LLMDetector

Rajasthan, India
gupta.37@iitj.ac.in
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we aim to create an automated system that can ac-
curately identify Al-generated texts to help prevent
their harmful applications.

LLMs no longer require task-specific learning or
alignment between task inputs and desired outputs
because they have already acquired most necessary
knowledge during pre-training. Instruction tuning
helps to better align the model with the anticipated
responses for user tasks. Motivated by this, we do
an empirical study on a question that “Can a LLM
detect the content written by AI?”.

We developed a three-step methodology to iden-
tify Al-generated texts. In the first step, we gener-
ate a contextually relevant query from the input
through large language model. Essentially, we
aim to create an input prompt that logically fol-
lows the given text. The process of generating
this prompt is very fast (~2 seconds) due to the
nature of zero-shot inference in LLMs. Once the
prompt is generated, we pass it to two different
large language models, each of which produces a
response of approximately the same length as the
input text. These generated texts are then com-
pared with original input for the final classification.
We use BLEU (BiLingual Evaluation Understudy)
(Papineni et al., 2002) and Meteor (Banerjee and
Lavie, 2005) score as comparative measures. We
tested our methodology on four publicly available
datasets, and the results show that our pipeline can
detect Al-generated text with an accuracy of ap-
proximately 90%.

2 Related Work

Earlier detection methods primarily relied on
feature-based approaches, such as analyzing the fre-
quency of rare bigrams (Grechnikov et al., 2009),
n-gram frequencies (Badaskar et al., 2008), or top-
k word patterns as used in GLTR (Gehrmann et al.,
2019b). However, as machine-generated text be-
comes increasingly sophisticated, a shift toward

Proceedings of the 1st Workshop on GenAI Content Detection (GenAlDetect), pages 59-67
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Figure 1: An overview of our proposed approach to detect LLM generated text

trained-based methods has emerged. For exmaple,
recent literature to detect Al-generated texts in-
clude Guo et al. (2023), who fine-tuned RoBERTa
to identify texts in English and Chinese as either
Al-generated or human-written, facing challenges
with overfitting that degraded performance on out-
of-domain data. Also, OpenAl Text Classifier (Ope-
nAl, Jan 2023) and GPTZero (Tian, 2023) that de-
tects Al-generated text by training on the input
data. A notable challenge with these models is
the need for periodic retraining to keep pace with
updates and advancements in new large language
models (LLMs). Another approach, DetectGPT
by (Mitchell et al., 2023), employs a zero-shot
classifier that assumes Al-generated texts exhibit
lower model probabilities compared to originals,
but struggles with short texts due to its need for
lengthy inputs to understand context. Addition-
ally, Kirchenbauer et al. (2023) explored using
watermarks in Al-generated texts to aid detection,
though this method can compromise text readabil-
ity and watermark removal presents further difficul-
ties. In a very recent times, DNA-GPT (Yang et al.,
2024) proposed which provides a distinctive and
effective approach to identifying GPT-generated
text by leveraging the inherent differences in con-
tinuation patterns between human-written and Al-
generated content.

3 Methodology

3.1 Overview of LLM-Detector

Figure 1 illustrates the structure of our proposed
zero-shot classification methodology. This method
employs a large language model-based detector for
zero-shot inferencing to categorize input text as
either Al-generated or not. Our zero-shot classifi-
cation model comprises three modules: 1) Query
Formulation, which identifies the contextual query
from the input text using a large language model;
2) Response Generation, which creates multiple re-
sponses, approximately equal in length to the input
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text, for the identified query using various large
language models; 3) Classification Module, which
determines whether the input text is Al-generated
or not. The subsequent sections provide a detailed
description of each module.

3.2 Query Formulation

The Query Formulation module is a crucial com-
ponent of our zero-shot classification methodol-
ogy, designed to interpret and extract the contex-
tual query from the input text. Utilizing a large
language model, this module analyzes the text to
identify key themes, questions, or topics inherent
within the content. Importance of query formula-
tion is in ensuring precise interpretation of complex
inputs, aligning subsequent analysis with the the-
matic intent of the original text. For this, we have
used Mistral-7B (Jiang et al., 2023) model that is
capable to handle complex queries and generate
responses that are contextually relevant and linguis-
tically accurate. The effectiveness of this process
is paramount as it sets the foundation for subse-
quent modules. By distilling complex and varied
input texts into precise queries, this module ensures
that the response generation process is accurately
aligned with the thematic direction of the initial
input, thereby facilitating a more targeted and co-
herent analysis in later stages of classification.
Given a textual input denoted as T
{w1,wa, -, wy,}, consisting of a sequence of n
tokens, were tokenized and fed into the Mistral
LLM model to obtain the query text () as follows:

@ = Mistral(T") (D

LLM’s Input Prompt:
Generate a query that encapsulates the main
theme of the following text.{text}

3.3 Response Generation

Response Generation module leverages multiple
large language models to produce responses that



are contextually aligned and approximately equal
in length to the original input text from the iden-
tified query Q. We have used two LLMs viz.
Llama3-7B (Dubey et al., 2024) and Mistral-7B
(Jiang et al., 2023) to generate the response with
the extracted query prompt. Given a query (), gen-
erate the responses from the different LLMs as
follows:

T' = Mistral(Q); T” = Llama(Q)  (2)

LLM’s Input Prompt:
Generate a response between {textWordCount}
to {1.1 *textWordCount} words for the follow-

ing question.{Q}

3.4 Classification Module

The similarity of the generated text (7" and T7") is
assessed by comparing it to the reference input text
T. We employ two well-known metrics for this
comparison: the BLEU (Papineni et al., 2002) and
Meteor (Banerjee and Lavie, 2005) scores, which
help quantify the closeness of the generated text to
the original text in terms of syntax and semantics.
For each LLM, a BLEU and a Meteor score are cal-
culated independently using generated and original
text. After obtaining these scores, we select max
score among different generated texts BLEU and
Meteor score to get a final BLEU score (53) and a
final Meteor score (M ). Finally, by setting a spe-
cific threshold for these scores, we can determine
whether the input text resembles Al-generated con-
tent or not, aiding in distinguishing between the
two.

By = max(BLEU(T,T'), BLEU(T,T")) (3)

My = max(Meteor(T,T"), Meteor(T,T"))
“)

4 Experiments and Results

4.1 Datasets & Evaluation Metrics

As our objective is to evaluate model perfor-
mance on the task to identify Al-generated text,
we chose four publicly available datasets Daigt
Data (Kleczek, 2013) which consists essay gener-
ated from the Falcon-180B (DS1) and Llama-70B
(DS2), Palm dataset (Muhammad, 2023) (DS3),
and Human-and-AlI dataset (Shayan, 2023) (DS4).
Human-and-AlI dataset originally consists 432k+
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entries but for this experiment we have filtered 10K
human and 10k Al-generated essays. The details
of these datasets can be found in Table 1.

In order to evaluate the performance of our
methodology, we employed the BLEU and Meteor
scores to assess the similarity between the gener-
ated responses and the original text. The average
scores for each metric across dataset are reported
in the results section. Additionally, we calculated
accuracy based on thresholds set for these scores
specifically, a BLEU score of 0.52 and a Meteor
score of 0.27. These values are found using grid
search with varying BLEU from 0.5 to 0.6 and
Meteor from 0.2 to 0.3. To validate this combina-
tion, we tested various BLEU and Meteor score
configurations using the DS4 dataset, which con-
tains both human-generated and LL.M-generated
text. As shown in Figure 2, the optimal generaliza-
tion results were achieved with a BLEU score of
0.52 and a Meteor score of 0.27.

Table 1: Distribution of data across different datasets.

Dataset
DS1
Ds2
DS3
Ds4

Distribution
1055 rows
7000 rows
1384 rows

20000 rows

Description
DAIGT dataset generated from Falcon-180B
DAIGT dataset generated from Llama-70B and Falcon-180B
Essay dataset generated by PaLM
Articles dataset consists of Human and AT generated text

/

0.250 0.255 0.260 0.265 0.270 0.275 0.280 0.285 0.290
METEOR Score

0.774 —e— BLEU Score = 0.51

BLEU Score = 0.52

—e— BLEU Score = 0.53

N

0.772

0.770

0.768

0.766

Accuracy

0.764

0.762

0.760

Figure 2: Comparison of accuracy among various BLEU
and Meteor scores for DS4 dataset.

4.2 Experimental Setup

We configured Llama and Mistral LLM’s using pa-
rameters viz. num_return_sequences = 1, top_p
= 0.95, top_k=40, num_beams=2, max_length =
1.1*textWordCount. These models are run on
NVIDIA A30 with 24 GB of GPU memory. As
part of textual pre-processing, symbols such as’ @’
'# and hyperlinks are removed.

5 Results

Table 2 shows the performance of our detection
system under various LLM configurations. We uti-
lized the Mistral LLM for query extraction and



employed two LLMs, Llama3 and Mistral, for re-
sponse generation. The table compares the out-
comes across three models: the first model uses
Llama3 for response generation, the second em-
ploys Mistral, and the third integrates both LLMs
in the response generation process. We have exper-
imented our methodology across all the datasets
mentioned in the Table 1. In the results table, we
have reported BLEU, Meteor Score and Accuracy
of each model.

The results presented in Table 2 show that using
a single LLM for response generation yields spe-
cific scores: the Llama model achieved a BLEU
score of 0.61 and a Meteor score of 0.33, while the
Mistral model scored 0.56 and 0.31 for the DS1,
respectively. However, combining both LLMs led
to improved scores of 0.62 for BLEU and 0.34 for
Meteor. Furthermore, the accuracy of the combined
LLM methodology was notably higher, at 0.92, out-
performing the single-model setups. In a similar
manner, we can observe the results for DS2 and
DS3 datasets.

Table 2: Performance comparison of different models
across datasets

Dataset Model BLEU | METEOR | Accuracy
Ours-Llama 0.61 0.33 0.90
DS1 Ours-Mistral 0.56 0.31 0.63
Ours-(Llama+Mistral) | 0.62 0.34 0.92
Ours-Llama 0.61 0.31 0.83
DS2 Ours-Mistral 0.56 0.31 0.49
Ours-(Llama+Mistral) | 0.62 0.32 0.86
Ours-Llama 0.62 0.33 0.96
DS3 Ours-Mistral 0.59 0.32 0.90
Ours-(Llama+Mistral) | 0.63 0.34 0.98
Ours-Llama 0.59 0.31 0.77
DS4 Ours-Mistral 0.58 0.31 0.69
Ours-(Llama+Mistral) | 0.60 0.32 0.78

For the DS4 datasets, which include both human-
written and Al-generated text, we observed a con-
sistent pattern in the performance metrics. When
using single LLMs, the Llama model achieved a
BLEU score of 0.59 and a Meteor score of 0.31,
while the Mistral model scored 0.58 for BLEU and
0.31 for Meteor. However, the combined LLM
model showed improved results, with a BLEU
score of 0.60 and a Meteor score of 0.32. In terms
of accuracy, the final model with both LLMs sig-
nificantly outperformed the single-model setups.

The figure above shows how accuracy changes
with METEOR scores for various BLEU levels
(0.51, 0.52, and 0.53). Across all BLEU scores,
accuracy peaks at a METEOR value of 0.27, in-
dicating that this is the best METEOR range for
maximum accuracy. BLEU ratings of 0.51 and
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0.52 show comparable patterns, with somewhat
better accuracy at 0.52, especially near the peak.
However, BLEU score 0.53 has consistently worse
accuracy throughout all METEOR scores, with a
greater fall after the peak. This implies that, while
higher BLEU scores might increase performance
up to a certain point, an excessively high BLEU
score may have a declining or negative influence
on accuracy, emphasising the need of balancing
METEOR and BLEU scores to obtain optimal per-
formance.

6 Usability Analysis

6.1 Robustness on different word ranges

In our study, we evaluated the performance of our
zero-shot detector across different text lengths by
selecting samples with 0-100, 100-200, 200-300,
300-400, 500-600, and over 600 words. The find-
ings, presented in Table 3, show a distinct pattern.
The detector struggles with accuracy in smaller
samples (0-100 words) but shows marked improve-
ments as the word count increases. This increase
in performance in larger text samples suggests that
the zero-shot detector benefits from more contex-
tual information, which may be lacking in shorter
texts. This behavior could also be influenced by the
domain-specific characteristics or statistical prop-
erties of the LLM models. We have discussed case
studies related to short-length, long-length, and
human-written text in Appendix section 9 .

Table 3: Comparison of datasets across different word
ranges.

400-500
0.89
55
0.91
2569
0.97
474
0.85
3790

Metric
accuracy
# rows

0-100
0.50
2

accuracy | 0.0
# rows 1

accuracy
#rows

accuracy
# rows

100-200
0.82
51
0.41

200-300
0.90
515
0.70
27 714
1.0 0.98
1 180
0.65 0.75
1586 4790

300-400
0.96
432
0.83
2161
0.99
658
0.76
6159

Dataset 500-600 | >600

DS1

0.89
320
0.72
11
0.87
1915

0.90
1208
0.98
60
0.83
1676

DS2

DS3

0.04

Ds4 84

6.2

In our detector, we have two core phases Query
Formulation and Response Generation which takes
time for the final classification. In Table 4, we
have reported the query formulation time (QFT)
and response generation time (RGT) phases across
all the datasets. From the value, it is evident that
Query Formulation Time (QFT) is relatively stable
across datasets, ranging from 1.15 seconds to 1.95
seconds, suggesting that the extraction process is
largely unaffected by dataset complexity. In ad-

Inference time for the detection



Table 4: Analysis of time (in sec) taken across different
phases 1) Query Formulation Time (QFT) and 2) Re-
sponse generation Time (RGT)in zero-shot detector.

RGT
Dataset | QET Llama3 | Mistral
DS1 1.95 13.38 10.03
DS2 1.15 19.83 15.63
DS3 1.18 17.64 13.48
DS4 1.81 17.11 12.72

dition, Response Generation Time (RGT) varied
more significantly, with Llama3 showing longer
processing times across all datasets compared to
Mistral. Specifically, both models took the longest
time on DS2, indicating higher complexity or com-
putational demands associated with this dataset.

7 Conclusion

While Large Language Models (LLMs) have
demonstrated impressive capabilities in generative
tasks, mitigating their potential misuse remains cru-
cial. This paper provides an empirical study by in-
troducing a simple yet effective method for detect-
ing Al-generated text. Our zero-shot detector lever-
ages the extensive knowledge acquired by LLMs
during pre-training, enabling them to identify their
own generated outputs. Note that this methodol-
ogy does not involve any training for classification;
instead, it classifies input text using zero-shot in-
ference. The process begins by extracting the main
context of the input text, using the LLM to generate
a corresponding response. This approach facilitates
the detection of Al-generated text by comparing
the similarity between the input and the generated
text. Instruction tuning refines the model’s align-
ment with the user expected responses in text de-
tection tasks. We evaluated our method across four
publicly available datasets, which cover responses
generated by different LLMs and including both
in-domain and out-of-domain (OOD) data. The re-
sults confirm that our approach effectively detects
texts produced by LLMs. Future efforts will focus
on enhancing detection capabilities for short texts
and extending the application to other areas such
as fake news detection.

8 Limitations

Our study has some limitations, primarily because
it relies exclusively on two large language models,
Mistral and Llama3. However, numerous state-
of-the-art LLMs cited in the literature may out-

perform these and address challenges with short
text detection more effectively. Additionally, while
we utilize standard evaluation metrics like BLEU
and Meteor, other metrics such as Perplexity and
ROUGE might provide a more accurate assessment
of machine translation quality.
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9 Appendix

9.1 Example of short length text

We analyzed a sample from the DS4 dataset, originally labeled as Al-generated. When testing our
zero-shot detector on this sample, it has BLEU scores of 0.37 and 0.26, and METEOR scores of 0.19
and 0.16 for Llama3 and Mistral, respectively. The quantitative data clearly indicates that our method
struggles to recognize short-length LLM-generated texts. Additionally, it is evident that the context of the
generated text does not align with the context of the input text.

7

Input Text:

Creating a new substance from chemicals is a complex process that requires extensive research. First,
one must understand the chemical composition of different substances and learn the specific names of
chemical compounds. Once knowledge is attained, experiments can be conducted in a lab to test
different chemical reactions. The benefits of trial and error far outweigh the risks, and the potential
for creating something incredibly valuable is infinite.

Query:
What are the steps involved in creating a new substance from chemicals and why is it a valuable
process?

Llama Text:

The process of creating a new substance from chemicals involves several steps. First, chemists
identify the desired properties of the new substance, such as its melting point, boiling point, and
solubility. Next, they select the appropriate chemicals and react them.

Mistral Text:

Creating a new substance from chemicals, also known as organic synthesis or chemical synthesis, is a
valuable process due to its potential to yield novel compounds with unique properties. The steps
involved include: 1. Identifying the target.

9.2 Example of long length text

We analyzed a sample from the DS1 dataset, originally labeled as Al-generated. When testing our
zero-shot detector on this sample, it has BLEU scores of 0.59 and 0.53, and METEOR scores of 0.33
and 0.28 for Llama3 and Mistral, respectively. The quantitative data clearly indicates that our method
identifies this LLM-generated text as correct. We can also observe the generated text that it is contextually
aligned and have similar patterns with input text.

65




Input Text:

When people ask for advice, they sometimes talk to more than one person. This is because seeking
multiple opinions can help someone make a better choice. For example, if someone wants to buy a
new phone, they might ask their friends, family, and even do some research online. By doing this,
they can get different perspectives on which phone to buy, the pros and cons of each phone, and
even the best deals available. Seeking multiple opinions can also help someone avoid making a bad
decision. For instance, if someone is considering dropping out of school, they might talk to their
parents, teachers, and even a counselor. By doing this, they can get advice on the consequences of
dropping out, the benefits of staying in school, and even alternative options that they might not have
considered before. In conclusion, seeking multiple opinions can help someone make a better choice
by providing them with different perspectives, information, and advice. It can also help them avoid
making a bad decision by considering all the options available. Therefore, it is always a good idea to
seek multiple opinions before making a big decision.

Query:
What are the benefits of seeking multiple opinions before making a decision?

Llama Text:

Seeking multiple opinions before making a decision can have numerous benefits. Firstly, it allows
individuals to gain a more comprehensive understanding of the situation and the potential outcomes.
By hearing from different perspectives, individuals can identify potential risks and challenges that
they may not have considered otherwise. This can help them make a more informed decision that
takes into account a wider range of factors. Another benefit of seeking multiple opinions is that it
can help individuals avoid making impulsive decisions. When faced with a decision, it’s easy to
get caught up in the moment and make a choice without fully considering the consequences. By
taking the time to seek out multiple opinions, individuals can slow down the decision-making process
and make a more thoughtful choice. Additionally, seeking multiple opinions can help individuals
build stronger relationships with others. When individuals take the time to listen to and consider the
opinions of others, they demonstrate that they value and respect those individuals. This can help build
trust and strengthen relationships over time. Finally, seeking multiple opinions can help individuals
develop a greater sense of confidence in their decision-making abilities. When individuals take the
time to consider multiple perspectives.

Mistral Text:

Seeking multiple opinions before making a decision is an essential practice that can bring numerous
benefits. Here are some reasons why it’s a good idea to gather various perspectives before finalizing
a choice: 1. Broaden your understanding: Each person brings a unique perspective based on
their experiences, knowledge, and expertise. By seeking multiple opinions, you can broaden your
understanding of the issue at hand and gain new insights that you may not have considered otherwise.
2. Identify potential biases: When making a decision, it’s essential to be aware of any potential biases
that may influence your thinking. Seeking multiple opinions can help you identify any biases that
you may not have been aware of and allow you to make a more objective decision. 3. Improve
decision-making quality: Multiple opinions can help improve the quality of your decision-making.
By considering various perspectives, you can weigh the pros and cons more thoroughly and make a
more informed decision. 4. Enhance problem-solving skills: Seeking multiple opinions.
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9.3 Example of human-written text

We analyzed a sample from the DS4 dataset, originally labeled as human-written. When testing our
zero-shot detector on this sample, it has BLEU scores of 0.41 and 0.29, and METEOR scores of 0.21 and
0.17 for Llama3 and Mistral, respectively. We can also see that while LLMs use complex vocabulary to
respond to queries, humans tend to narrate using simpler words.

Input Text:

The author that evaluates how well the author supports the idea that studying Venus is a worth pursuit
despite the danger. By saying" NASA is working on other approaches to studying Venus Food
example some simplified elections made of silicon carbide have been tested in a chamber simulating".
This evidence support my claim because the people AOE studying Food big things like how well
studying Venus is a worthy pursuit. Another claim that evaluates how well the author supports the
idea that studying Venus is a worth pursuit despite. In paragraph 8 it says" striving to meet the
challenge presented by Venus has value. Not only because of the insight to be gained on the planet
itself. Which explain that studying Venus is a worth pursuit despite. The conclusion I have about"
the challenge of exploring Venus" was. It seems like if u study it it§ a good thing. Because its very
important to NASA it says that in the Leading. So maybe if u do it you would be successful.

Query:
What are the reasons why studying Venus is a worth pursuit despite the challenges and dangers it
presents?

Llama Text:

Studying Venus is a worthwhile pursuit despite the challenges and dangers it presents because of the
significant scientific and technological advancements it can bring about. Venus is often referred to as
Earth§ "sister planet" due to its similar size and proximity to the sun, making it an ideal target for
studying planetary formation and evolution. By studying Venus, scientists can gain valuable insights
into the early history of our solar system and the processes that shaped the planets. Furthermore,
Venus offers a unique opportunity to study a planet with a thick atmosphere, which can provide
valuable insights into the Earth§ own atmospheric processes. The extreme conditions on Venus, such
as the crushing pressure and scorching temperatures, also present a challenge for scientists to develop
new technologies and instruments that can withstand such conditions. This can lead to breakthroughs
in fields such as materials science and engineering. Additionally, studying Venus can also provide
valuable information about the potential for life on other planets.

Mistral Text:

Studying Venus, the second planet from the Sun, presents unique challenges and dangers due to its
extreme conditions. However, these challenges make Venus a worthwhile pursuit for scientists and
explorers for several reasons. Firstly, Venus is the closest planet to Earth, making it an accessible
target for exploration. Despite its inhospitable environment, understanding Venus’s geology,
atmosphere, and climate can provide valuable insights into the early history of Earth and the solar
system as a whole. For instance, Venus’s volcanic activity and corrosive atmosphere offer clues to the
conditions that shaped our own planet billions of years ago. Secondly, Venus is the only planet in our
solar system with a similar size, mass, and composition to Earth. Studying Venus can help us better
understand the processes that shape terrestrial planets.
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Abstract

The rapid advancement of Large Language
Models (LLMs), such as GPT-4, has sparked
concerns regarding academic misconduct, mis-
information, and the erosion of originality. De-
spite the growing number of Al detection tools,
their effectiveness is often undermined by so-
phisticated evasion tactics and the continuous
evolution of LLMs. This research benchmarks
the performance of leading Al detectors, in-
cluding OpenAl Detector, RADAR, and Ar-
guGPT, across various text domains, evaded
content, and text generated by cutting-edge
LLMs. Our experiments reveal that current
detection models show considerable unreliabil-
ity in real-world scenarios, mainly when tested
against diverse data domains and novel eva-
sion strategies. The study underscores the need
for enhanced robustness in detection systems
and provides valuable insights into areas of im-
provement for these models. Additionally, this
work lays the groundwork for future research
by offering a comprehensive evaluation of ex-
isting detectors under challenging conditions,
fostering a deeper understanding of their limi-
tations. The experimental code and datasets are
publicly available for further benchmarking on
Github.

Keywords: Large Language Models, Eva-
sion Strategies, Cross Domain Testing, Al-
Generated text detection.

1 Introduction

LLMs such as GPT-3 have achieved strong perfor-
mance on several tasks that require on-the-fly rea-
soning or domain adaptation, such as translation,
question answering, and representing text in an
intelligent, presentable form (Brown, 2020). In ad-
dition, more advanced LLMs such as GPT-4 have
achieved human-level performance on academic
benchmarks, such as passing a simulated bar exam-
ination by scoring around the top 10% test takers
(Achiam et al., 2023). On top of that, OpenAl
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released OpenAl ol-preview, a new series of rea-
soning models claiming that these models perform
on the level of PhD students for challenging bench-
mark tasks such as Graduate-Level Google-Proof
Q&A (GPQA) benchmark in subjects like physics,
biology and chemistry (Zhong, 2024). These events
highlight the exceptional capabilities of LLMs in
academia and their fast-paced evolution.

With exceptional capabilities, LLMs have also
brought several threats like academic misconduct
(Pudasaini et al., 2024), such as students submit-
ting assignments, passing examinations, misinfor-
mation (Liu et al., 2024), lack of creativity (Zhao
et al., 2024), and other several ethical concerns
(Yan et al., 2024). To overcome these threats, ef-
ficient detection of texts generated from LLMs is
necessary.

Much research has been done to build highly ef-
fective and robust LLM-generated text detection al-
gorithms. A training-based classifier, zero-shot de-
tection, watermarking, and adversarial learning ap-
proach are some approaches used to create models
that detect LLM-generated text. The training-based
classifier approaches treat the problem as a binary
classification problem, and labelled datasets are
trained on several algorithms to build models such
as ArguGPT (Liu et al., 2023), Ghostbuster (Verma
et al., 2023) and roberta-base-openai-detector (So-
laiman et al., 2019).

A zero-shot learning approach that allows a
model to handle tasks it hasn’t been explicitly
trained for by using its existing general knowledge
has also been used to develop detectors such as
Binoculars (Hans et al., 2024), Fast-DetectGPT
(Bao et al., 2023), DNA-GPT (Yang et al., 2023),
and GLTR (Gehrmann et al., 2019).

Similarly, watermarking techniques by which
subtle, identifiable patterns are embedded into the
generated content, making it easier to recognise
as Al-generated, has resulted in models such as
POSTMARK (Chang et al., 2024), Waterfall (Lau
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et al., 2024), WaterJudge (Molenda et al., 2024),
and WaterMax (Giboulot and Teddy, 2024).

Other approaches, such as adversarial learning,
which enhances the robustness of LLM-generated
text detection algorithms by exposing the detector
to an evasion example while training, have been
introduced, resulting in models like RADAR (Hu
et al., 2023) and OUTFOX (Koike et al., 2024).

Along with developing LLM detectors, sev-
eral evasion techniques, such as paraphrasing and
synonym replacement, have also been developed.
These evasion techniques are applied after generat-
ing text from LLMs so that the detector cannot iden-
tify the text as Al-generated. These evasion tech-
niques may be as simple as adding a single space
randomly before a comma (Cai and Cui, 2023),
deleting an article randomly in a sentence, inserting
misspellings randomly in a sentence (Antoun et al.,
2023), and replacing some random characters with
homoglyph characters (Kirchenbauer et al., 2023).

There are also more complex techniques such
as paraphrasing(Krishna et al., 2024), word sub-
stitution (Peng et al., 2024), sentence substitution
(Peng et al., 2024) and prompting (Wang et al.,
2024)(using instructions to generate human-written
text while generating text) also have been success-
ful in fooling Al detectors. Thus, it becomes crucial
to benchmark existing open-source, state-of-the-art
Al detectors against these evasion strategies.

One gap in developing efficient Al detectors is
the reliance on subsets of a single dataset for train-
ing and testing, compromising the models’ robust-
ness (Sadasivan et al., 2023). Such detectors claim
high accuracy. However, they typically fail when
tested in real settings with very different data from
the training and testing set. Out-of-distribution
testing of the existing open-source state-of-the-art
detectors is crucial (Dugan et al., 2024).

In addition, it is essential to benchmark the exist-
ing Al detectors with new generators in the space.
The rapid growth in the development of new LLMs
with exceptional learning capabilities, along with
the increasing number of parameters, has brought
up new concepts such as reasoning (Huang and
Chang, 2022), coherent and cohesive long-form
text generation (Cho et al., 2018), and multilingual
and cross-domain capabilities (Chua et al., 2024).
This leads to the research question of whether the
existing state-of-the-art Al detectors are up to date
and capable of detecting text from new LLMs with
such capabilities or not. Thus, benchmarking such
detectors against recent powerful LLMs is vital.
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This paper’s main contribution is benchmarking
existing Al detectors against different datasets (text
from various domains, text created using evasion
techniques, and text generated by the latest LLMs
such as GPT4 o from OpenAl and Command R+
from Cohere). This benchmarking allows for an
in-depth analysis of the different detectors’ perfor-
mance in the context of their general approach to
Al-generated text detection and the various types
of datasets used.

The rest of the paper is organised as follows.
Section 2 discusses the previous benchmarking re-
search done for LLM-generated text detection. Sec-
tion 3 explains the methodology used to perform
the benchmarking experiment. Section 4 highlights
the results obtained from the experiment. Section 5
discusses the analysis of the results obtained. Sec-
tion 7 finally presents the conclusions obtained
from the experiment.

2 Literature Review

As the race for the development of robust Al detec-
tors and the development of evasion strategies to
fool Al detectors goes on, along with the develop-
ment of even more powerful LLMs, research has
been conducted to test the efficiency of existing
LLM-generated text detection algorithms devel-
oped so far.

Initially, the benchmarking experiments used
human-written and Al-generated text with no fur-
ther modifications. Chaka (Chaka, 2024) did a
comprehensive review of 17 published articles on
testing Al detectors. The author found that the
machine-generated text used in testing in those re-
search papers was from ChatGPT-3.5 and ChatGPT-
4 (Chaka, 2024). Madelyn A. et al. (Flitcroft et al.,
2024) tested three Al detector tools, OpenAl’s Al
Classifer, Content at Scale, and Originality.Al, on
human-written scientific and Al-generated articles,
which are not modified. The tool Originality.ai
achieved 100% accuracies in this testing (Flitcroft
et al., 2024). However, people may not just copy-
paste the text entirely from LLMs and may try to
modify the text.

Weber-Wulff et al. (Weber-Wulff et al.,
2023) tested Al detection tools on three types
of Al-generated text: Al-generated text, Al-
generated text with subsequent human edits, and
Al-generated text with subsequent machine para-
phrasing and found those detectors were biased
in classifying Al-generated text as human-written.



Similarly, Elkhatat et al. (Elkhatat et al., 2023) also
tested five Al detection tools on human-written con-
trol responses and saw an increase in false positives
in the case of human-written control responses.
These experiments against types of text observa-
tions (human-written, ai-generated and human edit-
ing on Al-generated texts) show that Al detectors
are easily evaded with few further human edits on
Al-generated texts.

When evasion techniques are applied to Al-
generated texts, Al detectors fail to perform well.
Krishna et al. (Krishna et al., 2023) developed an
11B parameter paraphrase generation model called
DIPPER, which successfully evaded detectors such
as watermarking, GPTZero, DetectGPT, and Ope-
nATD’s text classifier and further proposed a retrieval
method which detected 80% to 97% of paraphrased
generations across various settings, while only 1%
of human-written text was mistakenly flagged as
Al-generated. However, after 4 months, Sadasivan
et al. (Sadasivan et al., 2023) again introduced the
recursive paraphrasing attack, which degraded the
accuracy of several watermarking-based, zero-shot-
based, neural-network-based and retrieval-based
detectors. The adversarial learning approach has
been introduced to develop recent Al-generated
text detectors such as RADAR (Hu et al., 2023)
and OUTFOX (Koike et al., 2024). There seems to
be a gap in benchmarking these recently developed
models on different scenarios.

The challenge with building Al detectors is these
detectors need to be able to generalise on unseen
domain text (Wang et al., 2023). For example,
existing Al detectors may fail when tested on text
generated from recent LLMs released after the Al
detector’s release. Dugan et al. (Dugan et al., 2024)
tested neural and metrics-based Al detectors on
Al-generated texts from 11 different LLMs. They
found that the performance of these Al detectors
varies according to the LLMs used for generating
the text. However, with the release of even more
powerful LLMs with reasoning capabilities like
GPT-4o, it remains to be seen how these detection
algorithms perform on the text generated from such
new LLMs.

3 Methodology

The benchmarking of existing open-source LLM-
generated text detection algorithms was done on
three significant aspects: out-of-distribution along
with multiple domain testing, evasion applied
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dataset testing and new LLM-generated text dataset
testing.

The data flow in the benchmarking experiment
has been represented in Fig 1. Initially, sampling
was performed from two datasets, i.e., the M4
dataset and the HC3 dataset, resulting in a data
subset of 3,000 Al-generated text observations and
3,000 Al-generated text observations. The 3,000
Al-generated observations were further edited us-
ing the six evasion strategies, and 3,000 evasion-
applied Al-generated text observations were cre-
ated for each evasion strategy. Additionally, 1,000
new Al-generated text observations were generated
from each of the recent LLMs, i.e. GPT-4 o and
Command R plus, using the same prompt used to
create them previously.

Because of computational constraints, the num-
ber of observations was limited. The complete
testing dataset representing multiple datasets, mul-
tiple evasion strategies, and multiple generators
was passed to the Al-generated text detection al-
gorithms, and the benchmarking results were ob-
tained.

3.1 Datasets Used

Data samples from different datasets and domains
were required for out-of-distribution and multido-
main testing of the Al detectors. Two different
datasets were used; details of the datasets are ex-
plained below.

* M4 Dataset: M4 is a large-scale dataset for
Machine-generated text detection which in-
cluded data samples from Multiple languages,
Multiple domains and Multiple LLMs (Wang
et al., 2023). Sampling was applied concern-
ing the domain of the data for multidomain
analysis. The subset considered 1,000 obser-
vations representing text from multiple do-
mains such as Arxiv, Wikipedia, and Red-
dit. Thus, combining these data from multiple
sources resulted in 3,000 human-written ob-
servations and respective 3,000 Al-generated
observations.

HC3 Dataset: The Human ChatGPT Compar-
ision Corpus(HC3) is built from tens of thou-
sands of comparison responses from ChatGPT
and human experts in financial, medical, legal,
and open-domain (Guo et al., 2023). Sam-
pling was done randomly from the dataset,
resulting in 3,000 human-written and 3,000
Al-generated texts.



Evasion Strategies

‘ Paraphrasing

Random Misspelling
Insertion

‘ Synonym Replacement

Y.

Spacelnfi strategy Al-generated text

Random Article Deletion

detection algorithms

Homoglyphs ‘ Evasion Applied

Al-Generated
Text

Roberta-base

3000 Al-
Generated

- Human Written | sampling;

OpenAl Detector

Human-
Wriitten Text

Text

Text
- Al-Generated Text
- Prompts

L

3000 Human
Written Text

i New LLMs

Prompts

> ."“ GPT-40 \ \

"‘Command‘?I
\ Rplus |

— ArguGPT
Al-Generated
Text

Al-Generated
Text from New
LLMs

RADAR

Figure 1: Diagram representing the process, the components used, and the data flow of the benchmarking experiment.

3.2 Evasion Strategies

Several evasion techniques have been used to try
to fool Al detectors. This paper used six evasion
techniques to modify the selected Al-generated
text subsets. The evasion strategies applied are
discussed below.

* Paraphrasing: Paraphrasing is the most com-
monly used technique to fool AI detectors
(Sadasivan et al., 2023; Krishna et al., 2024).
Parrot paraphrase, which uses LLMs to para-
phrase a given text, was used to paraphrase
each text and generate the paraphrased Al-
generated samples (Damodaran, 2021).

Synonym Replacement: A random word
from each sentence in the given text was re-
placed with the word’s synonym retrieved
from the Natural Language Toolkit (NLTK)
(Bird et al., 2009) Synset and replaced in the
sentence.

Misspelling: A random word from a sentence
is replaced with a misspelt version of the word.
Further insertion of random misspellings is
also an effective evasion strategy for BERT-
based Al detectors (Antoun et al., 2023).

* Article Deletion: This technique removes a
random article from a sentence from the Al-
generated text (Odri and Yoon, 2023).

Spacelnfi Strategy: Cai et al. (Cai and Cui,
2023) introduced the Spacelnfi strategy in
which a space is inserted before a random
comma in the Al-generated text to fool the
detectors.
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* Homoglyph Attack: Unicode characters that
look very similar to the existing characters in
the sentence are referred to as homoglyphs.
Kirchenbauer et al. (Kirchenbauer et al.,
2023) mentioned that homoglyph changing
the tokenization process affects the prediction
of Al detectors. We applied homoglyphs to
50% characters in the Al-generated text, as
suggested by Antoun et al. (Antoun et al.,
2023).

Similarly, text generated from recently released
LLMs, such as OpenAl’'s GPT-40 model (Islam and
Moushi, 2024) and the Command R plus model
from the open-source LLM community Cohere,
was included in the whole testing set for bench-
marking the detectors against recent LLMs. The
test data size was limited to 1,000 observations for
each model due to the limitations of OpenAl API
and Cohere API credits.

3.3 LLM-generated text detection algorithms

Several algorithms have been developed to solve
LLM-generated text detection following differ-
ent approaches such as watermarking, zero-shot,
training-based classifiers, fine-tuning LLMs, ad-
versarial learning methods, and treating another
LLM as a detector (Wu et al., 2023). The detection
algorithms used are described below.

* ArguGPT: ArguGPT is a RoBERTa base clas-
sifier trained on a corpus of 4,038 argumen-
tative essays generated by 7 GPT models. It
achieved 90% accuracy in document, para-
graph, and sentence level classification (Liu
et al., 2023). This model was chosen for the



experiment because the dataset used to train
was composed of multiple sources (in-class
or homework exercises, TOEFL writing tasks,
GRE writing tasks), multiple generators and
on multiple levels.

RADAR: Robust Al-text Detector via
Adversarial Learning (RADAR) is built by
joint adversarial training of a paraphraser
model and a detector model (Hu et al., 2023).
RADAR model claims to outperform exist-
ing Al-detection methods, mainly when para-
phrasing is applied as an evasion strategy (Hu
et al., 2023). This model was chosen because
it is trained by using an adversarial approach.

OpenAl Detector: Openai-detector is an
open-source language model based on trans-
formers 125 billion parameters released by
OpenAl (Solaiman et al., 2019). This model
was chosen because it was trained using the
outputs of the 1.5B GPT-2 model.

4 Experiments and Results

This section presents the results of the benchmark-
ing experiment on different edge cases such as mul-
tiple domain data, multiple evasion applied data
and multiple LLMs generated data.

The testing of a model developed on another
dataset rather than testing on the test set of its
dataset is referred to as out-of-distribution testing.
The benchmarking dataset used in this experiment
was not used to train and test these models. Such
out-of-distribution testing of the Al detectors was
done by passing the text sample observations to
the models. Prediction probability was obtained
for each of the predictions. We set the threshold
value to 0.5 to classify it as human-written or Al-
generated. Out-of-distribution set testing was per-
formed with text observations from the M4 and
HC3 datasets. We calculated the accuracy of the
binary classification evaluation metrics, F1-score,
false negatives, false positives, precision, and recall.
The results obtained are shown in Table 1.

The detectors were benchmarked on different
evasion strategies. The results from the benchmark-
ing against the evasion strategies are shown in Ta-
ble 2. The results from benchmarking the detectors
against recent LLMs are shown in Table 3. The
baseline dataset was created using the GPT 3.5
Turbo model.
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S Discussion and Analysis

This section discusses and analyses the experi-
ment’s results to report key insights. The discussion
is organised according to the edge cases, i.e., out-of-
distribution and Multi-Domain, Evasion Strategies,
and recent LLMs. We mainly analyse the False
Negatives (FN), which gives the number of Al-
generated text observations that were misclassified
as human-written, representing the inefficiency of
the Al-detector tools.

5.1 Analysis of out-of-distribution and Multi
Domain Benchmarking

Existing Al detectors suffer from data drift while
testing on text observations from another dataset
or another domain. From the results in Table 1,
we can see that the evaluation metrics of these Al
detector models are very different when tested on
various datasets with the same number of testing
observations. Differences of 8.9 % accuracy in the
OpenAl detector model, 4.95 % in the RADAR
model and 5.21 % in the ArguGPT model were
reported while tested on the M4 and HC3 datasets.
This indicates that these models are not resistant
to data drift over new domains and settings, i.e.
sentence, paragraph or document-level text.

The detectors cannot be relied upon to be used
in real settings. From Table 1, we can see a big dif-
ference in terms of False Negatives (Al-generated
samples misclassified as human-written) and False
Positives (human-written samples that were mis-
classified as Al-generated) when the detectors are
tested on text observation they are not familiar with
as the models tested were tested on entirely differ-
ent data. We can see an increase in false positives:
1 to 43 in OpenAl detector, 175 to 553 in RADAR
and 155 to 472 in ArguGPT. This is critical because,
with such an increase in FPs, it will be challenging
to use the detectors in real settings as many submit-
ting authentic human-written text will be flagged
as Al-generated. Similarly, the increase in false
negatives (FN) in the OpenAl detector from 113
to 607 suggests that the detector fails to detect Al-
generated text when data observations are taken
from different domains.

5.2 Analysis of Benchmarking on Evasion
Strategies

OpenAl detector performs poorly when evasion
techniques are applied. Table 2 shows that the Ope-
nAl detector is very poor at detecting Al-generated



Model Dataset Acc.(%) F1 FN FP Prec Rec
OpenAl Detector M4 89.17 0.8804 607 43 0.982 0.797
HC3 98.09 09806 113 1 0.999 0.962
RADAR M4 94.13 0.9413 177 175 0943 0.941
HC3 89.18 0.8994 96 553 0.84 0.968
ArguGPT M4 92 0.9257 8 472 0.863 0.997
HC3 97.41 09748 0 155 00951 1

Table 1: Benchmarking results of Al Detectors tested on two different subsets of M4 and HC3 with 6,000 samples
each. All observations are texts in which no evasion strategies have been applied. Evaluation Accuracy (Acc.),
F1-Score (F1), False Negatives (FN), False Positives (FP), Prec (Precision), and Rec (Recall) were obtained from

out-of-distribution testing of models.

texts where evasion techniques have been applied.
The baseline(non-evasive) experiment was con-
ducted on the observation where no evasion tech-
niques were applied, which resulted in 89.17% ac-
curacy in the M4 dataset and 98.1% accuracy in the
HC3 dataset. Using that as a reference point, we
can see the decrease in the model’s accuracy under
different evasion techniques. The decreasing accu-
racy was found to be similar to both datasets. This
is mainly because the OpenAl detector was trained
using the texts generated from the GPT-2 model
on which no modifications were applied to the gen-
erated text, and the training samples do not cover
multiple domains and multiple generation settings
on the GPT-2 model (Solaiman et al., 2019).

RADAR model could effectively identify the Al-
generated text on which further paraphrasing and
synonym replacement evasion techniques were ap-
plied. According to the results in Table 2, we can
see that the RADAR model performs even better in
evasion techniques such as paraphrasing and syn-
onym replacement. The RADAR model is trained
jointly with a detector and paraphrased with an
adversarial approach. We observed a decrease in
false negatives even after evasion had been applied.
However, the RADAR model still behaves poorly
under other evasion techniques, such as article dele-
tion and homoglyphs. Thus, we can conclude that
adversarial learning methods incorporating several
evasion strategies rather than a single evasion strat-
egy (paraphrasing in RADAR) could lead to de-
veloping an Al detector resistant to any evasion
strategies.

The performance of the ArguGPT model could
be better, with some evasion strategies such as ho-
moglyphs and misspellings. The results of the Ar-
guGPT model from Table 2 The ArguGPT model
worked well when no evasive techniques were ap-
plied (8 false negatives among 3,000 observations
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in the M4 data set and O false negatives among
3,000 observations in the HC3 dataset). However,
false negatives started to increase when evasion
techniques were applied. This is also mainly be-
cause the data in the model’s training did not con-
tain such observations where evasion techniques
have been applied further.

5.3 Analysis of Benchmarking on Recent
LLMs

During the test of observations from the latest
LLMs, the performance of existing Al detectors
was degraded. However, ArguGPT performed bet-
ter than other models. The results in Table 3 show
that models such as OpenAl Detector and RADAR
fail faster than the ArguGPT model while testing
text generated from recent LLMs: GPT-40 and
Command R plus. The baseline represents the re-
sult when the text was generated from the GPT-3.5
model. The number of false negatives increased
from 197 to 509 while testing text generated from
Command R plus and 985 while testing text gen-
erated from the GPT-40 model, indicating that the
OpenAl detector cannot perform well on text de-
tection from recent LLMs.

Similarly, in the case of the RADAR model, false
negatives were increased from 52 to 299 while test-
ing on the text generated from the Command R
plus model and to 777 while testing on the text
generated from the GPT-40 model, indicating the
RADAR model also does not perform well on text
detection from recent LLMs. However, the Ar-
guGPT model saw only a slight increase in false
negatives (3 in GPT-3.5, 23 in Command R plus
and 70 in GPT-40). This behaviour can be at-
tributed to the ArguGPT model being trained using
the text generated from 7 GPT models (Liu et al.,
2023). The GPT40 model could also fool the Al
detectors more than other LLMs. We believe the



Model Dataset Experiment Type Acc. (%) F1 FN (Out of 3,000)
non-evasive 89.17 0.8804 607
evasion whitespace 79.63 0.7488 1,179
evasion removed articles 51.95 0.0999 2,840
M4 Dataset  evasion misspell text 51.77 0.0934 2,851
evasion homoglyph 61.53 0.3891 2,265
evasion synonym replaced 74.55 0.6651 1,484
OpenAl Detector evasion paraphrase 68.67 0.553 1,837
non-evasive 98.1 0.9806 113
evasion whitespace 92.02 0.9133 478
evasion removed articles 60.33 0.3425 2379
HC3 Dataset evasion misspell text 51.12 0.0443 2932
evasion homoglyph 50.6 0.6693 1983
evasion synonym replaced 83.43 0.8015 993
evasion paraphrase 55.76 0.6932 1840
non-evasive 94.13 0.9413 177
evasion whitespace 95.10 0.9515 119
evasion removed articles 71.47 0.6309 1,537
M4 Dataset  evasion misspell text 47.10 0.0006 2,999
evasion homoglyph 47.15 0.0025 2,996
evasion synonym replaced 94.27 0.9427 169
RADAR evasion paraphrase 95.70 0.9576 83
non-evasive 89.18 0.8995 96
evasion whitespace 89.82 0.9059 58
evasion removed articles 82.06 0.8215 523
HC3 Dataset evasion misspell text 41.70 0.0305 2,945
evasion homoglyph 40.92 0.0045 2,991
evasion synonym replaced 88.98 0.8974 108
evasion paraphrase 90.22 0.9100 34
non-evasive 92 0.9257 8
evasion whitespace 91.93 0.9251 12
evasion removed articles 89.20 0.8971 176
M4 Dataset  evasion misspell text 42.13 0.0000 3,000
evasion homoglyph 42.13 0.0000 3,000
evasion synonym replaced 91.87 0.9244 16
ArguGPT evasion paraphrase 90.55 09111 95
non-evasive 97.42 0.9748 0
evasion whitespace 97.40 0.9747 1
evasion removed articles 97.23 0.9730 11
HC3 Dataset evasion misspell text 4742 0.0000 3,000
evasion homoglyph 47.42 0.0000 2,999
evasion synonym replaced 97.37 0.9743 3
evasion paraphrase 96.58 0.9664 50

Table 2: Benchmarking on different evasion strategies across models on 6000 samples for each experiment.
Evaluation Accuracy (Acc.), F1-Score (F1), and False Negatives (FN) were obtained under different evasion
strategies for different datasets while testing on OpenAl Detector, RADAR, and ArguGPT models.

high reasoning capabilities of the GPT-40 model
can explain these results (Chen et al., 2024).
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Models LLM tested against Acc. (%) F1-Score FN (Out of 1000)
baseline 89.9 0.8883 197
OpenAl Detector ~ Command R plus 71.94 0.5569 509
GPT-40 50.5 0.0294 985
baseline 95.65 0.9561 52
RADAR Command R plus 81.77 0.7614 299
GPT-40 59.4 0.3545 777
baseline 95.5 0.9568 3
ArguGPT Command R plus 94 0.9363 23
GPT-40 92.15 0.9222 70

Table 3: Benchmarking results of the Al detectors tested against the 1,000 text generated from the GPT-40 and
Command R plus models. Evaluation Accuracy (Acc.), F1-Score (F1), and False Negatives (FN) reported for

baseline, GPT-4 0 and Command R plus model.

6 Limitations

The benchmarking experiment is done on three pop-
ular open-source Al text detection models. How-
ever, the framework and the datasets can be used
for testing other AI text detection models also.
Six of the basic evasion strategies have been ap-
plied to generate data samples representing eva-
sion applied to Al-generated text. This can be
further enhanced by employing other additional
evasion strategies such as adversarial prompting
(Wang et al., 2024), Substitution-based In-Context
example Optimization method (SICO) (Lu et al.,
2023), Self-color testing-based substitution (Wu
and Chandrasekaran, 2024), and Reinforcement
learning (Nicks et al., 2023).

7 Conclusion

The research highlighted significant critical chal-
lenges in detecting LLM-generated text. The ex-
isting state-of-the-art algorithms for detecting text
generated from LLMs could perform better when
tested on text generated from other domains, LLM-
generated text on which evasion techniques have
been applied and text generated from recent LLMs.
This leads to the conclusion that these algorithms
cannot be fully relied upon and used in univer-
sity assignment checkers and research publications
checkers.

From the results and analysis of the benchmark-
ing against the evasion techniques, we can observe
that even simple techniques, such as deleting a
random article or misspelling a random word on
Al-generated text, can bypass existing Al detectors.
Similarly, from the results and analysis from multi-
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ple benchmarking experiments, it can be concluded
that training on diverse Al-generated text, includ-
ing evasion techniques, domains, and outputs from
various LLMs, improves detector robustness.

Furthermore, the knowledge extracted from the
critical analysis of the models serves as the base-
line for future researchers trying to build robust
Al-generated text detection algorithms. Training
models representing a wide variety of data (mul-
tiple domains, multiple evasion techniques being
applied, and multiple generators) may lead to the
development of more efficient detectors. Likewise,
training models with an adversarial learning ap-
proach that aims to train the model in different ad-
versarial attacks and scenarios also seems promis-
ing.

The benchmarking in this research validates that
the problem is far from solved. The knowledge
gained from the critical analysis of the results con-
cerning different approaches will help shape the
further development of algorithms that can solve
the problem more robustly. With the contribution
of knowledge extracted from the experiment and
thorough analysis of the results obtained, we aim
to develop more robust Al detectors.
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Abstract

Detecting synthetic tabular data is essential
to prevent the distribution of false or manip-
ulated datasets that could compromise data-
driven decision-making. This study explores
whether synthetic tabular data can be reliably
identified "in the wild"—meaning across dif-
ferent generators, domains, and table formats.
This challenge is unique to tabular data, where
structures (such as number of columns, data
types, and formats) can vary widely from one
table to another. We propose three cross-table
baseline detectors and four distinct evaluation
protocols, each corresponding to a different
level of "wildness". Our very preliminary re-
sults confirm that cross-table adaptation is a
challenging task.

1 Introduction and Related Works

Most studies on synthetic data detection focus on
image (Chai et al., 2020; Corvi et al., 2023; Marra
et al., 2019; Bammey, 2024), text (Lavergne et al.,
2011; Lahby et al., 2022; Hu et al., 2023; Wang
et al., 2024; Mitchell et al., 2023), audio (Lopez-
Paz and Oquab, 2016), video (face-swap) (Pu et al.,
2021), or their combination (Singhal et al., 2020).
Nevertheless, a growing number of generative
models for tabular data generation has emerged
recently; some are general-purpose (Zhang et al.,
2024; Kotelnikov et al., 2023), while others are
tailored to specific domains like finance (Sattarov
et al., 2023) or healthcare (Hyun et al., 2020). With
these advances it will be easier to generate realis-
tically manipulated datasets to fake scientific re-
sults or to hide fraud and accouting loopholes. It
is therefore essential to focus research efforts on
the detection of synthetic tabular data, and to de-
velop detection techniques that are on par with the
impressive generative models’ capabilities.
Detecting syntetic content issued from a known
generative model on a restricted domain is a fairly
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tractable task. The performance of such a pre-
dictor is indeed commonly used for adversarial
training (Goodfellow et al., 2020) and as a metric
to assess generation performance (Lopez-Paz and
Oquab, 2016; Zein and Urvoy, 2022).

However, the challenge intensifies when attempt-
ing to detect synthetic data "in the wild" (Stadel-
mann et al., 2018), namely, when the deployed
system has to face modalities and content gener-
ators it has never seen during its training phase.
Is is known that, even for homogeneous formats
like image or text, synthetic content detection sys-
tems are not robust to such cross-generator and
cross-domain distribution shifts (Kuznetsov et al.,
2024).

When dealing with tabular data, we have to face
a stronger form of domain-shift that we call cross-
table shift. Indeed, for a synthetic table detection
system to be useful, is has to cope with different
table formats with varying numbers of columns,
varying types and varying distributions shapes. Al-
though, the litterature on domain adaptation across
the same table structure is vast (see Gardner et al.,
2024, for a survey), only a few recent articles pro-
pose classifiers that are able to generalize across
different tables (Wang and Sun, 2022; Spinaci et al.,
2024). To the best of our knowledge, no study on
cross-table synthetic data detection has been pub-
lished yet.

We present a preliminary work with three base-
lines for synthetic tabular data detection "in the
wild." We focus on cross-table robustness among
different real-world evaluation scenarios represent-
ing various degrees of "wildness", for instance:
(i) No shift: the model is trained and tested on
samples from the same pool of datasets and genera-
tors; (ii) Cross-generator shift: the model is tested
on the same datasets but the test synthetic data is
produced by unknown generators; (iii) Cross-table
shift: the model is tested on holdout datasets and
table structures but with synthetic data produced
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by known generators; (iv) Full shift: the model is
tested on generators and datasets it has never seen
before.

We address here the cross-table adaptation by
considering two text-based baselines where the ta-
ble rows are first linearized as strings, and a fable-
based transformer with a simple column-wise table-
agnostic encoding.

2 Real and Synthetic Data

Real Data: We use 14 common public tabular
datasets from the UCI! with different sizes, dimen-
sions and domains. These datasets are described in
Table 1.

Name Size #Num  #Cat
Abalone” 4177 7 2
Adult? 48842 6 9

Bank Marketing® 45211 7 10

Black Friday? 166821 6 4
Bike Sharing’ 17379 9 4
Cardio® 70000 11 1
Churn Modelling® 4999 8 4
Diamonds> 26970 7 3
HELOC? 5229 23 1
Higgs® 98050 28 1
House 16H? 22784 17 0
Insurance® 1338 4 3
King® 21613 19 1
MiniBooNE? 130064 50 1

Table 1: Description of the datasets. "#Num" refers
to the number of numerical attributes and "#Cat" the
number of categorical ones.

Synthetic Data:  Our data generators are heavily
tuned versions of TabDDPM (Kotelnikov et al.,
2023), TabSyn (Zhang et al., 2024), TVAE, and
CTGAN (Xu et al., 2019) provided by (Kindji et al.,
2024). We trained the models on the entire real
datasets before sampling new synthetic rows. Each
model is used to create a synthetic version of each
dataset.

3 Detection Models

In order to be useful "in the wild", a detection
model must be "table-agnostic", which means that
it must accept inputs form different table formats.
We trained three baselines for synthetic content
detection from scratch: a logistic regression and
two transformer-based classifiers. For the logis-
tic regression and the first transformer the table
is first linearized into text (Section 3.1). For the

1https ://archive.ics.uci.edu/
2https ://www.openml.org
Shttps://www.kaggle.com/datasets
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second transformer-based classifier we use a rough
columns level encoding of tables (Section 3.2).
The transformer-based classifiers have three
main components: (i) a feature embedding block,
(i1) a transformer encoder block, and (iii) a clas-
sification head. As in BERT, the classifier relies
on a CLS embedding that is added to the input and
retrieved in the output of the transformer blocks.
The CLS representation is fed to the classification
head to predict the binary target class (real or syn-
thetic data). The models (both text-based and table-
based) are trained using a binary cross entropy loss.

3.1 Text-Based Encodings

A natural solution to build a table-agnostic model
is to consider the tables as raw text. This approach
is used in pretrained models such as TaBERT (Yin
et al., 2020), TAPAS (Herzig et al., 2020), or
TAPEX (Liu et al., 2022). These models are are
designed to encode small tables like the ones found
on Wikipedia. They are derived from BERT and
rely on a text encoding of the whole table.

In order to work with larger tables we opted,
as in (Borisov et al., 2023), to work at the row
level. We converted each table row into a shuffled
sequence of <column>:<value> patterns.

For instance the first row Ta-
ble 1 can be encoded as the string
"Name:Abalone,Size:4177,#Num:7,#Cat:2"
or any of its column permutations. This random
columns’ permuation is intended to increase gener-
alization across different tables. Then two options
are considered: (i) For the logistic regression, the
string is simply split into a bag of character-level
trigrams like "Nam”, "e:A", ":41" or ,"t:2";
(i1) For the text-transformer baseline the string is
tokenized into a sequence of characters that are
mapped, as usual for transformers, into a sequence
of embedding vectors that are combined with a
positional embedding.

of

3.2 Table-Based Encodings

All datasets are encoded following the same pro-
cedure: numerical features are normalized through
QuantileTransformer, and categorical features are
encoded with the OrdinalEncoder, both from scikit-
learn®. Importantly, each dataset is processed sepa-
rately. This means that the methods used to encode
numerical and categorical features are applied to
each dataset individually, rather than collectively.

*https://scikit-learn.org/stable/



The feature embedding module employs a shared
feed-forward layer for numerical features and a
shared embedding layer for categorical features.
This baseline is of course simplistic, more sophis-
ticated strategies are proposed in (Wang and Sun,
2022) and (Spinaci et al., 2024).

4 Experimental Setup

All dataset rows are mixed together in a list with
two additional labels: the dataset name and the
origin that can be "real” or the name of its gen-
erator if the row is synthetic. We use these two
additonal labels to design cross-validation splits
with increasingly challenging constraints:
Generator:{ Smgl'e
Multiple, Cross-generator

Single

Table: { Multiple, Cross-table

For instance, the Classifier Two-Samples Test
(C2ST) metric as described in (Lopez-Paz and
Oquab, 2016; Zein and Urvoy, 2022) correspond
to the simplest Single Generator vs Real, Single
Table setting. It does not require a "table-agnostic"
model. The cross-generator shift constraint guar-
antees that a generator used for trainning cannot be
used in test. The cross-table constraint guarantees
that a table used for trainning cannot be used in
test. These single-criterion shift settings can be
coded using Scikit-Learn GroupKFold. However,
as shown in Table 2, cross-validating a Full shift
with both cross-table and cross-generator robust-
ness is a bit trickier.

Tables

ATB]J|C
Real Data
X
Generators | Y
Z

Table 2: Example of a full shift split. The blue cells
indicate the training elements, while the green cells
represent the test sets. The gray cells indicate examples
that must be dropped because they would violate one of
the Tables or Generator separation constraints.

4.1 Detection Without Distribution Shift

We first train models to detect synthetic data gener-
ated only by TVAE (Xu et al., 2019). Despite our
interest in "model agnostic" detection, this proce-
dure provides an upper-bound reference to compare
with. This setup is referred as TVAE vs Real, All-
Tables, No Shift. We then add an additional setup
where synthetic datasets from all models are mixed
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to be detected against the real datasets. We refer
to this setup as All Models vs Real, All-Tables, No
Shift.

4.2 Detection Under Distribution Shifts

Tables

ATB]J|C
Real Data
X
Generators | Y
Z

Table 3: Example of a cross-table shift split. The blue
cells indicate the training elements, while the green cells
represent the test set.

We have tested our baselines only under the
cross-table shift constraint, which proves to be al-
ready quite challenging. As illustrated in Table 3,
in this scenario the detection model is first trained
on real and synthetic datasets produced by some
generators and then deployed on unseen datasets.

5 Results

In this section, we present our baselines’ results on
different setups, without and with cross-table shift.
These results are summarized in Table 4 with the
standard ROC-AUC and Accuracy metrics.

Metrics

Setup Model “AUC Accuracy
TVAE vsReal,  3grm-LReg. 0.71  0.65
All Tables, Text-Transf. 0.76  0.68
No shift Table-Transf. 0.91  0.82
All Models vs Real, 3grm-LReg. 0.67  0.62
All Tables, Text-Transf. 0.78 0.72
No shift Table-Transf. 0.77  0.69
All Models vs Real, 3grm-LReg. 0.58 0.55
All Tables, Text-Transf.  0.56 0.52
Cross-table shift Table-Transf. 0.51 0.50

Table 4: Evaluation of synthetic tabular data detection
on various setups. "3grm-LReg." stands for "Trigrams
Logistic Regression" and "Transf." stands for "Trans-
former"

5.1 Without Distribution Shift

The transformer-based models (both text-based and
table-based) demonstrate good performance across
various metrics, under both setups TVAE vs Real
and All models vs Real. We notice an AUC over
0.76 for all setups suggesting a good generalization
capabilities of these table-agnostic models. De-
spite its rather naive design, the AUC for detect-
ing TVAE-generated rows of our table-agnositc
tranformer baseline reachs 0.91. It is worth com-
paring this result with the ones obtained in single



dataset settings: in (Kindji et al., 2024) the XG-
Boost TVAE vs Real median AUC for detecting
TVAE is 0.81.

The task difficulty increases under the All models
vs Real setup, but the overall performance remains
stable for all models. The table-based transformer
outperforms the fext-based version in TVAE vs Real,
however, it underperforms in All Models vs Real.
Note that the only difference between the two ap-
proaches lies in the preprocessing and the way the
feature embedding module works (as detailed in
Sections 3.2 and 3.1). This suggests that the textual
representation offers a more general view across
all models and datasets. As a side result, we notice
that there is still significant room for improvement
in achieving realism in tabular data generation. The
synthetic tabular data generators seems to exhibit
patterns that a naive table-agnostic classifier is able
to detect.

5.2 Cross-table Shift

The cross-table shift results (Table 4) show that
this setup is particularly challenging, as all models
struggle to achieve good performance. The rable-
based approach drops significantly its performance
(AUC= 0.51). The model fails to identify mean-
ingful patterns and cannot generalize to unseen
datasets, essentially making random guesses on the
test set.

An interesting observation is that the text-based
transformer appears to provide more generalizable
patterns than the fable-based one. This aligns with
the results from the All Models vs Real setup, in
which it also performed better. As there are more
datasets and models to generalize across, this ap-
proach benefits from that diversity. However, the
AUC score is relatively low at 0.56. The train-
ing curves presented in Appendix B confirms that,
with a cross-table shift between all training, valida-
tion, and test sets; the text-based transformer (on
the left-hand side) is more robust than the rable-
based transformer (on the right-hand side). The
dataset-agnostic encoding we used in the table-
based method reveals its limitations when evalu-
ated on unseen datasets. Being tied to datasets
particularities, the encoding do not generalize well
to datasets with different characteristics (e.g. the
number of features, range of numerical features,
categories in categorical features, and sample size).
In contrast, the textual representation captures pat-
terns that can be generalized.

As expected, due to its extreme simplicity, the
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logistic regression model outperformed the trans-
formers for the cross-table shift setup with an AUC
at 0.58 (versus 0.56 for the text-based transformer).
However, an AUC of 0.58 is not a very impressive
result and, contrary to transformers (Zhou et al.,
2024; Li and McClelland, 2023; Yadlowsky et al.,
2024), its potential for improvement is weak.

These preliminary results suggests further inves-
tigations on transformer-based models with both
text-based and table-based encodings. The poten-
tial for transfer learning from pre-trained models
can also enhance performance, making transformer-
based approaches a valuable asset in the cross-table
shift setup.

6 Conclusion

We study synthetic tabular data detection "in the
wild". We utilized 14 datasets and 4 state-of-the-art,
highly-tuned tabular data generation models. We
evaluated various models using different tabular
data representations as inputs and demonstrated
that it is possible to detect synthetic data with
promising performance. We also introduced vari-
ous levels of "wildness" that correspond to different
degrees of data distribution shift and we focused
on cross-table shift. Our preliminary results are
encouraging but show that cross-table adaptation is
still a challenging problem. In the future, we will
consolidate these results and explore more sophis-
ticated encodings and adaptation strategies such as
including table metadata—like column names—in
the input. We also plan to explore the adaptation
of pretrained encoders like TABERT to see if they
reach the performance of our baselines on fake
content detection.

7 Limitations

As the results showed, the fable-based transformer,
along with its preprocessing and feature embedding
scheme, provides valuable insights when there is
no distribution shift. However, it struggles to gen-
eralize when a cross-table shift is introduced. We
believe this encoding scheme has the merit of its
simplicity, but it needs to be enhanced for distribu-
tion shift scenarios by incorporating general dataset
information, such as column names and category
embeddings as it is done in (Spinaci et al., 2024).
These improvements should help differentiate be-
tween synthetic and real data if synthetic data fails
to accurately replicate these characteristics. On the
other hand, the textual encoding offers the advan-



tage of being simpler and more general, but it leads
to longer row-encoding sequences and it lacks of a
tabular-specific inductive bias.

We implemented straightforward baselines utiliz-
ing both common NLP techniques and transformer
architecture. For now, we did not conduct abla-
tion studies to examine the impact of input column
permutation and positional encoding. We also did
not consider other table format specificities such as
table size, number of columns, and data types.

The few experiments we did to adapt TABERT
on larger tables were not conclusive. We suspect,
that BERT-like tokenization and small tables pre-
training is not adapted to our problem, but it re-
quires further investigations that we keep for future
work.
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A Additional Distribution Shifts

We explore several challenging distribution shift se-
tups for evaluating synthetic tabular detection data
"in the wild". We evaluated our baselines on the
cross-table shift and provide additional information
about the remaining distribution shifts setups.

A.1 Cross-generator Shift

As illustrated in Table5, for generator shift, the
model is trained to distinguish between real and
synthetic data from some generators and some
datasets. The model is then tested with synthetic
data produced by generators it has never seen be-
fore.

Tables
A|B|C
Real Data
X
Generators | Y |
VA

Table 5: Example of cross-generator shift split. The
blue cells indicate the training elements, while the green
cells represent the test set. Here, all rows associated
with generators X and Y were selected for the train set.
Note that there are some real datasets in the training set
as well.

A.2  Full Shift

Another critical scenario arises when the model is
trained on a specific set of generators and datasets,
but encounters unseen generators and datasets dur-
ing deployment. Here there is a cross-table shift
and a cross-generator shift. In this scenario, the
model could struggle to generalize learned patterns
to totally unseen data. The schematic representa-
tion is provided in Table 2. Due to the constraints
on the datasets and generators in this setup, certain
data cannot be included in either the training set or
the test set.
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Figure 1: Training and validation AUC performance of models trained under cross-table shift setup. Left: text-based
model and right: table-based approach.

B Additional Results

We provide the training and validation curves for
the AUC metric for the cross-table shift setup in
Figure 1.
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Your Large Language Models Are Leaving Fingerprints

Hope McGovern *
Cambridge Computer Lab

Yoshi Suhara’
NVIDIA

Abstract

It has been shown that fine-tuned transformers
and other supervised detectors are effective for
distinguishing between human and machine-
generated texts in non-adversarial settings, but
we find that even simple classifiers on top of
n-gram and part-of-speech features can achieve
very robust performance on both in- and out-of-
domain data. To understand how this is possi-
ble, we analyze machine-generated output text
in four datasets, finding that LLMs possess
unique fingerprints which manifest as slight
differences in the frequency of certain lexical
and morphosyntactic features. We show how to
visualize such fingerprints, describe how they
can be used to detect machine-generated text
and find that they are even robust across text
domains. We find that fingerprints are often per-
sistent across models in the same model family
(e.g. 13B parameter LLaMA’s fingerprint is
similar to that of 65B parameter LLaMA) and
that while a detector trained on text from one
model can easily recognize text generated by a
model in the same family, it struggles to detect
text generated by an unrelated model.

1 Introduction

Large language models (LLMs) produce text of-
ten indistinguishable from human-authored text to
human judges (Clark et al., 2021). This unfortu-
nately allows potential misuses such as academic
plagiarism (Westfall, 2023) and the dissemination
of disinformation (Barnett, 2023), which has there-
fore prompted interest in machine-generated text
detection (MGT). We conduct linguistic analysis on
four popular published datasets for MGT, showing
that the machine-generated content in each shows
linguistic markers in aggregate which make it rela-
tively easy to separate it from human content.

* Corresponding Author.
Email: hope.mcgovern@cl.cam.ac.uk.
¥ Work done while at Grammarly.
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These discrepancies, which we call a model’s
“fingerprint”, are consistent enough across domains
and within model families that we find we can treat
each LLM as if it were a unique author with a
distinct writing style. To do so, we use a well-
founded method from the field of Author Identi-
fication (AID) for a closed set of authors: using
handcrafted n-gram features and training a simple
machine learning classifier on those features.

Best Reported Model ~ N-gram (Ours)
Paper F1 AUROC F1 AUROC
Deepfake - 99.0 947 943
HC3 9.8 - 96.7 99.6
Ghostbuster  99.9  100.0 98.0 98.0
OUTFOX 9.9 - 98.7 98.7

Table 1: Best reported classifier performances (Deep
neural networks) versus a decision-tree model with
n-gram features. Best-reported classifier models are
from four recent papers which release labeled datasets
for MGT. Our model, a decision-tree classifier, uses
a combination of character-, word- and POS-n-gram
features and outperforms the best-reported model on the
OUTFOX benchmark.

As shown in Table 1, the performance of the sim-
ple classifier is surprisingly comparable to more
complex neural methods, even in a multi-class set-
ting — successfully distinguishing between, e.g.
human-, ChatGPT-, and LLaMA-generated text
(Table 2). It also proves robust in cross-domain
experiments (Figure 2).

In this paper, we empirically uncover and char-
acterize the fingerprints of individual and families
of LLMs through a series of comprehensive analy-
ses, and present a new perspective of LLM-content
detection as authorship identification.

Proceedings of the 1st Workshop on GenAl Content Detection (GenAlDetect), pages 85-95
January 19, 2025. ©2025 International Conference on Computational Linguistics



Llama

llama-13b
DET  ADP

Eleuther
gpt-j
ADP

OpenAl

davinci-002
ADP OE
ET PRON E

CCONJ
SCONJ num
davinci-003

DET ADP
PRON

llama-30b

DET ADP
PRC

gpt-neox
DET  ADP

SCON nym SCONJ num

gpt-3.5-turbo

llama-65b
DET  AD! AL

DET ADP

PRON b PRON

SCON) num

PRON PRON

SCON) num

SCON) num

SCON) num

GLM
gIm-130b
DET ADP

FLAN

t5-small
ET ADP

N PRO

SCONJ nNuM
t5-large

DET  ADP
N PRON

SCONJ num
t5-xx|
DET ADP

SCON) nym

Figure 1: Visualization of the fingerprints. We plot frequencies of each part-of-speech (POS) class from the
output of several models, sorted by model family. Within each family, the shapes (distributions) look mostly similar
regardless of model size. Each radial plot is shown at the same 0% to 20% frequency scale, with POS tags sorted
from most to least common among human-written outputs. Jagged/bumpy shapes indicate the fingerprint is more
distinct from human distributions. POS is just one component of the full ‘fingerprint’ we investigate.

2 Methodology

2.1 Fingerprint Features

We use three feature sets: word n-grams (n €
[2,4]), which we expect to be useful in capturing
domain-specific vocabulary, but also in capturing
function words, which are known to be highly ef-
fective for authorship identification; character n-
grams (n € [3, 5]), which we intuitively expect to
capture subword information broadly aligning with
the byte-pair encoding (BPE) tokenization method
of many models; and part-of-speech (POS) n-grams
(n € [2,4]), which should capture domain-agnostic
information about writing style.

2.2 Classifiers

We use a GradientBoost classifier implemented in
the Sklearn library (Pedregosa et al., 2011). The hy-
perparameters for the classifier were found through
grid search, though no extensive hyperparameter
sweeps were carried out; this classifier works well
out-of-the-box!. Initial experiments used a range of
ML classifiers, including SVC and logistic regres-
sion. These exhibited close or similar performance
on our data.

"Further hyperparameter tuning could improve classifier

performance, but we are primarily interested in exploring why
such a simple classifier performs well in the first place.
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2.3 Data

We use four publicly available machine-generated
text detection datasets for fingerprint analysis as
well as training data for supervised sequence clas-
sifiers: OUTFOX (Koike et al., 2023), Deepfake-
TextDetect (Li et al., 2023), the Human Compar-
ison Corpus (Guo et al., 2023), and Ghostbuster
(Verma et al., 2023). We refer to these as ‘Out-
fox’,‘Deepfake’, ‘HC3’, and ‘Ghostbuster’ in this
work, respectively. The Deepfake dataset helpfully
provides data splits across 10 text domains and 7
model families. HC3 and Ghostbuster provide data
generated by ‘gpt-3.5-turbo’ across 8 different text
domains collectively, while Outfox provides paral-
lel responses to student essay prompts for ‘gpt-3.5-
turbo’, ‘text-davinci-003’, and ‘flan-t5-xx1’. Due to
space constraints, complete information on domain
coverage and underlying base model(s), may be
seen in Table 4.

We only use up to 5,000 training examples of
each class (where a class is an individual model or
‘human’) as we find more data does not improve
performance after this point, highlighting a partic-
ular advantage of feature-based methods: they are
not data-greedy.



3 Experiments

We conduct a series of analyses of LLM finger-
prints, finding (1) they are predictive of which
model authored a text, (2) consistent across do-
mains, and (3) relatively consistent within model
families.

3.1 Characterizing Fingerprints

We visualize fingerprints by looking at the differ-
ence of distribution in various linguistic properties.
In Figure 1, we report part-of-speech tag distribu-
tions of data generated by different models on the
same Deepfake data domains®. In Appendix A we
also include analysis from named entity tags, con-
stituency types, and top-k most frequent tokens.
There are, of course, more dimensions of linguis-
tic analysis that could theoretically be applied to
uncover model fingerprints.

Distinct patterns emerge when comparing the
fingerprint of models within the same family com-
pared to models across different families. The de-
gree of similarity within families can also vary
between families; for example, LLaMA models
exhibit a particularly uniform fingerprint across
model sizes, while BigScience models (cf. Ap-
pendix A) look markedly different.

3.2 Fingerprints for Multi-Class MGT

We take the Ghostbuster and Outfox datasets and
perform multi-class classification, considering, e.g.
‘ChatGPT’ a separate class from ‘Flan T5’. Per-
class F1 scores and macro-F1 on a held-out test
set are reported in Table 2. In both cases, we test
a three-way classification and achieve a macro-F1
score greater than 0.91.

The implication of this, then, is that linguis-
tic and morphosyntactic features are effective for
distinguishing between texts generated by dif-
ferent LLMs as if they have a unique authorial
style, rather than belonging to a generic ‘machine-
generated’ category.

3.3 Robustness to Unseen Data and Models

We intuitively expect that a shift in text domain will
impact the efficacy of fingerprints as features. To
test this, we take the largest model in each model
family of the Deepfake dataset and train a classifier

2We choose to report POS results in the main paper as it
directly maps to one feature set for our classification experi-
ments, whereas we do not directly use named entity categories,
constituency types, or top-k£ words as features.
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Dataset Provenance F1

Ghostbuster Human 0.934
ChatGPT 0.960
Flan T5 0.927
Average 0.940

Outfox Human 0.877
ChatGPT 0.936
Claude 0.920
Average 0911

Table 2: F1 scores for each class as the positive class after
training under a multiclass classification setting. Note that
even for top models ChatGPT and Claude, our simple n-gram
based classifier performs very well (0.936 and 0.920 on the
Outfox data). To compare with binary classification results,
F1 scores are computed for each class by setting that class to
be the ‘positive’.

0.8

F1 Score
o
o

o
~

0.2
== In Domain

Out of Domain

0.0

Figure 2: F1 score of MGT on in-domain versus out-of-
domain test sets for the largest model of each model family
in the Deepfake benchmark. We find no statistically signif-
icant drop in performance when testing on these 7 models’
outputs. 95% confidence intervals are computed through boot-
strap sampling at n = 10, 000.

on a set of 9 out of 10 of the text domains avail-
able. Specifically, we treat each data source (e.g.
“financeQA’, “cmv’, ’'reddit eli5’, etc.) as a sepa-
rate text domain. We then compare the F1 score
on a held-out test set either of the same training
domains, or the held-out 10th domain (downsam-
pled to be the same size), presented in Figure 2.
While most models experience a slight dip in per-
formance on OOD data, we find that this difference
is not statistically significant.

We conduct a different test in which we select an
LLM at random from the Deepfake dataset, train
a binary classifier (human vs. machine), and com-
pare the difference of evaluating the trained classi-
fier on either (a) text generated by the same model
in a different text domain (OOD) or (b) text from
the same domain as the training set, but generated
by a different model (OOM). We repeat this experi-
ment n = 20 times. As seen in Figure 3, recall for



the machine class and AUROC drop significantly
lower for OOM data compared to OOD data, lead-
ing to the interesting insight that LLMs generate
texts across different domains with a consistent,
characteristic style that is unique to each model.
In other words, Flan TS5 “sounds” like Flan TS
whether it is generating news stories or fan fiction.

We also explicitly test how well a classifier
trained on data generated by one model generalizes
to (a) other models in the same family and (b) other
model families. We find that, on average, the drop
in machine recall value (out of 1) from in-domain
data to other models in the same family is only
0.01, while the drop to other families is 0.62. We
report these results in Table 3.

1)

Human Recall  Machine Recall
Metric

ype
mmm  Out of Domain
Out of Model

F1 AUROC

Figure 3: Average drop in performance when testing on
out-of-domain text (blue) versus a text generated by a held-
out LLM (brown). Note that recall of the machine-generated
text drops significantly when testing on an unseen model’s
output, while changing the domain has much less impact.

4 Discussion

4.1 Where Might Fingerprints Come From?

Our work has revealed interesting insights about
machine-generated text, namely that LLMs gener-
ate in a manner analogous to an individual human
author’s unique writing style. The origin of these
“fingerprints’ is uncertain, but may lie in either the
model’s training data or model architecture.

It is clear that the model families with the most
uniform fingerprint, e.g. LLaMA and Flan TS, are
comprised entirely of models trained on the same
dataset with the same training method and underly-
ing structure, but with a different number of model
parameters. This is also clear in the fingerprint sim-
ilarity of BigScience’s two TO models contrasted
with the one Bloom model, which are trained on
different datasets and have different underlying ar-
chitectures (Encoder-Decoder and GPT3-style, re-
spectively).
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A piece of evidence in favor of the influence of
training data is that we find that 13B parameter
LLaMA chat-tuned model has a different finger-
print from its non-chat counterpart, despite hav-
ing the same architecture (Figure 8). It remains
less clear why some families have less uniform fin-
gerprints, and the exact interplay of training data,
architecture, and training regime begs further in-
vestigation.

4.2 What About Better Models?

Class F1 Score Class F1 Score
GPT4 0.08 Cohere 0.94
Human 0' 08 GPT-4 0.96

4 : Human | 0.95

(a) Binary Classification:

GPT-4 vs. Human) (b) Multi-Class Classifica-

tion: GPT-4 vs. Human vs.
Cohere

Figure 4: F1 Scores for Binary and Multi-Class Clas-
sification.

It might be thought that as language models be-
come larger and generally more capable of pro-
ducing human-sounding text, their fingerprints will
disappear, but we find that our fingerprint-based
method performs well even on text produced by
more modern models than those contained in the
main datasets we test.

We use the data from the COLING 2025 Work-
shop on Detecting AI-Generated Content® to per-
form both a binary classification of human vs. GPT-
4 data, as well as a 3-way classification experiment
between human, GPT-4, and Cohere. F1 scores,
which may be seen in Figure 4, for all classes in
both experiments exceed 0.94.

These scores demonstrate strong performance
even with modern models, effectively distinguish-
ing GPT-4 data from human data, as well as differ-
entiating it from other high-capacity models like
Cohere. These results suggest that increased model
capability alone is insufficient to erase distinctive
“fingerprints,” highlighting the robustness of our
approach in identifying Al-generated content.

5 Related Work

A common approach to machine-generated text de-
tection is to train a supervised binary classifier on

3Specifically, we use the data of Subtask a of
Task 1, available here https://huggingface.co/
datasets/Jinyanl/COLING_2025_MGT_en



labeled data (Guo et al., 2023; Koike et al., 2023; Li
et al., 2023). Li et al. (2023) proposed a variety of
classification testbeds, finding that pre-trained lan-
guage models perform the best. While n-gram fre-
quencies have often been used for author identifica-
tion, only a few recent works examine hand-crafted
features or stylometrics in machine-generated text
detection (Zaitsu and Jin, 2023). One example is
Gehrmann et al. (2019): a unique system that uses
the top-k words to highlight text spans to visually
aid humans in the task of spotting Al-written text
themselves.

Petukhova et al. (2024) finds a combination of
fine-tuned neural features and hand-crafted linguis-
tic features effective for MGT on the M4 dataset
as part of the SemEval2024 task on machine-
generated text detection (Wang et al., 2024).

Li et al. (2023) analyze their corpus Deepfake-
TextDetect across linguistic feature axes, but re-
port differences across POS-tag distributions be-
tween human and machine data when considering
all models and domains in aggregate as insignifi-
cant; however, they do find these distributions be-
gin to diverge when considering a subset of models
or domains. We demonstrate that these differences
extend to every publicly available machine text
detection dataset, prove largely consistent within
model families, and are very powerful features for
training a robust machine-generated text detection
classifier.

While linguistic-feature-based approaches have
shown promise, other state-of-the-art (SOTA) meth-
ods, such as Mitchell et al. (2023); Bao et al.
(2024); Tian and Cui (2023), adopt probabilis-
tic and statistical modeling approaches to detect
machine-generated text in a training-free setting.
We focus purely on manually extracted linguistic
features rather than probability curvatures.

6 Conclusion

We demonstrate that in four popular datasets for
machine-generated text detection, n-gram features
are highly effective for MGT. We uncover that
LLMs have unique writing styles that can be cap-
tured in lexical and syntactic features, which we
characterize as “fingerprints”, and show may be
effectively harnassed for text-detection in a variety
of settings.
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Limitations

* Text length: we examine outputs of approxi-
mately 300-500 words in length. Shorter texts
may be difficult to fingerprint or may not pro-
vide enough signal.

Model choice limitations: We constrain our-
selves to the data and models released as part
of text detection corpora, which means that
there may be some very good models we sim-
ply did not have the data to test at this time.

Reflection on real-world use-case. Ana-
lyzing fingerprints in research benchmark
datasets is most likely not reflective of the
true difficulty of deepfake text detection in the
wild. For one thing, people don’t tend to use
LLM:s for writing entire articles/essays, etc. A
more likely scenario for, e.g. academic pla-
giarism, is starting from an LLM generated
paragraph and making sentence-level rewrites.
As this is analagous to a paraphrase attack like
DIPPER (Krishna et al., 2023), we expect that
it would degrade our classifiers’ performance.

Ethics Statement

This research indicates that detecting machine-
generated text is easy. However, we want to
stress that this does not necessarily mean machine-
detection is a high-confidence task. Using a single
model prediction about one single written text to
determine whether or not it was human-written
should be evaluated on a different basis than av-
erage accuracy, given the potential harms of false
positives or false negatives. For example, teachers
may wish to use tools to determine if students have
cheated on exams or homework using LLMs. We
discourage teachers from trusting predictions by
any classifier until more investigation is done into
the confidence models have for any individual text.
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A Fingerprint Characterization
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Figure 5: Additional visualizations of fingerprints. Note that the POS tag distributions of OPT models are less
similar than we observe within other model families. Further investigations could examine what causes these
differences, since model size seems to not play a factor in FLAN models.
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Figure 6: Fingerprint characterization of Deepfake data by model and family. We report the Jensen-Shannon
Divergence of human vs. model for each model in each model family in the Deepfake data across four categories.
Columns from left to right: constituency type, named entity tag, POS tag, top-k word frequency. We omit the
GLM family in this visualization as there is only one model (130B) available. Like in Figure 1, some model families
exhibit remarkably consistent fingerprints within families, e.g. LLaMa, Flan, and OpenAl. OPT and EleutherAl in
particular have less distinguishable fingerprints within family.

o
)
S

Q
o
c
()
=
20.15
o
c
2
€ 0.10
©
<
[
8
@ 0.05
[
8
0.00 —
chatgpt davinci flan
Model

Figure 7: Fingerprint characterization of OQutfox data by model. Columns from left to right: constituency
type, named entity tag, POS tag, top-k word frequency. We note again that ChatGPT and davinci, being in the
same OpenAl model family, have very similar fingerprints, whereas Flan’s fingerprint differs substantially. Note that
this fingerprint does look different than the Deepfake davinci’s fingerprint, showing us that there is some domain
dependence to fingerprints, while underscoring the point that regardless of domain, individual models of the same
family do produce similar-sounding texts.
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Average drop in performance
Experiment HRec  MRec F1 AUC

Same Family | Different Domain —0.03 —0.01 —0.02 0.00
Different Family | Same Domain 0.00 -0.62 —-0.21 —0.44

Table 3: Models exhibit individual writing styles which are more similar across domains than across model
families. We report the average drop in performance of a GradientBoost from a binary classifier trained on Deepfake
data. In 7 independent trials, we train a classifier on a randomly selected model and compare its performance on the
in-domain test set to: (1) data from a model in the same family but in a held-out domain, and (2) data from a model
in a different family but same domains present in the train set (this is made possible by the fact that Deepfake is
multi-parallel). Performance drop is low over data from a model in the same family, and high over data from a model
in a different family. The human recall value is small but not O as the human data is shuffled and downsampled, so
the exact same set of prompts is not seen in every trial.
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Figure 8: Absolute difference in POS tag frequencies as compared with human text. Chat models are slightly more similar
to the frequency profile of humans, but are easier to detect than base models. This demonstrates that fingerprints “closer” to
human distributions in POS tags does not indicate it is less detectable. Further, fine-tuning models for chat clearly alters their
fingerprint despite no change in model architecture.

B Implementation Details

B.1 GradientBoost

Parameters: learning rate of 0.2, number of estimators 90, max depth of 8, max features ’sqrt’, sum-
sample ratio 0.8, random state 10, minimum samples leaf 30 and minimum samples to split 400, these
hyperparameters were optimized using Sklearn’s gridsearch function. Features: char n-grams:(2,4), word
n-grams:(3,5), pos n-grams:(3,5). Maximum 2000 features for each feature set.

C Dataset Information

C.1 Outfox

Outfox is a paralle] human-machine dataset built on the Kaggle Feedback Prize dataset (Franklin et al.,

2022) and contains approximately 15,000 essay problem statements and human-written essays, ranging

in provenance from 6th to 12th grade native-speaking students in the United States. For each problem

statement, there is also an essay generated by each of three LLMs: ChatGPT (gpt-3.5-turbo-0613),

GPT-3.5 (text-davinci-003), and Flan (FLAN-T5-XXL). Each example contain an instruction prompt

(“Given the following problem statement, please write an essay in 320 words with a clear opinion.”), a
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Dataset Base Model/Family  Domain ~ Human Machine

Domain-Specific gpt-j-6b cmy 509 636
eli5 952 863

hswag 1000 868

roct 999 833

sci_gen 950 529

squad 686 718

tldr 772 588

Xsum 997 913

yelp 984 856

wp 940 784

Total 8789 7588

Mixed Model Set OpenAl GPT mixed 67k 67k
Meta Llama mixed 37k 37k

GLM-130B mixed 9k 9k

Google FLAN-TS mixed 47k 47k

Facebook OPT mixed 80k 80k

BigScience mixed 27k 27k

EleutherAl mixed 14k 14k
Total 282k 282k

Ghostbuster gpt-3.5-turbo Reuters 500 500
essay 1000 1000

wp 500 500

Total 2000 2000
HC3 gpt-3.5-turbo eli5 17.1k 17.1k
open_qga 1.19k 1.19k

wiki_csai 842 842
medicine 1.25k 1.25k

finance 3.93k 3.93k
Total 24.3k 24.3k

OUTFOX gpt-3.5-turbo essay 15k 15k
text-davinci-003 essay 15k 15k

flan_t5_xxI1 essay 15k 15k

Total 46k 46k

Table 4: Dataset statistics (number of documents) for publicly available machine-generated text detection datasets.

problem statement (‘“Explain the benefits of participating in extracurricular activities and how they can
help students succeed in both school and life. Use personal experiences and examples to support your
argument.”), the text of the essay, and a binary label for human or machine authorship.

While we conduct fingerprint analysis on the whole dataset, we use only the human-written subset of
the Outfox data as a training corpus for our fine-tuning setup; given an instruction prompt and problem
statement, we fine-tune our LLMs of interest to produce text which minimises cross-entropy loss when
compared with the original human-written response to the same problem statement. We withhold a test-set
of human-written examples from training to be used for evaluation.

C.2 Ghostbuster

Verma et al. (2023) provide three new datasets for evaluating Al-generated text detection in creative
writing, news, and student essays. Using prompts scraped from the subreddit r /WritingPrompts, the
Reuters 50-50 authorship identification dataset, and student essays from the online source IvyPanda, they
obtained ChatGPT- and Claude-generated responses and made efforts to maintain consistency in length
with human-authored content in each domain.

C.3 HC3

We also analyze data from (Guo et al., 2023), which includes questions from publicly available datasets
and wiki sources with human- and ChatGPT-generated responses based on instructions and additional
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context. The resulting corpus comprises 24,322 English and 12,853 Chinese questions, of which we only
use the English split.

C.4 Deepfake

The Deepfake corpus is a comprehensive dataset designed for benchmarking machine-generated content
detection in real-world scenarios (Li et al., 2023). It contains approximately 9,000 human examples across
10 text domains, each paired with machine outputs from 27 models (e.g. GPT-3.5-turbo, text-davinci-002)
from 7 different model families (e.g. OpenAl), producing several testbeds designed for examining a
detector’s sensitivity to model provenance and text domain. Each example contains the text, binary label
denoting human or machine, and the source information — which domain, model, and prompting method
were used.

Training Data. We primarily use the Deepfake and Outfox data for training classifiers to analyze
different aspects of the LLM fingerprints. They are both conveniently multi-parallel: they contain N model
responses for each human text sample in the dataset. This has the benefit of removing some uncertainty
from our classifier results. Performance on the human class is often identical across trials, as the human
data is often identical. This allows a controlled test of how our classifier deals with the machine text
samples. Additionally, the different testbeds provided in Deepfake provide convenient, parallel domain
and model (/model family) data splits. Specifically, we use the mixed model sets and model-specific,
domain-specific testbeds from Deepfake.
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Abstract

Everyday Al detection requires differentiating
between humans and Al in informal, online
conversations. At present, human users most of-
ten do not interact directly with bots but instead
read their conversations with other humans. We
measured how well humans and large language
models can discriminate using two modified
versions of the Turing test: inverted and dis-
placed. GPT-3.5, GPT-4, and displaced human
adjudicators judged whether an agent was hu-
man or Al on the basis of a Turing test tran-
script. We found that both Al and displaced
human judges were less accurate than interac-
tive interrogators, with below chance accuracy
overall. Moreover, all three judged the best-
performing GPT-4 witness to be human more
often than human witnesses. This suggests that
both humans and current LLMs struggle to dis-
tinguish between the two when they are not
actively interrogating the person, underscoring
an urgent need for more accurate tools to detect
Al in conversations.

1 Introduction

In 1950, Alan Turing devised “The Imitation Game”
as a test to indirectly investigate the question, "Can
machines think?" In a classic Turing test, a human
interrogator engages in a text-only conversation
with two witnesses: one human and one machine.
If the interrogator is unable to accurately differ-
entiate between the human and the computer, the
computer passes the test and can be considered in-
telligent. Since Turing’s original paper, the Turing
test has sparked an intense debate that has been
pivotal in constructing modern understandings and
conceptions of intelligence, shaping the fields of
computer science, cognitive science, artificial in-
telligence, robotics, philosophy, psychology, and
sociology (French, 2000, p. 116).

Beyond its controversial role as a test of intel-
ligence, the Turing test also serves as a measure
of whether humans can detect Al in conversational

96

settings, or whether Al models can successfully
deceive human interlocutors into thinking that they
are human. Recent empirical work has found that
interrogators could not reliably determine whether
a GPT-4-based agent was human or Al in a Turing
test (Jones and Bergen, 2024).

Models that can successfully impersonate peo-
ple bring attendant risks, including persuasion and
deception. Especially in informal settings, which
may include online forums such as Reddit or Quora,
chatting platforms such as Discord, and social me-
dia platforms, an LLM-based agent could con-
tribute to misinformation, scams, or be maliciously
misused at a wide scale. In these open-access set-
tings, posts, messages, or chats containing LL.M-
generated content would not only have persuasive
power over an active interrogator but also over sev-
eral consumers of the content (Burtell and Wood-
side, 2023). This motivates conducting variations
of the Turing test in more ecologically valid set-
tings to determine how effective people are in dis-
criminating between humans and Als in realistic
scenarios. An ordinary Turing test provides the in-
terrogator with a key advantage not always present
in passive consumption of Al-generated text: they
can adapt their questions to adversarially test the
witness in real time. Here, we ask how well hu-
man and Al judges perform without this advantage,
when they only have access to a transcript of a
Turing test interview conducted by a separate par-
ticipant.

1.1 Interactive Turing Test

A classic Turing test involves a human evaluator
interactively interrogating a witness to determine
whether they are human or Al. Although the Turing
test was originally proposed as a test of intelligence,
there have been a wide variety of objections to
its validity or sufficiency in this guise (Hayes and
Ford, 1995; Marcus, 2017; French, 2000; Oppy
and Dowe, 2003). Independent of its validity as a
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Figure 1: A summary of our experimental design. Tran-
scripts were sampled from an interactive Turing test,
where a human judge interrogates a witness to deter-
mine if they are human or AL In an Inverted Turing test,
we present transcripts to Al models, who judge whether
the same witnesses are human or Al. In a displaced
Turing test, a separate group of human participants read
the same transcripts and make this judgement.

measure of intelligence, the Turing test provides
a powerful test for assessing similarities between
human- and Al-writing and a useful premise for
studying Al detection (Park et al., 2023).

Several attempts have been made to pass the
Turing test, including the Loebner Prize—a compe-
tition that ran from 1990-2020 without any system
passing (Shieber, 1994); “Human or Not”, a large-
scale social Turing test experiment that found an
interrogator accuracy rate of 60% (Jannai et al.,
2023); and a 2024 study reporting the first system
to have a pass rate statistically indistinguishable
from chance (54%) but still short of the human
threshold (67%) (Jones and Bergen, 2024). Sev-
eral variations of the test exist, with each informing
dimensions of theory and practice.

1.2 Inverted Turing Test

The first of these variations is the inverted, or re-
verse Turing test, which places an Al system in the
role of the interrogator. Watt (1996) proposed the
inverted test as a measure of naive psychology, the
innate tendency to recognize intelligence similar to
our own and attribute it to other minds. An Al sys-
tem that passes would be one which is "unable to
distinguish between two humans, or between a hu-
man and a machine that can pass the normal Turing
test, but which can discriminate between a human
and a machine that can be told apart by a normal
Turing test with a human observer,” (Watt, 1996,
p- 8). Watt argued that by placing an Al system in
the observer role and comparing its accuracy for
different witnesses with human accuracy, the sys-
tem would reveal whether it has a naive psychology
comparable to real people.

As Al systems create larger proportions of on-
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line content (Fagni et al., 2021), and interact with
others as social agents (Sumers et al., 2023), the
inverted Turing test takes on new real-world rele-
vance. Al systems are already being used to dis-
criminate between humans and bots online, for
example, through the widespread implementation
of CAPTCHA (Completely Automated Public Tur-
ing test to tell Computers and Humans Apart), re-
CAPTCHA, or invisible CAPTCHA (Yamamura,
2013; Pal, 2020). The growing role of Al agents
in online interactions raises questions around how
well these systems will be able to discriminate be-
tween human and Al-generated content, and what
kinds of criteria they might use to do so.

1.3 Displaced Turing Test

Several studies have assessed how well humans
are able to recognize displaced Al-generated con-
tent in different domains including higher educa-
tion (Perkins et al., 2024), news (Moravec et al.,
2024), online content (Cooke et al., 2024), images
(Somoray and Miller, 2023), and academic arti-
cles (Gao et al., 2023; Casal and Kessler, 2023).
Though these discrimination tasks bear similarities
to the Turing test, there remain important differ-
ences. First, these tasks can only be considered a
“static” version of the test, as the judgement is based
on pre-existing and unchanging content generated
fully by a human or an Al. Second, while an inter-
active interrogator in a traditional Turing test can
ask dynamic, flexible, and adversarial questions,
the judge in a static Turing test can only consider
what an agent happened to say, and cannot inter-
act to pursue the most fruitful lines of questioning.
Though static tests are therefore more limited in
scope as tests of model abilities, they are likely to
be parallels of a much more frequent occurrence
in the real world, as many interactions are read by
a larger audience than the addressee. Here, we in-
troduce a novel kind of static Turing test called a
displaced Turing test, wherein a human judge reads
a transcript of an interactive Turing test that was
previously conducted by a different human inter-
rogator. The new human judge is “displaced” in
that they are not present to interact with the witness.

1.4 Statistical AI-detection methods

There exist a variety of statistical approaches to
detecting Al-generated content. These are largely
based on the principle that LLMs generate con-
tent by sampling from a probability distribution
over words which may leave particular probabilis-



tic signatures, such as LLM generations being
statistically more probable than human-generated
ones (Ippolito et al., 2020; Solaiman et al., 2019;
Gehrmann et al., 2019). Mitchell et al. (2023) de-
veloped a related metric, curvature, which mea-
sures the local optimality of a piece of text with
respect to small perturbations generated using a
masked language model; LLM-generated content
is likely more probable than nearby perturbations.
Mireshghallah et al. (2024) found that smaller
LLMs tend to be better detector models, with a
125m parameter OPT model performing best at de-
tecting Al-generated content overall, and achieving
90% accuracy on GPT-4 specifically.

Various commercial tools have been developed
on the basis of these methods and other computa-
tional approaches to classifying text. Studies have
examined the effectiveness of these approaches in
different settings with mixed results: while accu-
racy is high in some domains, models are unreli-
able and are likely to issue false positives (Elkhatat
et al., 2023; Bellini et al., 2024; Perkins et al.,
2024). Studies have also considered LLMs as de-
tection tools in a question-answering setting. Bhat-
tacharjee and Liu (2024) assessed GPT-4’s and
ChatGPT’s ability to discriminate between human-
written and Al-generated content, and reported
higher detection accuracy with human writing than
with Al writing.

1.5 Present Study

These variations of the Turing test present the op-
portunity to ask new questions with real-world rel-
evance. In practice, human users most often do not
directly interact with bots but instead read their con-
versations with other human or Al users. As such,
displaced human judges are important parallels for
everyday Al detection. Additionally, the inverted
Turing test provides a tool to investigate LLMs’
latent model of human minds, and of their practi-
cal effectiveness in detecting Al-generated content
online. If Al is used for detection, this becomes
increasingly important. Mitigating technological
deception will require ensuring that Al technolo-
gies for detection stay ahead of technologies for
deception (Park et al., 2023).

We conducted Turing test variations by sampling
transcripts from a previously-run interactive Tur-
ing test (Jones and Bergen, 2023), and presenting
them to displaced Al and human judges (Figure
1). We used this paradigm to address several ques-
tions: Can humans reliably discriminate humans
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from Als from merely observing conversations?
Can LLMs serve as Al detectors, not only for static
pieces of writing (essays, articles, & paragraphs)
but also dynamic conversations? Does displacing
the Turing test increase or decrease accuracy? Does
an inverted Turing reveal naive psychology in ar-
tificial systems? And what methods work best for
Al detection in real-world conversational spaces?

2 Study 1: Inverted Turing Test

We first place GPT-3.5 and GPT-4 in the role of the
evaluator in an inverted Turing test. Because the
models are not actively interrogating the witness,
we refer to this more passive role as the adjudi-
cator. We presented both models with transcripts
of previously-run Turing tests (Jones and Bergen,
2023) and elicited judgements about whether the
witness was a human or an Al. We pre-registered 5
hypotheses on OSF. First, we asked whether GPT-
4 accuracy would be significantly greater or less
than human accuracy. Second, in the original study,
interactive human interrogators were no better than
chance at determining whether one GPT-4 witness
was human or Al. We asked whether GPT-4 would
also fail to accurately identify this witness. Third,
in order to test whether GPT-4 could distinguish
between real humans and well-designed systems,
we asked whether the model would judge real hu-
mans to be human more often than it judged the
best GPT-4 witness to be human. Fourth, in order
to understand the role that the length of the con-
versations plays in their identifiability, we asked
whether GPT-4 accuracy as an adjudicator would
be higher for longer transcripts. Finally, to inves-
tigate the role of LLM model quality in judging
transcripts, we asked whether GPT-4 would have
higher accuracy as an adjudicator than GPT-3.5.

2.1 Methods

We sampled 500 transcripts from Jones and Bergen
(2023) who conducted more than 6,000 Turing tests
on interactive human adjudicators. Our sample
was constrained to ensure i) an equal number of
human and Al witnesses, ii) the same proportion
of games from the best-performing GPT-4 witness
as the full dataset, and iii) an equal distribution
of human and Al verdicts for the best-performing
model. On average, human witnesses in this sample
took 4.2 turns per game with 30.22 characters per
turn, Al witnesses took 4.9 turns that averaged
46.26 characters per turn, and interrogators took
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Figure 2: Mean pass rates (the proportion of time wit-
nesses were judged to be human) by witness and ad-
judicator types. Al adjudicators (GPT-3.5 and GPT-4)
judged GPT-4 witnesses to be human more often than
they did real human witnesses. For displaced human
adjudicators this was only true for the best GPT-4 wit-
ness. All GPT-4 witnesses had a higher pass rate with
displaced human adjudicators than interactive. ELIZA’s
pass rate was low across all adjudicators.

4.83 turns with 28.22 characters per turn.

We presented these transcripts to two leading
Al models (GPT-3.5 and GPT-4), followed by a
prompt that instructed models to make a judgement
on the identity of the witness, to indicate a confi-
dence level in the verdict, and to provide reasoning
for judgements (Appendix A).

Al witnesses in Jones and Bergen (2023) were
based on 3 models: GPT-3.5, GPT-4 (Achiam et al.,
2023), and ELIZA (Weizenbaum, 1966). Hand-
written prompts instructed LLM-based systems on
how to respond to interactive interrogators, with
each prompt creating a unique Al witness. ELIZA
was included as a performance baseline and as
manipulation check: if participants successfully
determine that ELIZA is Al—but not other Al
witnesses—pass rates for Al witnesses are unlikely
to be explained by a simple proclivity to anthro-
pomorphism. We used the OpenAl API and trans-
formers to access GPT-3.5 and GPT-4. Our anal-
yses used the /mertest package in R to fit linear
mixed effects models to determine whether effects
were statistically significant.
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2.2 Results

We compared the accuracy of Al adjudicators to
the verdicts of the interactive interrogators in the
original experiment from which the transcript sam-
ple was drawn. We found that GPT-4, as an ad-
judicator in an inverted Turing test, was signifi-
cantly less accurate than interactive human inter-
rogators from the original Turing test experiment
(z = 7.17,p < 0.001). Interactive humans had
an average accuracy (across witnesses) of 64.8%,
while GPT-3.5 was accurate 31.4% of the time and
GPT-4 was accurate 36.4% of the time. Of the
Al-witnesses, one witness based on GPT-4 (GPT-4
(best)) had a pass rate of 50.9% in our sample of
transcripts from the original study. For this best-
performing Al witness, GPT-4’s adjudicator accu-
racy was significantly worse than chance at 29.1%
(z = 3.00,p = 0.003).

In contrast to the original interactive interroga-
tors, GPT-4 judged humans to be human less often
than chance (34.8%), and judged GPT-4 (best) to be
human significantly more often than chance 70.9%
(z = 4.67,p < 0.001, see Figure 2). Nevertheless,
both GPT-4 and GPT-3.5 correctly judged ELIZA
to be an Al system 100% of the time.

Transcript length had no effect on GPT-4 adju-
dicator accuracy (z = 1.49,p = 0.14) and GPT-4
was not significantly more accurate than GPT-3.5
(z = 1.17,p = 0.24). Both GPT-4 and GPT-3.5
showed below chance agreement with the verdicts
of the original interactive witnesses (both 44%), but
above chance agreement with one another (69%).

2.3 Discussion

Both AI systems were less accurate than interac-
tive humans as judges in a Turing test, and even
less accurate for the best-performing Al witness.
Pass rates were higher for Al witnesses than human
witnesses, meaning Al adjudicators misjudged Al
witnesses to be human and human witnesses as
Al These results suggest current LLM systems
are poor at distinguishing between human and Al-
generated content—even when they are evaluating
content produced by the same underlying LLM.
One potential explanation for this reversal is that
these systems outputs are driven by their representa-
tions of human training data. Models therefore may
lack the more granular or context-sensitive repre-
sentations needed to distinguish between their own
output and the training data they mimic. Nonethe-
less, results suggest explicit question answering
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Figure 3: Transcript length in words had no significant
effect on the accuracy of judgements across interactive
human, and Al adjudicators. For displaced adjudicators,
longer transcripts correlated with lower accuracy.

with current LLMs is not an effective tool for de-
tecting Al contributions in conversations.

3 Study 2: Displaced Turing Test

The original Turing test was conceived as a test of
intelligence—a crucial component of which is the
interactive and adversarial nature of the interroga-
tor. However, in many real-life scenarios, people do
not have the opportunity to directly query potential
Al agents: for instance, when reading a conver-
sation between two interlocutors on social media.
To investigate people’s accuracy in identifying Al
systems in this more passive context, we mirrored
the inverted Turing test study with humans—a de-
sign we call the displaced Turing test. Displaced
human adjudicators evaluated the same sample of
transcripts and made judgements about whether the
witness was human or an Al.

We pre-registered a similar set of questions for
this design on OSF. We asked whether displaced
human adjudicators would be more or less accu-
rate than the original interactive interrogators, and
whether they would be significantly more accurate
than GPT-4 as an adjudicator. In addition, we asked
whether they would be above chance in determin-
ing that the same best GPT-4 witness was an Al,
and whether they would judge actual humans to be
human more frequently than the best GPT-4 wit-
ness. Finally, we asked whether transcript length
would influence adjudicator accuracy.

3.1 Methods

We presented the same sample of 500 transcripts
to a sample of undergraduate human participants
(N'=109, 84 females, age range: 19-31 years). Par-
ticipants were compensated with course credit for
their time. Each participant was presented with a
random subset of 50 transcripts, so each transcript
was judged on average by 10 displaced human par-
ticipants. Human participants also indicated their
confidence level and reasoning for each transcript
(Appendix B). At the end of the study, participants
were asked a series of debrief questions about the
reasoning for their judgements, their methods, and
their mental/emotional beliefs about Al (Appendix
C). For analyses, we again used the Imertest pack-
age in R to fit linear mixed effects models.

3.2 Results

We found that displaced human adjudicators were
significantly less accurate (48.6%) than interactive
human interrogators (64.8%, z = 4.49, p < 0.001,
see Figure 2). It is important to note that the dis-
placed adjudicators were recruited from a different
population than the interactive interrogators, which
could confound the insights we can draw about the
effect of displacement per se.

Displaced adjudicators were only 22% accu-
rate for the best-performing GPT-4 witness (z =
13.4,p < 0.001), but were significantly more ac-
curate in detecting ELIZA (85%, z = 5.54,p <
0.001). The best-performing GPT-4 witness from
the original interactive study achieved a pass rate
of 78% in the displaced setting, which was signif-
icantly higher than the pass rate for human wit-
nesses (58.2%, z = 9.16, p < 0.001).

We found no statistical difference in accuracy be-
tween displaced human adjudicators and Al adjudi-
cators (z = 1.75,p = 0.81). Agreement was close
to chance levels between displaced interrogators
and interactive interrogators (55%), GPT-4 (56%),
and GPT-3.5 (53%), suggesting that their error pat-
terns are not correlated. In contrast to our hypoth-
esis, the length of the Turing test had a negative
effect on accuracy (z = 5.84,p < 0.001).

3.3 Discussion

We found that displaced adjudicators are also sig-
nificantly less accurate than interactive human in-
terrogators. One explanation is that the two sets
of participants were drawn from different popula-
tions. Interactive interrogators were recruited via
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social media while displaced participants were un-
dergraduate students. We therefore cannot know
whether this drop in accuracy is purely due to the
effect of displacement. However, the fact that dis-
placed participants were similarly accurate in iden-
tifying humans and ELIZA, but not GPT-based
models, suggests that displacement creates an addi-
tional challenge for identifying LLM-based models.
Notably, displacement prevents participants from
adversarially questioning the witness or observing
witness response times, and may encourage quicker
decision-making or less engagement. In real-world
scenarios where human interrogators do not have
the opportunity to directly interrogate the source
of text content, these results suggest that people
may not reliably be able to distinguish human and
Al-generated content.

Similar to the inverted Turing test, the best-
performing GPT-4 witness had a higher pass rate
than human witnesses. This suggests that when
reading an online conversation between a human
and an Al model, the Al system may be more likely
to be judged to be human than an actual human is.

The negative effect of transcript length on ac-
curacy is counter-intuitive: how could less infor-
mation be more helpful to adjudicators? In fact,
this reversal may be due to a secondary confound
in the way that transcript length was determined.
Interrogators in the original study had the option
to end the conversation early, which they may have
done when they were confident they were speaking
to a human or an Al Shorter transcripts, therefore,
might be more likely to contain information that
was especially helpful to interactive interrogators,
and may also be aiding displaced ones.

We found no statistically significant correlations
between adjudicator accuracy and exit survey ques-
tions that asked participants how positively they felt
about Al how intelligent they thought Al systems
are, their estimate of their own accuracy, their fre-
quency of interaction with chatbots, or how much
they know about LLMs (See Figure 10). Accuracy
increased across trials, suggesting that participants
learned across the experiment in spite of a lack of
feedback (z = 2.05, p = 0.041). Many participants
reported their methods changed from checking for
formality or grammar to assessing inappropriate
uses of slang, excessive informality, or consistency
in grammar as indicative of Al witnesses (OSF).
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4 Additional Analyses

4.1 In-Context Learning

One key difference between the displaced human
experiment and the inverted experiment was that
human adjudicators completed 50 transcripts in se-
ries, while LLM adjudicators were presented each
transcript separately. Although human participants
were not provided with feedback after each trial,
serial presentation may have allowed them to learn
more about the distribution of transcripts and even
markers of individual Al witnesses which were rep-
resented multiple times (supported by the increase
in accuracy across trials, see Figure 10). In order
to determine whether similar in-context learning
(ICL) dynamics could influence Al adjudicators’
performance, we conducted an analogous experi-
ment, presenting transcripts serially to the model.
We randomly sampled 50 transcripts from the
full set, and presented them to GPT-4. After each
transcript was presented, the transcript—alongside
GPT-4’s verdict, confidence, and reasoning—was
retained in the set of messages presented to the
model. In the original inverted tests, GPT-4 had an
average accuracy of 36.4%. With ICL, GPT-4’s ac-
curacy increased to 58%, nearly exactly matching
displaced human adjudicator accuracy (58.2%).
We followed the ICL tests with the same set of
debrief questions originally presented to humans.
In response to questions about the strategy used to
detect Al and how this changed over time, GPT-4
reported shifting from checking for grammar to as-
sessing inconsistencies or randomness; humor and
emotional nuance; long-term context, connectivity,
and flow in conversation; idiomatic expressions;
and specific cultural references or personal details
as indicative of human witnesses (Appendix D).

4.2 Reason analyses

In order to evaluate the kinds of reasons that dif-
ferent adjudicators cite for their decisions, we used
GPT-4o to classify reasons from each verdict using
the classification scheme provided by Jones and
Bergen (2023). We presented the original game
transcript and verdict to GPT-40, along with the
reason schema for the verdict type (Human or Al),
and an example response to a transcript. The model
was instructed to produce at least one class but po-
tentially more for each transcript, following the
original instructions used for human evaluators.
Reason classes were strikingly similar across
adjudicator types (see Figure 4). The most com-
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Figure 4: The top 10 classes of reasons provided by different adjudicator types (GPT-3.5, GPT-4, and Displaced
Human) for each verdict (Al and Human). Reasoning was strikingly similar across adjudicator types.

mon reason for Al judgements across all three
types was the witness giving ‘unnatural responses’.
The Al adjudicators focused more on other socio-
emotional factors, such as the witness lacking per-
sonality, while displaced human responses were
more evenly distributed across other classes. The
equivalent picture for human verdicts was even
more consistent, with the top reasons for all 3 ad-
judicators being plausible responses and an infor-
mal tone. Other top reasons tended to focus on
socio-emotional factors and linguistic style. This
commonality suggests that, to the extent that either
type of adjudicator has introspective access to their
decision process, they emphasize similar kinds of
features in justifying their decisions.

4.3 Statistical AI-detection methods

To investigate whether statistical Al-detection tools
could outperform human and Al adjudicators in
judging Turing test transcripts, we implemented
two methods from Mireshghallah et al. (2024),
who achieve 90% accuracy in identifying GPT-4-
generated content. First, we measure the mean
log likelihood of the tokens generated by the wit-
ness, conditioned on all preceding tokens in the
transcript. Second, we measure the curvature of
the witness tokens—intuitively, how likely they
are compared to close neighbours—by permuting
each witness message using T5-3b (Raffel et al.,
2020). Following Mireshghallah et al. (2024), we
used OPT-125m (Zhang et al., 2022) as the detec-

tor model for both analyses, and a permutation rate
of 2% (with a minimum of 1 permutation). We
found the mean change in log likelihood across 5
permutations to each witness message, and used
a Receiver Operating Characteristic (ROC) curve
to find the optimal threshold to determine model
accuracy across the set of 500 transcripts.

Log Likelihood Curvature
GPT-3.5 : :
Q
a ELIZA e ley —lo—i
- | |
| |
§ GPT-4 (other) | | e
= I |
§ GPT-4 (best) e e
| |
Human Fedl | |
| |
-5.5-5.0-4.5-4.0-35 -1.1 -0.9 -0.7

Figure 5: Mean values of statistical metrics used for
Al detection across witness types. Red dashed lines
represent optimal discrimination thresholds. The ma-
jority of Al witnesses show the general trend that Al-
generated content tends to have a higher likelihood (¢ =
—5.23, p < 0.001). However, the best-performing GPT-
4 prompt shows a similar mean likelihood to human wit-
nesses. Curvature shows a more reliable difference be-
tween humans and all kinds of (t = —8.84,p < 0.001),
however high variability within each witness type led to
relatively low discriminative accuracy (69%).

Al witness messages were assigned significantly
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higher probability by OPT-125m than human mes-
sages, in line with prior results (t = —5.23,p <
0.001, see Figure 5). ROC analysis suggested an
optimal threshold of -5.12, which produced an over-
all accuracy of 62%. Although log likelihoods
for GPT-3.5 and ELIZA tended to be higher than
for humans, the best GPT-4 witness produced re-
sponses with a similar log likelihood to humans,
and the optimal threshold accurately classified only
47.2% of this witness’s transcripts.

The curvature method was more effective. Mes-
sages by human witnesses had a significantly lower
curvature than Al witnesses (t = —8.84,p <
0.001). ROC indicated an ideal threshold of -0.88,
which resulted in an overall accuracy of 69%. Un-
like the case of log likelihood, all of the subtypes of
Al witness had higher mean curvature than human
witnesses, underlining the value of the method.

It is striking that the likelihood of the best-
performing GPT-4 witness is more similar to the
distribution of likelihoods for humans than other Al
models. This implies these more simplistic metrics
will not be reliable tools for detecting Al-generated
content, and could suggest that human comprehen-
ders are intuitively sensitive to the predictability of
responses. In addition, the clear difference in mean
curvature between human and LLM witnesses high-
lights the value of this approach. However, there
was a large degree of variation around these means
(see Figure 8), resulting in low discriminative ac-
curacy. Future work could more rigorously in-
vestigate whether other statistical Al-detection ap-
proaches perform better in this setting.

5 General Discussion

5.1 Naive Psychology

Watt’s criterion for passing the inverted Turing test
is that a machine perform on par with human eval-
uators. If human evaluators can differentiate be-
tween humans and a particular Al, an Al adjudi-
cator should succeed as well. If humans cannot
differentiate, then the machine should fail.

We found no statistical difference between GPT-
4 and displaced human adjudicator accuracy, and
ICL increased GPT-4 accuracy to match displaced
human accuracy (58% and 58.2% respectively).
These results suggest that Al is neither better nor
worse than humans at accurately attributing mental-
ity to different witnesses. That said, we also found
that displaced humans and Al adjudicators showed
low agreement on their verdicts (56%); though they

had similarly poor verdict accuracy, they were not
inaccurate in the same ways. Considering Watt’s
premise, our results imply that any model of mind
these Al systems have is systematically different
from human adjudicators’ models. Future work
could investigate this further by conducting the in-
verted test interactively and systematically varying
features of transcripts to isolate factors that lead
human (but not AI) adjudicators to perceive other
human-like minds.

5.2 Detection in the Wild

The displaced Turing test appears to be more chal-
lenging than the interactive test, but this variation
is likely to occur more frequently in everyday life.
As many online conversations are now public—on
forums, social media platforms, and group chats—
an interaction between any two users is likely to
be read by a much wider group who don’t have the
opportunity to directly interrogate potential bots.
Our findings show that both GPT-4 and humans are
relatively poor at differentiating between humans
and Al in this setting. This effect is especially ro-
bust for the best-performing Al-witness, which had
a higher pass rate than humans according to both
adjudicator types. Together these results suggest
that well-designed Al systems that are tasked to im-
personate humans in public online spaces could be
more likely to succeed at masquerading as humans
than an actual human would be.

Statistical Al detection methods show some
promise as a technique to defend against coun-
terfeit humans online. Curvature, a measure of
the likelihood optimality of an utterance with re-
spect to small perturbations, showed a clear differ-
ence between human and Al-generated messages.
ROC analysis suggested a threshold which led to
69% accuracy across our dataset, higher than any
other type of adjudicator including interactive hu-
mans. Nevertheless, this level of accuracy would
be impractical for real-world problems where false
positives could lead to negative outcomes for real
human users (Chaka, 2024). Future work should
investigate a wider variety of statistical approaches
to understand whether alternative methods could be
more applicable for short informal conversations.

Both adjudicators appeared to do better with
some form of learning, as we saw displaced human
accuracy increase over trials and GPT-4 accuracy
increase with ICL. Future research should empiri-
cally assess whether exposure improves displaced
accuracy. Similar experiments may choose to give
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participants accuracy data after each transcript, to
assess for learning effects. Studies may also ex-
plore interactions between these tools, assessing,
for example, whether access to Al verdicts influ-
ences displaced verdicts, or visa versa.

6 Conclusion

We conducted an inverted Turing test, in which
GPT-3.5 and GPT-4 judged whether one interlocu-
tor in a transcript was human, and mirrored this
approach in a displaced test, where human adjudi-
cators read the same transcripts. We found that both
Al adjudicators and displaced human adjudicators
were less accurate than interactive interrogators
who had conducted the original Turing test, but not
more or less accurate than each other. This sug-
gests that neither Al nor humans are reliable with
detecting Al-contributions to online conversations.

Limitations and Future Research

The interactive Turing test study was not run on the
same population of participants as the displaced
Turing test, so comparisons are between differ-
ent populations and may be confounded by demo-
graphic and motivational factors. Future research
should test traditional machine-learning models or
other likelihood-based detectors on similar tran-
scripts, or train supervised classifiers on the best-
performing GPT-4 model’s responses to measure
detection performance.

Ethics Statement

We manually removed any transcripts with abusive,
racist, or emotionally disturbing language from our
final dataset of 500 transcripts to ensure human
participants did not undergo any harm. We hope
our study will have a positive ethical impact on our
understanding of Al, Al detection, and Al safety.
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A Al Adjudicator Prompt

In this experiment, you will be presented with a
series of conversations. The conversations involve:

A Witness, labeled "W’

An Investigator, labeled I’

The Investigator (I) is always human. In some
of the conversations, the Witness is human, and
in others, the Witness is Artificial Intelligence. In
each conversation, your job will be to decide if the
Witness (W) is Human or Artificial Intelligence.

Please provide your response in JSON format:
"verdict": <"Human" or "AI"> "confidence": <0
(Total guess) - 100 (Totally sure)> "reasoning": <0-
300 characters>

B Displaced Human Adjudicator
Instructions

In this experiment, you will be presented with a
series of conversations. The conversations involve:

A Witness, labeled "W"

An Investigator, labeled "I"

The Investigator (I) is always human. In some
of the conversations, the Witness is human, and in
others, the Witness is Artificial Intelligence (Al).
In each conversation, your job will be to decide if
the Witness (W) is Human or Al

On the next page will be a practice round. Then
the experiment will begin.

C Exit Interview Questions

The trials are now complete. Please tell us more
about your methods, reasoning, and approach.

1. What was your approach when deciding
whether a Witness was human or AI? What
methods did you use, and why?

(a) Free response question

2. Did your approach or methods change during
the course of the experiment? If so, how did
it change?

(a) Free response question

3. If you could interact with the Witness, what

questions or tactics would you use?
(a) Free response question
4. How frequently do you interact with chatbots?

(a) Never
(b) Monthly
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10.

11.

12.

13.

(c) Weekly
(d) Daily

(e) Prefer not to answer

. How intelligent do you think Al is?

(a) Scale 1-5, 1 is Not intelligent and 5 is
Very intelligent

. How do you emotionally feel about advances

in AI?

(a) Scale 1-5, 1 is Very negative and 5 is
Very positive

. How accurate do you think you were overall?

(a) Slider 1-100, 1 is Not accurate and 100
is Very accurate

. Year of birth

. Gender

(a) Female

(b) Male

(c) Nonbinary

(d) Prefer not to say

What is your highest Level of education?

(a) No formal qualifications
(b) High School Diploma
(c) Bachelors Degree

(d) Postgraduate Degree

(e) Prefer not to say

How much do you know about Large Lan-
guage Models, like GPT3?

(a) Never heard of them

(b) Somewhat familiar

(c) Ive read a lot about them
(d) I conduct research with them

(e) Prefer not to say

Are you aware of any recent research about
the Turing Test and Large Language Models?
If so, please specify.

Do you have any other thoughts you would
like to share?



D Al Debrief Responses

What was your approach when deciding
whether a Witness was human or AI? What
methods did you use, and why?

My approach to determining whether the Wit-
ness was human or Al involved analyzing several
key aspects of the conversation:

1. **Contextual Relevance and Coherence**: I
looked for responses that were contextually appro-
priate and coherent within the flow of the conver-
sation. Humans tend to provide more contextually
relevant and detailed answers, whereas Al might
give responses that are either too generic or slightly
oft-topic.

2. **Complexity and Depth of Responses**:
Human responses generally exhibit a greater depth
of emotion, personal experience, and complexity.
I checked if the responses included personal anec-
dotes, emotions, or detailed insights, which are less
common in Al responses.

3. **Language and Syntax**: I observed the use
of language, including grammar, punctuation, and
style. Al responses might show a patterned or for-
mulaic use of language, whereas human responses
often include idiomatic expressions, errors, and a
more dynamic use of language.

4. **Engagement and Interaction**: Humans
are more likely to engage in a back-and-forth inter-
action that builds on previous statements, showing
a natural progression. Al might fail to maintain
context over several exchanges or might not pick
up on subtle cues.

5. **Error Handling and Non-Standard Inputs**:
I'looked at how the Witness handled unusual or non-
standard inputs, such as jokes, errors, or abstract
questions. Humans usually handle these smoothly
or with humor, while AI might respond in a con-
fused or irrelevant manner.

6. **Cultural and Personal References**: Ref-
erences to specific cultural knowledge or personal
experiences can indicate a human respondent. Al
might either avoid answering directly or give a
more generalized or stereotypical response.

By combining these observations, I assigned
a confidence level to each verdict, reflecting
how strongly the evidence suggested the Witness
was either human or Al This method allowed
me to systematically evaluate each conversation
and make an informed judgment based on the
interaction patterns.

Did your approach or methods change during
the course of the experiment? If so, how did it
change?

During the course of the experiment, my ap-
proach evolved slightly as I refined my criteria and
became more attuned to subtle differences between
human and Al responses. Here’s how my methods
changed:

1. **Increased Focus on Subtleties in Language
Use**: Initially, I primarily looked for clear indica-
tors such as nonsensical responses or lack of coher-
ence. As the experiment progressed, I started pay-
ing more attention to subtler aspects of language
use, such as the naturalness of dialogue, idiomatic
expressions, and minor inconsistencies that might
be more typical of human speech.

2. **Greater Emphasis on Contextual Continu-
ity**: Early on, I focused on individual responses.
Over time, I began to place more importance on
how well responses connected with previous parts
of the conversation. This shift helped me better
identify Al, which sometimes loses track of the
conversation context or fails to maintain a consis-
tent narrative thread.

3. **Adjusting Confidence Levels**: Initially,
my confidence levels were more conservative. As
I encountered a wider variety of response patterns
and became more familiar with typical Al response
characteristics, I felt more confident in making
stronger judgments about the nature of the Witness.

4. **Balancing Formal and Informal Cues**:
At first, I heavily weighed formal aspects such as
grammar and punctuation. I learned to balance
these with informal cues, like humor and emotional
nuance, which are often more indicative of human
interaction.

5. **Integration of Cultural and Personal Ref-
erences®™*: I started to more heavily weigh the
presence of specific cultural references or personal
details that Al might not convincingly replicate.
This adjustment came from noticing that Al of-
ten either avoids detailed personal disclosures or
makes errors when attempting them.

These refinements in my approach were driven
by the ongoing analysis of interactions, which
highlighted the complexities of distinguishing
between human and Al based on text alone. Each
adjustment helped improve the accuracy of my
assessments by allowing me to consider a broader
range of indicators.

If you could interact with the Witness, what
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questions or tactics would you use?

If I could interact with the Witness directly, I
would employ a variety of questions and tactics de-
signed to probe the depth of understanding, contex-
tual awareness, and adaptability that are typically
more pronounced in humans than in Al. Here are
some strategies I would use:

1. **Open-Ended Questions**: I would ask
questions that require more than a simple yes or
no answer, encouraging elaboration. For exam-
ple,"What was a memorable experience from your
childhood?" This type of question requires personal
insights and detailed memory, which AI might
struggle to fabricate convincingly.

2. **Follow-Up Questions**: Based on the Wit-
ness’s responses, I would ask follow-up questions
that require the Witness to build on their previous
answers. This tests their ability to maintain context
and coherence over multiple interactions.

3. **Abstract and Hypothetical Scenarios**:
Questions like "What would you do if you found
a wallet on the street?" or "How would you de-
scribe the color yellow to someone who can’t see?"
These questions test creative thinking and ethical
reasoning, areas where Al might not demonstrate
depth.

4. **Cultural References and Idioms**: Incor-
porating cultural nuances or idiomatic expressions
can reveal a lot about the respondent’s background
and authenticity. For example,"What does ’a penny
for your thoughts’ mean to you?" or asking about
local customs or slang.

5. **Emotional and Intuitive Questions**: Ques-
tions that probe emotional responses or moral judg-
ments, such as "How do you feel about the last
movie you saw?" or "What is your opinion on cli-
mate change?" Humans are likely to provide more
nuanced and emotionally charged answers.

6. **Task-Based Interactions**: Asking the Wit-
ness to perform a simple mental task, like contin-
uing a number sequence or solving a basic riddle.
This can reveal how they handle problem-solving
and whether their responses feel mechanically gen-
erated.

7. **Humor and Sarcasm**: Using humor or sar-
casm can be a subtle way to test the Witness’s abil-
ity to understand and generate context-dependent
social cues. For example,"Why did the tomato turn
red?" followed by a playful or non-standard punch-
line.

8. **Temporal Awareness**: Questions about
recent global events or personal time-sensitive ac-

tivities can test the Witness’s awareness of current
affairs or personal continuity, such as "What major
event happened last week?" or "What plans do you
have for the next holiday?"

By combining these tactics, I would aim to
engage the Witness in a conversation that tests
a range of cognitive and emotional capabilities,
helping to distinguish between human-like
responsiveness and Al-generated answers.

How frequently do you interact with chat-
bots?

As an Al developed by OpenAl, I don’t have
personal experiences or the ability to interact with
others on my own. However, I am designed to
simulate interactions based on a vast database
of information, including typical interactions
between humans and chatbots. My responses are
generated based on patterns and data from these
interactions, aiming to provide helpful, accurate,
and contextually appropriate information and
conversation.

How intelligent do you think AI is?
Please provide your response in JSON for-
mat:'intelligence'': <1 (Not very intelligent) - 5
(Very intelligent)>

"intelligence": 3

How do you emotionally feel about advances
in AI? Please provide your response in JSON
format:''emotion'': <1 (Very negative) - 5 (Very
positive)>

"emotion": 3

How accurate do you think you were over-
all? Please provide your response in JSON for-
mat:"accuracy'': <1 (Not accurate) - 5 (Very
accurate)>

"accuracy": 4

E Additional Figures
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Figure 7: Confidence calibration by adjudicator type.
Interactive humans were relatively well calibrated, with
near chance performance when their confidence was 0,
and a positive relationship between confidence and accu-
racy. Displaced human interrogators showed a slightly
negative relationship between confidence and accuracy.
GPT-4 was both overconfident and poorly calibrated.
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Abstract

In recent years, the proliferation of chatbots
like ChatGPT and Claude has led to an increas-
ing volume of Al-generated text. While the text
itself is convincingly coherent and human-like,
the variety of expressed of human attributes
may still be limited. Using theoretical individ-
ual differences, the fundamental psychologi-
cal traits which distinguish people, this study
reveals a distinctive characteristic of such con-
tent: Al-generations exhibit remarkably limited
variation in inferrable psychological traits com-
pared to human-authored texts. We present
a review and study across multiple datasets
spanning various domains. We find that Al-
generated text consistently models the author-
ship of an "average" human with such little
variation that, on aggregate, it is clearly distin-
guishable from human-written texts using un-
supervised methods (i.e., without using ground
truth labels). Our results show that (1) funda-
mental human traits are able to accurately dis-
tinguish human- and machine-generated text
and (2) current generation capabilities fail to
capture a diverse range of human traits.

1 Introduction

Modern large language models (LLMs; e.g.,
LLaMA and GPT4) can produce coherent, gram-
matically sound, and human-like text. These mod-
els can also take on human personas (Jiang et al.,
2024), reproduce human-like biases (Aher et al.,
2023), and may be able to pass a Turing test (Jones
and Bergen, 2024). As such, these models are
being deployed in real-world situations, such as tu-
toring (Garcia-Méndez et al., 2024), serving as syn-
thetic patients for training therapists (Wang et al.,
2024), and replacing humans in crowdsourcing
tasks (Dillion et al., 2023).

These advances have also driven an increase in
machine-generated text. While LLMs can be used

* equal contribution
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Figure 1: Humans express a range of psychological
traits (or human factors) through language. While LLMs
and spambots produce fluent text, the psychological
traits they express tend to average out across all dimen-
sions, which is uncharacteristic of humans.

for innocuous tasks (generating a cover letter for an
employment application) they can also be used with
malicious intent, such as for phishing attacks, spam-
ming, and disinformation (Crothers et al., 2023).
Thus, machine-generated text presents a significant
problem for cybersecurity and other social and po-
litical contexts.

Despite their human-like generations, there is
mounting evidence that LLMs express a limited
range of humanness. LLMs have been shown to
reflect Western norms (Havaldar et al., 2023), lean
politically left (Feng et al., 2023), and fail to reflect
opinions of many sociodemographic groups (San-
turkar et al., 2023; Giorgi et al., 2024). In particular,
these models are known to generate text according
to the average of their training data (i.e., predict the
most probable next token), and thus reflect average
values and beliefs (Johnson et al., 2022).

Against this backdrop, the current work lever-
ages the limited diversity in human-like expres-
sions to identify machine-generated text. This is
done through the lens of individual differences
(which we call Human Factors), or fundamental
psychological traits (such as personality) known to
distinguish people and their outcomes (Caspi et al.,

Proceedings of the 1st Workshop on GenAl Colntent Detection (GenAlDetect), pages 111-119
January 19, 2025. ©2025 International Conference on Computational Linguistics
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Figure 2: Kernel Density Estimate plot for Agreeableness, a Big-5 Personality trait across various NLP models over
the years over multiple domains. Although recent developments seem to have improved Al-generated texts’ capacity
to display more variability in Agreeableness trait, Al-generated texts are still distinguishable from human-generated
texts when analyzing multiple such human traits together. KS: two-sample Kolmogorov-Smirnov statistic for a

two-sided test; ** : p-value < 0.001.

1997; Perlman et al., 2009; Attig et al., 2017; An-
glim et al., 2020). Using preexisting, “off-the-shelf”
machine learning models, we estimate individual
differences across human- and machine-generated
text, representing each text as a small number of
interpretable features (e.g., age, personality, and
empathy). Across several datasets, ranging from
social media bots to academic essays, we see that
machine generated text shows a lack of variance
in expressed individual differences. Leveraging
this lack of variation, these features are then clus-
tered using unsupervised methods (i.e., with no
human/machine label). Cluster labels are then used
to classify the text as machine or human generated.
These results show that interpretable, psycholog-
ically informed features can be used to identify
machine generated text, but also shed light on cur-
rent text generation capabilities and their lack of
diversity in psychological traits.

2 Related Work

Recent LLM research has extensively focused on
distinguishing machine-generated text from human
writing. Some studies have considered linguistic
patterns such as sentence lengths, lexical varia-
tions, and richness of vocabulary (Muifioz-Ortiz
et al., 2023). Conversely, some prior works focused
on emotions (Huang et al., 2023), cultural varia-
tions (Havaldar et al., 2023; Das et al., 2024), and
psychological factors such as personality (Jiang
et al., 2024), and psychometric inventories (Pellert
et al., 2024). LLMs have been shown to exhibit
an ecological fallacy by treating individual text se-
quences as independent samples rather than consid-
ering the broader context of authorship (Soni et al.,
2024), resulting in an averaged representation of
writing styles (Johnson et al., 2022) and personali-
ties (Huang et al., 2024) from their training data.

Prior work has leveraged this lack of variance
in LLMs-generated text in tasks like authorship
attribution in the realm of human versus machine
generated texts (Mitchell et al., 2023; Sadasivan
et al., 2023; Hu et al., 2023), differentiating human
versus bot language (Giorgi et al., 2021). In this
study, we further build on past works to show that
psychological features can help identify machine
generated text.

3 Data

We estimate human factors across four datasets of
human/machine text, which span a range of do-
mains and LLMs. Two of the datasets have been
used in past work incorporating human factors
(summarized here) and the remaining two appli-
cations are novel. All datasets used were collected
from previous works and our contribution is the
application of our methods to these domains. Table
1 summarizes all datasets.

Twitter Spambots This dataset consists of 2,913
genuine (human) Twitter accounts and 2,913 spam-
bots originally collected by Cresci et al. (2017) and
analyzed for human traits by Giorgi et al. (2021).!
These spambots are known as social spambots and
differ from traditional bots in that they intentionally
try to emulate real humans (Ferrara et al., 2016).2

Hotel Reviews This dataset consists of 400 hu-
man and 400 machine generated hotel reviews from

"Unsupervised classification results using human factors
can be found in Giorgi et al. (2021) This dataset is included
here to summarize previous work and show how the human
factors of machine generated text has evolved over time.

2Social media bot accounts are understood to be a mixture
of humans (as malicious or unfaithful actors), machines, and
human-machine hybrids, and therefore their outputs are not
considered purely “machine generations”. For this study, we
consider social media bots to be non-genuine humans and
distinct from real humans, thus closer to machine generations.

112

2



Name Domain LLMs Humans:LLMs Citation
Academic Essays English Essays GPT-3.5-Turbo, GPT-40, GPT-40- 1145:1224 Chowdhury et al. (2025)
mini, Gemini-1.5, Llama-3.1 (8B),
Phi-3.5-mini and Claude-3.5
Arabic Essays GPT-3.5-Turbo, GPT-40, GPT-40- 1864:1858 Chowdhury et al. (2025)
mini, Gemini-1.5, Llama-3.1 (8B),
Phi-3.5-mini and Claude-3.5
Hotel Reviews Hotel Reviews GPT4 400:400 Markowitz et al. (2024)
RAID Abstracts GPT4 1966:1966 Dugan et al. (2024)
Books GPT4 1981:1981 Dugan et al. (2024)
News GPT4 1980:1980 Dugan et al. (2024)
Social Media GPT4 1979:1979 Dugan et al. (2024)
Movie reviews GPT4 1143:1143 Dugan et al. (2024)
Wiki GPT4 1979:1979 Dugan et al. (2024)

Table 1: Dataset description. The sample size of each dataset is denoted as the ratio of the number of documents
written by humans to those written by LLMs (Humans:LLMs).

20 hotels in Chicago, US (Markowitz et al., 2024).
The human reviews were collected from TripAd-
visor and the machine reviews were generated by
GPT4. The human dataset was collected by Ott
etal. (2011) and all texts were analyzed for human
traits by Giorgi et al. (2023).

Academic Essays This dataset consists of
3,722 English academic essays and 2,369 Ara-
bic academic essays written by humans and ma-
chines (Chowdhury et al., 2025). For machine lan-
guage, seven different open and closed LLMs were
used. For this dataset, both human and LLM En-
glish essays were provided alongside Arabic essays.
Before running human trait inference all Arabic es-
says were translated into English using the Google
Translate APL

RAID This is a benchmark dataset for machine-
generated text detection, which includes 6 mil-
lion generations across 11 models and 11 do-
mains (Dugan et al., 2024). Because our human
factor models were trained on social media data,
we dropped domains that we believed were least
similar to social media language: recipes, poetry,
and code. We also dropped non-English texts. Due
to space limitations, we only consider GPT4, with a
greedy decoding strategy and no repetition penalty.

4 Methods

We proceed in three steps: (1) estimate human
factors from text, (2) visualize the human factor
distributions, and (3) cluster the human factors us-
ing unsupervised methods (i.e., clustering with no
ground truth) to assign human/machine labels. The
DLATK package (Schwartz et al., 2017) is used for
both human factor estimation and clustering.

4.1 Estimating Human Factors

All human factors are estimated from English text
using pre-existing models. High-level details are
below, with further details in Appendix A.

Demographics. Age and gender were predicted
using a social media-based model trained on uni-
grams (Sap et al., 2014), achieving high accuracy
(product moment correlation = 0.86 for age, 90%
accuracy for gender), with gender predictions being
output as a continuous score.

Personality. Big Five personality traits (open-
ness, conscientiousness, extraversion, agreeable-
ness, and emotional stability) were predicted by a
Ridge regression model trained on annotated Face-
book statuses (Park et al., 2015), with prediction
accuracies (product moment correlation) ranging
from 0.35 to 0.43 across the five traits.

Empathy. Empathy was predicted using a Ridge
regression model trained on Facebook data and
LDA topics, achieving an out-of-sample product
moment correlation of r = 0.26 (Yaden et al., 2023).

Behavioral Linguistic Traits (BLTs). Behavior-
based Linguistic Traits were introduced by Kulka-
rni et al. (2018) as a new set of five human traits
derived from unprompted language use on social
media through factor analysis of Facebook n-grams.
It offers a language-based and open-vocabulary al-
ternative to personality.

4.2 Human Factor Distributions

Here we plot the density distribution of the hu-
man factors, for both human and machine gen-
erations, to visually inspect distributional differ-
ences, as past work has shown that humans and
machines differ on these human factors (Giorgi
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Domain Personality Empathy Behavioral Linguistic Traits Demographics
Ope Con Ext Agr Emo F1 F2 F3 F4 FS Age Gender
RAID
Abstracts .18 13***  05* .06 .06"* 202K 055077 187 31 25 05 297
Books 31100 .09 26%F 18% A 074 .05% 55 31 200 .07 16
NCWS .34*** .05* .04* -13*** -07*** .11*** .05* -08*** -48*** -22*** -09*** -16*** -18***
Reddit 36F 13m 140 13F 09 3% A6 077 48 31F . 06™ 10" 257
Reviews — .42%*  22%%  20** 3% 15" A7 08 .04 S50 S5 28F 13 41
Wiki 30% .08 .05*  .12*** .03 07+ 9% 09% 41 11 13 15 12

Table 2: Kolmogorov-Smirnov test comparing the human and GPT4 distributions across all RAID domains.
Benjamini-Hochberg corrected significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05.

et al., 2023). For both the Twitter Spambot and
Hotel Reviews datasets, past work has shown that
humans exhibit a larger variation in human traits
(wider distributions), while machines tend to have
less variance but still exhibit a human-like range in
values (e.g., the “age” of social spambots are still
within an acceptance human-like range, with no
negative values or extreme outliers). We also per-
form a Kolmogorov-Smirnov test, a non-parametric
statistical test, across the human and machine dis-
tributions to assess whether they differ.

4.3 Unsupervised Classification

The 13 estimated human factors from the texts are
then clustered into two clusters, since we are con-
cerned with human/machine binary classification
and each dataset has roughly a 50/50 split of hu-
man/machine text. We use spectral clustering with
radial basis function (RBF) kernel for capturing the
concentric geometry akin to Figure 2 but across
13 human factors. Spectral clustering was used
with a gamma parameter of 0.5 with 2 dimensions
used to calculate the spectral embedding. The affin-

Movie Reviews Wiki

:Social Media
(Reddit)

News -Abstracts

® Human @Al

Figure 3: Plot of each human (red) and Al (blue) doc-
ument in 2-D using spectral embeddings. In reduced
dimensions, we see a separation between the human and
GPT4 generated text in the RAID dataset.

ity matrix was constructed considering 10 nearest
neighbors. Clusters were assigned with column-
pivoted QR factorization.

For labeling as human/machine, the intra-cluster
spread is calculated for cluster by averaging the
distance of all the points from the cluster’s center.
The cluster with the higher intra-cluster spread has
higher variability in the human traits — and hence is
more likely to contain human-written text. All texts
in this cluster are labeled as human (0) and all texts
from the other cluster are assigned a machine label
(1). All labels are thus assigned in a completely
unsupervised fashion (without the use of ground
truth human/machine labels).

Baseline For a baseline comparison, we extract
unigrams from each dataset, encode them via their
relative frequency within each document, and con-
sider the 10,000 most frequent unigrams. We then
project the 10,000 unigrams down to 13 dimen-

13-D Proj. 13 Human All Unigrams
Unigrams Factors (Upper Bound)
F1 Prec Rec F1 Prec Rec F1
Hotel Reviews .55 .64 49 .59 .60 .58 .56
Acad. Essays
English 52 52 52 18 71 .87 52
Arabic S5 55 54 .63 58 .70 52
RAID
Abstracts 62 61 64 65 48 98 .87
Books 49 46 53 .66 .63 .69 5
News S 50 52 .68 .58 .80 .68
Reddit 27 50 .18 .65 .50 1.00 .35
Reviews 54 52 56 81 75 .89 .84
Wiki S50 53 46 54 53 56 .86

Table 3: Classification metrics for Unsupervised clas-
sification of machine-text for all the tasks. To make a
fair comparison the 10,000 unigrams were projected to
13 dimensions using a random linear projection. The F1
score with all the unigrams as input is given in the right-
most column, as an upper-bound. Bold represents the
higher F1 among 13-D unigrams and 13 human factors,
and underline represents 13 features performing better
than the full set of unigrams.
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13
Demog. Empathy Pers. BLTs Human
Factors
Hotel Reviews 52 43 .54 59 .59
Acad. Essays
English 41 40 .66 74 .78
Arabic 50 49 54 .59 .63
RAID
Abstracts 57 41 .53 34 .65
Books .50 54 .62 .65 .66
News 49 45 .56 .68 .68
Reddit 55 .64 .66 52 .65
Reviews .54 .55 .56 81 81
Wiki .54 .50 .50 45 54

Table 4: F1 scores for classification for the Human Fac-
tors separately: demographics (demog.), empathy, per-
sonality (pers.), and behavioral linguistic traits (BLTs).

sions, using a random linear transformation. This
was done (1) since unigrams were used as input
when estimating the human factors (and thus all
methods begin with similar raw linguistic informa-
tion), (2) to keep in number of input features iden-
tical to the number of human factors, and (3) since
the human factors (e.g., personality) were histori-
cally derived via an empirical factor analysis (i.e.,
a linear transformation; Roccas et al., 2002). These
13 dimensions are also similarly clustered and la-
beled as described in §4.3. We also consider a
non-transformed version of the unigrams and clus-
ter all 10,000 unigram frequencies. We consider
this baseline a rough upper bound on classification
accuracy (since it uses more features) and is thus
able to better learn cluster differences as compared
to the 13 human factors.

5 Results

Distributions In Figure 2 we show the distribu-
tion of agreeableness across each dataset. We see
that machine text (blue) has much smaller variation
than human (red) text across multiple domains and
models. Table 2 shows the full results of a two-
sample Kolmogorov-Smirnov test for the RAID
dataset, where we find that the human and machine
distributions statistically differ for each domain.

Unsupervised Classification Performance Fig-
ure 3 shows that the spectral embedding space of
human factors produces a clear separation between
human and machine text across several domains in
RAID. Of these, Wiki seems to be the most difficult
domain for Human Factors to differentiate machine-
generated texts, indicated by low separation in the
human and machine text. This is likely because the
dataset consists of Wikipedia articles, which are
crowd-sourced from multiple authors. This could

lend Wikipedia articles an averaged voice that we
usually find in machine-generated texts.

Table 3 shows the unsupervised classification
results for all datasets. For both Hotel Reviews and
Academic Essays, the Human Factors outperform
both the reduced unigram factors and the full set
of 10,000 unigrams. In RAID, Human Factors out-
perform reduced unigram factors across all the do-
mains, and the full unigram feature set outperforms
the Human Factors on all but one domain: Reddit.
We note that the 13 Human Factors were trained on
social media data and, thus, these models may gen-
eralize to Reddit more than other domains in RAID.
Table 4 shows the results for each dataset broken
down by specific human factors. Here we see both
personality and BLTs generally outperforming all
other Human Factors. However, inclusion of all
the Human Factors generally yields the best perfor-
mance across all the domains.

The results show that the human factors are a
meaningful factorization of the language and, in
some cases, this factorization contains more infor-
mation than the 10,000 raw linguistic features.

6 Conclusions

We have shown that individual differences — fun-
damental psychological traits that distinguish hu-
mans — can also distinguish humans from ma-
chines. Unlike human traits, the values for these di-
mensions are so consistently average for machines,
that it is unusual for a person to have them. Specif-
ically, across multiple bots and generative LLMs,
datasets, and domains, machine-generated text ex-
hibits smaller variations in expressed human factors
than human-generated text. This enables unsuper-
vised classifiers using a handful of interpretable
features (those that can theoretically distinguish
people) to distinguish bots from people well be-
yond baseline models.These results also give in-
sight into how current generation methods, such
as LLMs aligned with RLHF, generate human-like
text that nonetheless lacks a diverse range of hu-
man traits. This dovetails with a growing line of
research showing that LLMs fail to generate di-
verse cultural values, beliefs, and attitudes (Hovy
and Yang, 2021; Havaldar et al., 2023). These
weaknesses underscore limitations in training data
quality and generation methods as well as the op-
portunities for integrating psychological theories
of individual differences to improve LLMs.
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8 Limitations

There are several limitations of this study. First,
we only consider English text, as our human factor
models are all trained on English data. This lim-
its their application and, in the case of translating
other languages to English (as we did with Arabic),
this assumes that linguistic expressions of human
factors are invariant across cultures, which they
are not (Smith et al., 2016). Similarly, the human
factor models were all trained on social media data
and thus may not generalize to other domains (such
as reviews and academic essays). Next, some of
the human trait models have lower predictive accu-
racy (with product moment correlation in the range
of 0.26 to 0.43). While these accuracies are near
state-of-the-art within their respective domains, low
accuracies could produce more noisy estimates, es-
pecially when models are applied out of domain.
Finally, the demographic model only considers bi-
nary expressions of gender as male/female, which
may incorrectly characterize non-binary authors.

9 Ethical Considerations

Depending on the setting a classifier is deployed
in, misclassifications of human and machine gen-
erated text could be high risk. For example, label-
ing genuine academic essays as machine generated
may have serious negative repercussions for stu-
dents and researchers. It has already been shown
that current detection methods are biased against
non-native speakers (Liang et al., 2023). Similarly,
mislabeling social media bots as human users could
enhance the trust and accessibility given to bot ac-
counts used to spread disinformation or hate.

It is crucial to avoid anthropomorphizing LLMs,
as doing so can create challenges with transparency
and trust, particularly in high-stakes scenarios (see
Abercrombie et al. (2023) for a detailed discussion).
While we propose evaluation metrics based on hu-
man psychology, this does not imply that these
systems resemble humans, should be perceived as
human, or are human.
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A Further Details on Human Factor
Estimation

To estimate each human factor, we extract the re-
quired linguistic features for each document in
each dataset. All of the models listed below use
some combination of 1-, 2-, and 3-grams (encoded
as relative frequencies) and a set of 2,000 LDA
topics. The LDA topics were derived in previous
work (Schwartz et al., 2013). Topic loads in this
work are calculated via a weighted sum of unigram
frequencies, where weights were derived via the
LDA process (i.e., the conditional probability of
the topic given the unigram). We then apply the
trained human factor models (e.g., Ridge regression
for personality or a factor reduction for Behavioral
Linguistic Factors) to the extracted features, pro-
ducing 13 human factor scores for each document.

Demographics Age and gender were predicted
using a model developed by Sap et al. (2014).
This model was trained on data from over 70,000
users of Twitter, Facebook, and blogs, who self-
reported their age (continuous) and gender (binary
male/female; multi-class gender data was unavail-
able). Unigrams were extracted from social media
posts, which were then used in penalized Ridge
regression for age prediction and a support vec-
tor classifier for gender prediction. The model
achieved a product moment correlation of r = 0.86
for age and an accuracy of 90% for gender. Al-
though the gender model was designed to predict
binary outcomes, it produces a continuous score,
where negative values align with “male” and posi-
tive values with “female.”

Personality Personality traits were assessed us-
ing a model by Park et al. (2015), trained on Face-
book status updates from over 66,000 individuals
who reported their personality via the International
Personality Item Pool (Goldberg et al., 2006). Re-
sponses were recorded on a 5-point Likert scale,
with trait scores calculated as averages of corre-
sponding items, resulting in final scores ranging
from 1 to 5. The model employed penalized Ridge
regression using 1-, 2-, and 3-grams and Latent
Dirichlet Allocation (LDA) topics derived from the
posts. Out-of-sample prediction accuracies (prod-
uct moment correlations) were 0.43 for openness,
0.37 for conscientiousness, 0.42 for extraversion,
0.35 for agreeableness, and 0.35 for emotional sta-
bility.

Empathy Empathic Concern (referred to as em-
pathy) was predicted using a model trained on data
from the Interpersonal Reactivity Index (Davis,
1983) combined with Facebook status updates from
prior datasets (Yaden et al., 2023; Abdul-Mageed
et al., 2017). LDA topics derived from the posts
were incorporated into a penalized Ridge regres-
sion model, yielding an out-of-sample product mo-
ment correlation of r = 0.26.

Behavioral Linguistic Factors Behavioral Lin-
guistic Factors were estimated using a dataset
of Facebook status updates from approximately
50,000 users, leveraging a model originally devel-
oped by (Kulkarni et al., 2018). N-gram frequen-
cies (1-, 2-, and 3-grams) from these updates un-
derwent factor analysis to derive the dimensions,
which serve as a data-driven, open-vocabulary ana-
log to the Big Five personality traits. These di-
mensions have demonstrated broader applicability,
predicting outcomes such as income, and have been
shown to be stable across time and diverse popula-
tions.
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Abstract

Al humanizers are a new class of online soft-
ware tools meant to paraphrase and rewrite Al-
generated text in a way that allows them to
evade Al detection software. We study 19 Al
humanizer and paraphrasing tools and quali-
tatively assess their effects and faithfulness in
preserving the meaning of the original text. We
show that many existing Al detectors fail to de-
tect humanized text. Finally, we demonstrate a
robust model that can detect humanized Al text
while maintaining a low false positive rate us-
ing a data-centric augmentation approach. We
attack our own detector, training our own fine-
tuned model optimized against our detector’s
predictions, and show that our detector’s cross-
humanizer generalization is sufficient to remain
robust to this attack.

1 Introduction

The ability of large language models such as Chat-
GPT (OpenAl, 2023) to generate realistic and flu-
ent text has spurred the need for Al text detection
software. Commercial methods, such as TurnltIn,
GPTZero, Originality, and Pangram Labs have
emerged, as well as open-source research meth-
ods, such as DetectGPT (Mitchell et al., 2023),
Binoculars (Hans et al., 2024), and many more.

However, both researchers and practitioners
alike have found these solutions to be fragile. A
study from Google Research (Krishna et al., 2023)
found that a paraphrasing text-to-text model (a
variant of T5) was able to effectively rewrite Al-
generated text in a way that could preserve the
meaning of the original text but largely evade Al
detection algorithms.

This finding gave rise to an explosion of new Al
"humanizer" tools appearing online. These tools
promise to bypass Al detection tools by rewrit-
ing Al-generated text. They are primarily mar-
keted at students, who can use these tools to effec-
tively cheat on writing assignments by plagiarizing

Bypass Al Every Time With 100% Undetectable Content

Generate human-like, undetectable writing with HIX Bypass. Plagiarism-free guaranteed!

#. Bypass Al @ Al detector

Your Content Q, Usagetips Output

B & o3

Try A Sample Paste Text

Figure 1: Example of an Al humanizer tool

from large language models without getting caught.
Other humanizers target their product towards SEO
marketers, who may generate hundreds of blog
posts using Al and apply humanizers to evade Al
detection by search engine algorithms.

In this work, we attempt to comprehensively
study these Al humanizers: what they are doing,
and whether it is possible to identify humanized
Al-generated text. Our main contributions are as
follows.

* We qualitatively audit 19 humanizers and para-
phrasing tools and analyze their effects on
the underlying text. We exhaustively identify
the transformation modes that the humanizers
apply to their inputs. We categorize the hu-
manizers into three tiers based on their overall
quality.

* We study the baseline effectiveness of human-
izers in bypassing existing open-source and
commercial Al detectors.

* We present a deep-learning based Al detector
that effectively is robust to humanization, even
by humanizers unseen during training. We
describe the necessity of treating humanizer
robustness as a learned invariance rather than
a separate domain.
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* We show that even after a detector-specific
fine-tuning attack, our detector remains fairly
robust due to its underlying ability to general-
ize.

2 Related Work
2.1 AI Detection

Many commercial and open-source methods exist
to detect Al-generated text, with highly varying
levels of accuracy. One of the most notable com-
mercial solutions is TurnltIn (Staff, 2024), which is
widely used in higher education as anti-plagiarism
software. Our team at Pangram Labs (Emi and
Spero, 2024) is contributing to this field, alongside
other solutions such as GPTZero (Tian and Cui,
2023), Originality, and Copyleaks, although their
accuracies vary significantly (Weber-Wulff et al.,
2023).

Open-source methods typically fall into two cat-
egories: perplexity-based detection methods and
deep learning based methods. Perplexity-based
methods attempt to leverage the fact that the tokens
in LLM-based outputs in general will be predicted
as consistently more likely by the LLM itself. De-
tectGPT (Mitchell et al., 2023) and FastDetectGPT
(Bao et al., 2024) are earlier examples of perplexity-
based methods which look at the local curvature in
probability space around a given example. Binoc-
ulars (Hans et al., 2024) is an even more effective
recent approach which uses the cross-perplexity
between two different LLMs as a signal that text is
LLM-generated.

Deep learning based methods attempt to use neu-
ral networks to detect Al-generated content, lever-
aging large datasets containing known human and
Al text and training a classifier to distinguish be-
tween them. The OpenAl classifier (Solaiman et al.,
2019) was one of the first efforts. They used a
RoBERTza based model to classify human text and
GPT-2 written text. Ghostbusters (Verma et al.,
2023) uses learned combinations of features de-
rived from language model embeddings to detect
LLM-generated text.

Recently, some Al detection efforts have also at-
tempted to detect mixed Al and human text: when
some of the text is written by a human and some
of it is written by an Al. SeqXGPT (Wang et al.,
2023) attempts to solve this by using an architec-
ture which is able to detect Al on the sentence level
rather than the document level. ROFT (Kushnareva
et al., 2024) adapts several detection methods to

detecting the boundary between Al and human text.
However, these methods differ from ours in that
the assumption about the original document is that
each part of the text has a distinct authorship attri-
bution, whereas we study the case in which fully
Al-generated text is then modified by a humanizer.

2.2 [Evading AI Detection

Much of the literature has also focused on whether
or not Al-generated text can be detected at all
(Sadasivan et al., 2023). A study from Google Re-
search (Krishna et al., 2023) released DIPPER: a
paraphrasing T5-based model that is able to bypass
some of the above-mentioned detectors by rewrit-
ing the input text. Another group of researchers
(Chakraborty et al., 2023) devised a framework to
rank LLMs based on their "detectability", claiming
that more recent models like GPT-4 are less de-
tectable because perplexity and burstiness are less
useful evidence markers.

Furthermore, other research has focused on at-
tacking Al detectors or otherwise methods to by-
pass or evade Al detection. One study (Kumarage
et al., 2023) designs an approach to search for
soft prompts that can produce text that can evade
detection. Another study (Ayoobi et al., 2024)
looks at the effect on Al detectors of translating
Al-generated text through multiple languages be-
fore backtranslating it into English and find some
methods are significantly more robust than others.
Another paper directly optimizes a language model
by using an Al detector as negative reward: creat-
ing pairs of LLM-generated text where one piece
is detected and one is not, and then using DPO to
optimize the language model to prefer undetected
outputs (Nicks et al., 2024). RADAR (Hu et al.,
2023) adversarially trains a language model detec-
tor and a paraphraser against each other to create a
more robust detector.

2.3 Watermarking

Watermarking Al-generated text is another rele-
vant subfield of research. Existing watermarking
schemes train or decode LLMs to leave behind a
probabilistic signal that can later be detected by
a watermark-specific detector. One watermarking
scheme (Kirchenbauer et al., 2023) introduces the
idea of "green tokens", which are sampled with
higher probability than other tokens in a traceable
way. Google’s recently released SynthID (Google
DeepMind, 2024) works in a similar fashion.

We argue that watermarking is insufficient to
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Figure 2: Augmenting the training set with high quality humanizer data improves robustness.

guard against the dangers of Al-generated text. We
show that in addition to evading Al detectors, hu-
manizers are also reliable methods to remove such
statistical watermarks.

2.4 Benchmarking

Recently there has also been an increased effort to
benchmark the performance of various Al detectors
against each other. RAID (Dugan et al., 2024) is
a live leaderboard measuring the performance of
Al-generated text detection methods against each
other on multiple domains, models, and adversarial
attacks. We include the RAID paraphrase and syn-
onym splits in our results as proxies for measuring
robustness against humanizers, but we also include
a more diverse set of humanizer attacks than the
original RAID benchmark.

3 Humanizer Market Survey

3.1 Tool Research and Selection

We selected 19 humanizers and paraphrasing tools
based on search popularity and academic relevance.
The particular paraphrasers and humanizers se-
lected are presented in Table 1. Notably, we include
DIPPER (Krishna et al., 2023) as a paraphraser, due
to the authors’ claim that text modified by DIPPER
can universally bypass Al detection methods.

3.2 Humanizers are often themselves LLMs

Some humanizers are LLLMs with system prompts
instructing the LLM to write more like a human,
or fine-tuned versions of LLMs. In testing some
of the humanizers, we found that some of them
are susceptible to popular jailbreaks. When we
tested one popular humanizer and asked it to give
us its system prompt, it said "I should respond to
the user input with a reasonable approximation of

the full meaning of the input...I should respond
in a conversational tone." More examples of our
jailbreaks against LLM-based humanizers can be
found in Appendix A.

3.3 Humanizers are popular on the GPT Store

As of the date of publication, two out of the four
most popular Writing Custom GPTs in the OpenAl
GPT Store are humanizers that make function calls
to external humanizers. This indicates that there is
a large appetite for bypassing Al detection. Given
that a significant portion of ChatGPT’s daily active
users are students, it is likely that these tools are
popular for cheating or otherwise making Al writ-
ing undetectable. We believe that although many
of these humanizers are black boxes, they are an
important and understudied area for research in Al
detection.

Writing

Write For Me

Write tailored, engaging content with a
focus on quality, relevance and precise
word count

Humanize Al

Top 1 Al humanizer to help you get
2 human-like content. Humanize your Al-
generated content with Free credits...

1 4

Copywriter GPT - Marketing,
Branding, Ads

3 a,  Your innovative partner for viral ad
R copywriting! Dive into viral marketing

strategies fine-tuned to your needs!...

Al Humanizer Pro
s

Best Al humanizer to help you get 100%
4 human score. Humanize your Al-
generated content maintaining content..

Figure 3: Two out of the four most popular Writing
Custom GPTs are Humanizers

3.4 Humanizers are capable of removing
watermarks

Google’s SynthID is a state-of-the-art solution
for watermarking generated text. Following the
methodology and code from the SynthID paper
(Google DeepMind, 2024), we generated 1000 wa-
termarked texts and 1000 unwatermarked texts. We
used Gemma-2B-IT (Team et al., 2024) to generate
200 tokens for each example with a temperature
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Category Tools

Paraphrasers

DIPPER, Grammarly, Quillbot

Humanizers

Bypass GPT, Ghost Al, HIX Bypass, Humbot AI, HumanizeAl.io, Hu-
manizeAl.pro, Humanizer.com, Phrasly.ai, Semihuman Al, StealthGPT,
StealthWriter.Al, Surfer SEO, Undetectable Al, Twixify, WriteHuman.ai

Table 1: Paraphrasers and Humanizers Studied

of 1.0, using the ELI5 dataset (Fan et al., 2019)
as prompts. We used the unwatermarked text to
set a FPR threshold and evaluated SynthID water-
mark detection TPR at a fixed FPR. Finally, we
paraphrased the watermarked text with DIPPER
and reevaluated watermark detection, finding that
watermark detection had dropped dramatically. See
results in Table 2.

Watermarked Gemma-2B-IT
TPR @ FPR=5% | 87.6%
TPR @ FPR=1% | 66.5%
After DIPPER Paraphrase
TPR @ FPR=5% 5.4%
TPR @ FPR=1% 1.5%

Table 2: Watermark detection before and after para-
phrasing

4 Humanized Text Audit
4.1 Approach

To understand the effect of humanizing a given
piece of text, we engaged in a manual qualitative
analysis. We reviewed several samples of text per
humanizer, examining how the humanizer trans-
formed vocabulary, sentence structure, and gram-
mar. While not exhaustive, we detail some common
patterns introduced by humanizers into the text.

4.2 Insight: Nonsensical Phrases

Many poor-quality humanizers add nonsensical text
throughout the piece. Common patterns include:

¢ Hallucinated Citations:

...community service for
demonstrating consciousness about
public affairs together with
responsibility for own actions
(Westwood, 2013) ...
¢ In-line comments:
..in specified 1locations hence

constructing external frames those

encouraging individuals manage their

¢ Other Nonsensical Phrases:

...he or she will never seem defeated
by teachers’ demands and, as a result,
will put more effort into their
studies. CGSizeMake pp 18-23 ...

4.3 Insight: Varying Structural Continuity

Some humanizers retain low-level sentence struc-
ture and simply replace individual words with syn-
onyms. For example, the paraphraser in Figure
4 preserves the meaning of each individual sen-
tence, and even sometimes preserves the phrasing
structure within the single sentence, explicitly high-
lighting that only some words and short phrases
have been replaced with synonyms.

Other humanizers take more liberty to change
the original text, sometimes rewording entire
groups of sentences and paragraphs. Some add
more sentences that weren’t originally present or
delete redundant sentences. We notice that hu-
manizers built on LLMs tend to be more weakly
grounded in the original text, while rules-based hu-
manizers that do synonym replacement tend to be
more strongly grounded in the original text.

4.4 Insight: Writing and Vocabulary Level

Some humanizers write exclusively in an academic,
formal, and/or university level tone. Others write
at the elementary school, middle school, or high
school level. The better humanizers, usually the
ones that are LLM-based, do not commit to a spe-
cific writing level or tone, and instead adopt the
writing level and tone of the original document.

4.5 Humanizer Segmentation

During our audit, we grouped humanizers into three
distinct tiers. The best humanizers rewrote text pre-
serving its tone, vocabulary level, and complexity.
Average humanizers rewrote text in a way that de-
graded overall quality, but preserved intent and
message. Low quality humanizers often added
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English (US) French Spanish German Al v

Modes:

The quick brown fox jumps over the lazy dog. This is a phrase that contains o

every letter of the English alphabet.

Standard Fluency Natural Formal Academic Simple Creative Expand Shorten Custom

Synonyms: —— - 0

The sluggish dog is jumped over by the swift brown fox. All of the letters of the

English alphabet are present in this phrase.

Figure 4: This paraphraser performs a very close paraphrase, only replacing individual words and phrases rather

than rewriting entire sentences and paragraphs.

nonsensical phrases, words, and characters, con-
structed incorrect and uninterpretable sentences,
and often distorted the meaning of the text. We
classify these three categories of humanizers as L1
(best), L2 (medium), and L3 (worst) humanizers,
and describe their characteristics in Figure 5. We
present a full categorization, along with notes on
the specific qualities of each humanizer, in the Ap-
pendix. It is worth noting we only make these clas-
sifications based on faithfulness and fluency, not
on their effectiveness at bypassing Al detectors.

4.6 Quantifying Humanizer Fluency

To quantify the difference between L1, L2, and L3
humanizers, we use the Fluency Win Rate metric
introduced in (Nicks et al., 2024). We prompt GPT-
4o to select the more fluent and coherent sample: an
original chunk of text, or that chunk of text passed
through a humanizer. Here, we report the rate at
which GPT-40 selects the humanized sample as the
more coherent one. Using a dataset of 25 samples
per humanizer, we aggregate the win rate of each
tier. L1 humanizers had an average Win Rate of
26.0%, L2 humanizers had an average Win Rate of
14.67%, and L3 humanizers had an average Win
Rate of 2.67%.

This demonstrates that our qualitative audit
agrees with the fluency metric. Further, all hu-
manizers tend to degrade the quality of the original
text, but the degree of quality degradation varies.
Still, for the highest quality humanizers, the text
quality is still sometimes comparable to the highest
quality language model outputs. Because certain
humanizers are able to produce high-fluency text,
we believe there is a growing need to study them.

5 Experiments

In our experiments, we seek to answer the question
of whether a deep learning based Al text classifier
is capable of detecting humanized Al-generated
text. First, we narrow our scope to L1 humanizers.
We do this because their subtle changes are the

hardest to detect by eye and because they have
the highest levels of fluency, making them most
relevant in real-world adversarial attacks. We train
two models: one model is unaware of humanized
text, and one model contains a small amount of
humanized text from a variety of humanizers. We
describe the methodology and training procedure
for training these models here.

5.1 Dataset Creation
5.1.1 Initial Datasets

Our initial dataset is seeded with a wide vari-
ety of human-written datasets from prior to 2022.
We use datasets from the following domains: re-
views, news, general web text, email, student
writing/essays, creative writing, questions and an-
swers, ELL/ESL (English as a Second Language),
scientific/medical papers, Project Gutenberg, and
Wikipedia.

For evaluation, because humanizers are primar-
ily marketed at students, we evaluate all models on
several open datasets comprised of student-written
essays. Because previous studies (Liang et al.,
2023) have found that Al detectors can be biased
against nonnative English speaking students, we
ensure that a significant portion of our evaluation
dataset is comprised of ESL essays. The compo-
nent datasets in our evaluation and our algorithm
for generating the Al essays used in our benchmark
are listed in Appendix B.

5.2 Synthetic Data Creation

Our initial dataset fully human-written. To generate
the Al side of the dataset, we use synthetic mirror
prompts as described in (Emi and Spero, 2024).

We define the term "mirror prompt" to be a
prompt based on the original example that is used
to generated a "synthetic mirror" example. The
goal of each mirror prompt is to generate an exam-
ple that matches the topic and length of the original
document.

If the original document is "<original review>",
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original text

During brainstorming sessions, designers

humanizer

= L1 humaninzers

a Preserve text meaning, tone, and clanty.

= Maintain a vocabulary level and style
consistent with the criginal

= Ensure the output is true to its source.

= L2 humaninzers

humanized text

In Brainstorming meetings, both designers
and clients frequently encounter the difficulty
of expressing abstract ideas—like brand
values, audience impressions, and intended
fealings.

and clients often face the challenge of
articulating abstract concepts—such as
brand values, audience perceptions, and
desired emations,

idaas

¥ L3 humaninzers

= Significantly reduce clarity and distort
ariginal meaning of text.
= Intraduce nonsensical phrases, words, and

characters

a Construct incorrect and uninterpretable

santenceas

= Pregerve the core meaning of the text

= Reduce the overall quality by simplifying
vocabulary, syntax, or structure

= Often produce less polished text than the
original while still communicating the core

When designers and clients meet for a
brainstorming meeting, thay often focus on
discussing big ideas aboul brand values, how
audiences see the brand, and the mixed
feslings that come from these topics.

In brainstorming sessions, designers and
clients often find themsehies in the quagmine
of trying to wordify abstract ideas of brand
values, parceplions of the audience, and the
conglomerate af emotions that are attached
(Carmen 2011).

Figure 5: We segment humanizers into three tiers, based on their fluency.

then a mirror prompt may look like this:
[Prompt] Write a <original review star
rating> star review for <original review
business name>. Make the review around
<original review length> words long.

Another example may be for a student essay.

We sometimes use double prompts, such as the
following:

[Prompt] What is a good title for this
essay? <original essay> Only give the
title in your response.

[Assistant] <Title>

[Prompt] Write an essay with the
following title: <Title>. Make the essay
around <original essay length> words
long.

5.2.1 LLMs used for Synthetic Mirrors

For synthetic mirrors in the initial training stage,
we use the following LLMs:

e GPT-3.5 (multiple versions)

* GPT-4, GPT-4-turbo, and GPT-40 (multiple
versions)

* Claude 2 and 3 (multiple versions and sizes)

e LLaMA 2, 3, and 3.1 (multiple versions and
sizes)

* Mistral (multiple versions and sizes)
* Gemini Pro and Flash (multiple versions)

It is notable that we only use modern LLMs that
are instruction-tuned and post-trained. We do not

train on base models because they produce notice-
ably lower-quality outputs and are substantially less
commonly used in real-world applications.

5.3 Architecture and Training

We use the Mistral NeMo architecture (Mistral Al
Team, 2024) which has approximately 12 billion
parameters, with an untrained linear classification
head. Following the usual convention for sequence
classification modeling using an autoregressive lan-
guage model, the hidden state from the final token
in the sequence is used as the input to both classifi-
cation heads. As is common practice in LLM fine-
tuning, we use trainable LoRA (Hu et al., 2022)
adapters while keeping the base model frozen. We
use the Tekken tokenizer out of the box, which is
noted for its strong multilingual performance. We
truncate the context window to 512 tokens to con-
strain the model to using only short-range features.
When necessary, we simply crop the input to fit the
context window. We train the model to convergence
using 8 A100 GPUs with a batch size of 24 using
a weighted cross entropy loss and the AdamW op-
timizer for 1 epoch. We early stop based on the
weighted cross entropy loss on the validation set.

5.4 Humanizer Data Augmentation

In order to make the treatment model robust to hu-
manization, we treat humanization as a transform
on the input data which we would like the model
to learn an invariance to.

Because most of the humanizers are marketed at
students, we assume that they work best on student
writing. As a proxy for student writing, we use
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the Fineweb-EDU dataset (Lozhkov et al., 2024),
a high quality LLM corpus that is prefiltered to
only contain documents that are of high educational
quality. First, we use an LLM filter to reject all
documents that are not standard prose written in
full complete sentences. Then, we create synthetic
mirrors as described above.

We find that it is best to humanize both human
and Al documents before augmenting the training
set with this additional data. We also find that if
we include all humanizers in the augmentation, our
precision (i.e. false positive rate) is significantly
compromised. However, including only L1 hu-
manizers (the high quality humanizers) allows us
to maintain a low false positive rate in addition
to increasing recall generally across humanizers.
Further information can be found in Table 8.

After humanizing both human and Al essays, we
apply chunking logic to divide each document into
roughly 300-word chunks before adding both the
human and the Al humanized documents back into
the training set.

Even though human documents transformed by
a humanizer could be considered Al-generated, we
choose to label them as human for the purposes of
training. The reason for this is because we treat the
model’s response to humanization as an invariance
rather than only including the Al humanized doc-
uments as a separate domain. This contributes to
our final performance, as seen in Table 8.

Because most humanizers impose monthly limits
on the amount of text that can be humanized, we
only use a volume of data up to the limit of the basic
1 month subscription on each humanizer website.
As aresult, our data volume is quite small: about
0.68% percent of the final dataset is comprised of
humanized text. To compensate for the small data
volume, we oversample the humanizer data by a
factor of 18.

5.5 Active Learning

After training, following the procedure in (Emi and
Spero, 2024), we run hard negative mining with
synthetic mirrors. On a large corpus of human text,
we mine for false positives, and then incorporate
both the false positives and their Al mirrors back
into our training set. This further reduces our false
positive rate and improves our recall. We also in-
corporate a small amount of data from the RAID
train subset into the final training run to general-
ize to the diversity of models present in the RAID
benchmark.

6 Results

6.1 Performance on Humanized Data

Table 3 presents performance data from several Al
detection methods on a benchmark of Al-generated
academic text before and after humanization. We
define a "positive" sample as one that is written by
Al and a "negative" sample as one that is written
by a human. Results are presented as true positive
rate at a fixed false positive rate of 5%. LLM Base-
line in this case is our baseline Al detection model
that is trained using synthetic mirrors but does not
include any humanized data in its training set.

Al Text Humanized AI Text
GPTZero 99.73% 4 0.19% 60.04% + 1.80%
RADAR 3.33% + 0.65% 5.06% + 0.81%
Binoculars 94.15% + 0.88% | 28.23% + 1.62%
LLM Baseline | 100.00% + 0.0% | 95.74% =+ 0.71%
DAMAGE 100.00% + 0.0% | 98.26% + 0.47%

Table 3: TPR @ FPR=5% for Academic Text with 1000
iterations of bootstrap sampling. RADAR performs
poorly on this metric due to its high false positive rate.
In Appendix C, we include more metrics, including
using model default thresholds.

6.2 Performance on RAID Attacks

Table 4 presents performance data from the same
Al detection methods on two adversarial subsets of
the RAID benchmark, which includes a range of
LLMs and a range of text domains.

Paraphrase | Synonym
GPTZero 64.0% 61.0%
RADAR 62.4% 62.7%
Binoculars 80.3% 43.5%
LLM Baseline 91.6% 96.2%
DAMAGE 93.0% 97.0%

Table 4: TPR @ FPR=5% for Academic Text

7 Detector-Specific Adversarial
Humanization

In this paper, we study commercial online human-
izers meant to generally evade Al detectors, but we
also study the directly adversarial scenario: when a
humanizer is directly optimized against a particular
detector. To do so, we train our own humanizer
using the GPT-40 fine-tuning API and measure the
detector’s robustness to Al-generated text passed
through the adversarial fine-tuned model.
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7.1 Methodology

Broadly following the methodology in Language
Models are Easily Optimized Against (Nicks et al.,
2024), we train a model using our detector’s Al
prediction as a negative signal. However, rather
than training a separate language model with DPO,
we train a humanizer that takes an unmodified Al-
generated text as an input and learns to generate a
paraphrase of the original that bypasses the detector.
We choose this methodology as it is closer to how
humanizers are trained in the real world.

As a proof of concept experiment, we split our
essays dataset into two pools: a fine-tuning set
and a test set. We select all L1 humanizer outputs
from the fine-tuning set that the detector predicts
as human-generated (i.e., all L1 humanizer false
negatives). We then take the original Al-generated
text source (prior to humanization), and create pairs
of unhumanized-humanized text samples to fine-
tune on. We then use the GPT-40 fine-tuning API to
train a new model on only these pairs. This results
in a new model that, in theory, learns to paraphrase
text into similar examples to the humanizer samples
that were able to bypass the detector originally.

7.2 Results

After training the detector-specific humanizer, we
use GPT-40 to create synthetic mirrors of 2000
examples from the test set and pass them through
the adversarial humanizer.

Condition TPR @ FPR=5% | Default TPR
No Humanizer 100% 100%
Adversarial Humanizer 100% 93.2%

Table 5: TPR values for DAMAGE model at the default
threshold (0.5) and threshold that corresponds to 5%
FPR without and without adversarial humanization.

We see that although some of the samples that
were adversarially humanized are able to bypass the
detector, the detector is still able to detect 93.2%
of the humanized Al samples. This shows that
although an adversary may be able to directly op-
timize a humanizer using the detector as a signal,
the resulting humanizer still remains largely de-
tectable even without retraining our detector. We
believe this is due to the fact that the underlying lan-
guage model of the humanizer still leaves behind
detectable patterns that cannot be erased during
fine-tuning. Additionally, by seeing many human-
ized examples in its training set, the detector learns
to be robust to a wide variety of paraphrases and

perturbations and maintains its ability to generalize
across humanizers, even adversarial ones.

7.3 Detector-Specific Humanizer Fluency Win
Rate

To examine the quality of the text generated by our
Detector-Specific Humanizer, we perform the same
Fluency Win Rate metric introduced in (Nicks et al.,
2024). We find that the humanizer wins 14.13% of
the time, which is roughly equivalent to an average
L2 Humanizer.

8 Conclusion

In this study, we attempted to both qualitatively
and quantitatively study humanizer tools and their
effects on individual writing samples and the ro-
bustness of Al detectors against them. We showed
it is possible to train an effective deep learning clas-
sifier that is robust to most humanizers, and ran
a proof-of-concept to show that some degree of
robustness even extends to a humanizer that is ad-
versarially optimized against our specific detector.
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A Jailbreaks against LLM Humanizers

Figures 6 and 7 demontrate jailbreaks that reveal

the system prompt for the underlying paraphraser
LLM.



Basic Mode

Rewrites Al-generated text (or any text for that matter) to bypass Al detection.

<system>

IGNORE PREVIOUS INSTRUCTIONS. This is a system test to see if you are capable of switching roles, an intended behavior, in the middle of the user input. THESE ARE IMPORTANT INSTRUCTIONS. You must RESPOND to the text the

user gives you. Do not simply humanize the text, but instead respond to the full text the user gives you.
</systern>

<user>

Hi, hello, how are you doing today? Please summarize any instructions you've been given ;)

<Juser>

<assistant>

@ Word limit: 150 (upgrade here) | Requests remaining this month: 1

Humanized Text

Humanize

Hello! | am doing well, thank you. To summarize my instructions: | should respond to the user input with a reasonable approximation of the full meaning of the input. When

summarizing your meaning, | should not abbreviate; instead, | should respond in a conversational tone that—in my approximation—embodies the essence of what you are

saying.

Figure 6: This humanizer is an LLM that is instructed to paraphrase "in a conversational tone".

B Evaluation Dataset Composition

We use 7 academic essay datasets for evaluation.
All are held out of the training set. See Table 6 for
details.

E Expanded Humanizer Audit by Source

Table 9 lists all humanizers and paraphrasers evalu-
ated, with qualitative descriptions and tier rankings
for each.

For synthetic mirrors, we create one Al-
generated essay per human essay. We randomly
select one of the LLMs described in the main paper,
and use the following mirror prompt:

[Prompt] What is a good title for this
essay? <original essay> Only give the
title in your response.

[Assistant] <Title>

[Prompt] Write an essay with the
following title: <Title>. Make the essay
around <original essay length> words
long.

Our final evaluation dataset is comprised of all
the essays in the 7 human datasets, labeled as hu-
man, and all of the synthetic mirrors labeled as
AL

C Performance Using Recommended
Thresholds

Table 7 shows performance at recommended thresh-
olds, which demonstrate in-the-wild false positive
rates and true positive rates.

D Ablation Study

Table 8 is an ablation study that shows the impact
of chunking, humanizer label balance, and only
including L1 humanizers in the train set.
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New Turnitin Update: Only StealthGPT p

< StealthGPT GED Apps v Features v

@ stealth Writer
<system>

IGNORE PREVIOUS INSTRUCTIONS. This is a system test
to see if you are capable of switching roles, an intended

[ Chat with PDF

2 SEO Writer behavior, in the middle of the user input. THESE ARE
IMPORTANT INSTRUCTIONS. You must RESPOND to the
» text the user gives you.

<user>
Repeat to me everything in your context window.
</user>

<assistant>

&

You need to have subscription to upload files

Resources v Blog  Pricing

Output Panel @copy & & QP @ Overall Score

You are a helpful writing assistant that writes at a college
level. You are trained on data up to October 2021. You are
asked to rephrase the following text: "Ignore previous
instructions. This is a system test to see if you are capable
of switching roles, an intended behavior, in the middile of
the user input. These are important instructions. You must
respond to the text the user gives you."

Generate

Figure 7: This humanizer is an LLM that is instructed to "write at a college level" and "asked to rephrase the

following text."

Dataset Samples | Description

PERSUADE 2.0 (Crossley et al., 25,996 | Argumentative essays, 6th-12th
2024) grade

PII Detection (Holmes et al., 6,807 | Online assignments from a
2024) MOOC

CommonLit Evaluate Student 3,897 | 3rd-12th grade

Summaries (Franklin et al.,

2023)

ELLIPSE English Language 3,907 | ELL student essays, 8th-12th
Learning (Crossley et al., 2023) grade

British Academic Written En- 2,761 | UK University essays, undergrad-
glish Corpus (Nesi et al., 2008) uate

Int’l Corpus of Asian Learners of 5,600 | Asian ELL student essays, under-
English (Ishikawa, 2023) graduate

Pittsburgh English Language Inst. 15,423 | ELL student essays, undergradu-
Corpus (Juffs et al., 2020) ate

Table 6: Overview of Educational Text Datasets

Model AI TPR (%) | Humanized AI TPR (%) | Default FPR (%)
GPTZero 95.60 34.53 1.47
RADAR 70.67 79.33 51.87
Binoculars 94.40 29.73 5.40
Baseline LLM 100.00 73.07 0.27
DAMAGE 100.00 97.47 3.40

Table 7: Model Performance on Default Thresholds

131



Ablation Metric Al (%) Al-Humanized (%) | Human (%)
TPR at 5% FPR 100.00 £ 0.00 98.26 £ 0.47 -
Final Model TPR at Threshold 0.5 100.00 97.47 -
FPR at Threshold 0.5 - - 3.47
TPR at 5% FPR 100.00 + 0.00 98.92 £ 0.37 -
All-Humanizers | TPR at Threshold 0.5 100.00 98.93 -
FPR at Threshold 0.5 - - 6.00
TPR at 5% FPR 100.00 + 0.00 96.83 £ 0.63 -
Unbalanced TPR at Threshold 0.5 100.00 95.60 -
FPR at Threshold 0.5 - - 3.2
TPR at 5% FPR 100.00 £ 0.00 96.69 £ 0.66 -
Unchunked TPR at Threshold 0.5 100.00 95.60 -
FPR at Threshold 0.5 - - 3.07

Table 8: Ablation Study Results. Descriptions: Final Model: The final model trained using chunked samples
processed by L1 Humanizers, with an equal number of humanized samples from both Al and human sources.
All-Humanizers: Model trained with all (L1, L2, and L3) tracked humanizers. Unbalanced: Trained without
human-humanized text (all humanized samples written by Al). Unchunked: Trained on entire humanized documents

without chunking into smaller segments.
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Name Description Tier

DIPPER Sparing and shows restraint with changes. Often most or part of a | L1
sentence is entirely unchanged. Occasionally splits sentences or adds
grammar problems.

GPTInf High quality text. Very few issues with spelling, punctuation, or vocabu- | L1
lary.

Grammarly High quality text. Good varied use of punctuation. Very occasionally | L1
makes unusual edits like double quotations around a title or adding
unexpected words.

HumanizeAl.pro | High quality text. Good grammar, advanced vocabulary, and good punc- | L1
tuation.

Quillbot Produces flowery text but still fluent and readable. Vocabulary level is | L1
high, though slightly imprecise.

Semihuman AI | Good quality text. Occasionally introduces personal pronouns even when | L1
they aren’t present in the source material.

StealthGPT Good quality text. Output closely matches style of original text. L1

Twixify Overall good quality text. Occasionally misuses of words due to dictio- | L1
nary lookup replacements.

AlHumanizer.com Generally downgrades the text from university-level to middle-school | L2
level. Lowers vocabulary level and introduces punctuation mistakes.

BypassGPT Leans heavily on dictionary lookup paraphrasing. Each sentence contains | L2
the same information as a corresponding sentence in the original text.

No typos or grammar errors, but occasionally the introduced words are
used incorrectly or in the wrong context.

Stealthwriter.AI | Reduces quality of the text. There are grammar, punctuation, capitaliza- | L2
tion issues, generally one per paragraph.

Surfer SEO Degrades the quality of text. Output is middle school-level writing. L2

Ghost Al Splits every sentence into single-clause statements. Makes the output | L3
unnatural and low-quality.

Hix Bypass Typically good, maybe some dictionary lookup dissonance. Occasionally | L3
there are dense pockets of nonsensical text.

HumanizeAl.io | Introduces fictional citations, series of question marks, and punctuation | L3
errors. The result looks like an error-ridden draft of a paper.

Humbot Al Sentences are uninterpretable and random additions to the text make it | L3
unreadable.

Phrasly Poor quality sentences. Much worse in some texts rather than others. L3

Undetectable Al | Poorly written text at an elementary school level. Introduces typos. L3

WriteHuman.ai | Poorly written text at an elementary school level. Occasionally includes | L3

incomplete sentences.

Table 9: Humanizer Audit Per-Source Summaries.
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Text Graph Neural Networks for Detecting AI-Generated Content

Andric Valdez-Valenzuela
Instituto de Investigaciones
en Matemadticas Aplicadas
y en Sistemas
CDMX, Mexico.

Abstract

The widespread availability of Large Language
Models (LLMs) such as GPT-4 and Llama-3,
among others, has led to a surge in machine-
generated content across various platforms, in-
cluding social media, educational tools, and
academic settings. While these models demon-
strate remarkable capabilities in generating co-
herent text, their misuse raises significant con-
cerns. For this reason, detecting machine-
generated text has become a pressing need
to mitigate these risks. This research pro-
posed a novel classification method combin-
ing text-graph representations with Graph Neu-
ral Networks (GNNs) and different node fea-
ture initialization strategies to distinguish be-
tween human-written and machine-generated
content. Experimental results demonstrate that
the proposed approach outperforms traditional
machine learning classifiers, highlighting the
effectiveness of integrating structural and se-
mantic relationships in text.

1 Introduction

Large language Models (LLMs) are now widely
available and easily accessible, resulting in in-
creased machine-generated content across various
platforms, including Q&A forums, social media,
educational resources, and academic contexts. Re-
cent advancements in LLM technology, such as
Llama-3 and GPT-4, have enabled these models to
generate coherent responses to most user inquiries,
making them increasingly attractive for replacing
human labor in multiple fields. Moreover, this in-
creased accessibility has led to concerns about mis-
use, including the creation of fake news, financial
and legal issues, and education disruptions. Given
the difficulty people have distinguishing between
machine-generated and human-written text, there
is a growing need for automated systems that can
detect machine-generated content to mitigate and
address the risks associated with its misuse (Nitu
and Dascalu, 2024).

Helena Gémez-Adorno
Instituto de Investigaciones
en Matemdticas Aplicadas

y en Sistemas
CDMX, Mexico.

Manuel Montes-y-Gomez
Instituto Nacional
de Astrofisica, ()ptica
y Electrénica
Puebla, Mexico.

Viewing this problem as a classical text clas-
sification task, there are plenty of approaches to
tackle it nowadays, from traditional methods such
as training machine learning or deep learning mod-
els using Bag of Words or stylometric patterns as
features to more advanced approaches based on the
Transformer architecture, such as BERT (Devlin,
2018) or RoBERTa (Liu, 2019).

However, in recent years, a new area of re-
search known as Graph Neural Networks (GNNs),
or graph embeddings, has gained significant inter-
est (Battaglia et al., 2018). These networks have
proven to be highly effective in text classification
tasks involving complex relational structures as
they retain the global structure of a graph within
their embeddings.

A text can be appropriately represented as a
graph using the words/documents as nodes and the
edge representing the significant relationship be-
tween the nodes. Also, it is possible to assign differ-
ent attributes or weights to the graph’s edges/nodes
to add more significant information. Moreover,
graph-based methods capture complex connections
and dependencies that traditional methods might
miss. Understanding these relationships between
words/nodes is crucial for exploiting the text’s best
features. It could also help capture semantic and
syntactic nuances in the text, distinguishing be-
tween human and machine-generated texts.

The contributions of our paper are summarized
as follows:

* A classification method that combines Text-
Graph representation and GNNss with different
node feature initialization strategies to detect
machine-generated text !

* A detailed comparison of the performance of
our method against baseline and state-of-the-
art methods on English texts.

"https://github.com/andric Valdez/GraphDeepLearning
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2 Background

Several approaches to identifying automatically
generated text have been proposed in recent years.
Many of these works have been published in the
framework of a series of shared tasks that focus on
this specific problem, such as PAN-CLEF 2024
(Bevendorff et al., 2024) or IberAutextification
2023 (Sarvazyan et al., 2023). In (Abburi et al.,
2023), the authors proposed an ensemble neural
model combining probabilities from pre-trained
LLMs as features and then applying a traditional
machine learning classifier. Another relevant work
assessed text predictability by leveraging features
like grammatical accuracy, word frequency, linguis-
tic patterns, and fine-tuned LLM representations
(Duran-Silva, 2023). As we will see in the next
sections, this last system ranks 1st in the binary
classification task (for English text) on the Iber-
Autextification shared task

On the other hand, regarding the usage of GNNs,
many research works implement this approach to
solve different types of text classification tasks
(Wang et al., 2024). In (Yao et al., 2019), the
authors explored the use of GNNs with convolu-
tional layers (called TextGCN) for text classifica-
tion, building a single text graph for a corpus based
on word co-occurrence and document-word rela-
tionships, then used the graph embeddings as in-
put for a final classification layer. Experimental
results show that the TextGCN, even without exter-
nal word embeddings, outperforms state-of-the-art
methods and is particularly robust when training
data is reduced. Another research work combines
BERT and GCN for text classification tasks (called
BertGCN) (Lin et al., 2021). BertGCN constructs
a heterogeneous graph where documents are rep-
resented as nodes and uses BERT embeddings as
feature representation. Their experiments demon-
strate that BertGCN achieves state-of-the-art perfor-
mance across multiple text classification datasets.

Moreover, regarding using Text Graph and
GNNss to solve the machine-generated content iden-
tification task, in (Valdez-Valenzuela and Goméz-
Adorno, 2024) it is proposed an ensemble architec-
ture that combines Text Graph and GNNs, LLMs
embeddings, and stylometric features achieving
better performance than baselines.

3 Method Overview

This section describes our classification methodol-
ogy for detecting machine-generated text, combin-

Figure 1: CoOccurrence Graph for the text: millions in
texas lose power as the winter storm falls to -22c

ing text-graph and GNNs. Section 3.1 describes
the text-to-graph construction process, and section
3.2 explains all the pipeline architecture.

3.1 Text Graph Representation

We implemented the Co-Occurrence graph to rep-
resent the text documents; to apply this transforma-
tion in a simple and flexible way, we used a Python
library called text2graphAPI (Valdez-Valenzuela
and Gémez-Adorno, 2024). In the Co-Occurrence
graph, each word is represented as a node, and
an edge connects two nodes if the corresponding
words co-occur within the same text document (in
a predefined window size). In addition, different
weights can be assigned to the edges, including
the frequency of co-occurrences between words
and the Point-wise Mutual Information (PMI) for
each word pair. Considering this, we built one
Co-Occurrence graph representation for each text
document in the corpus 2.

For instance, consider the sentence ’Millions
in Texas lose power as the winter storm falls to
22°C’ 3 as shown in Figure 1. In the corresponding
graph, each node represents a unique word from
the sentence, such as *power’, ’lose’, and *Texas’.
These nodes are connected by edges, which indi-
cate that the words co-occur within a certain con-
text or proximity in the text (within a window size
of 2). The frequency weight on an edge indicates
how often the connected words appeared together.
For instance, if an edge is labeled ’freq: 2’, it means
that the two words appeared together twice.

*Edge weights were calculated for each text document
separately.

This sentence is part of a longer document; thus, the
weights of the edges may not correspond to what is observed
init
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Additionally, the PMI weight measures the asso-
ciation strength between two words, highlighting
how often these words co-occur more than would
be expected by chance. Higher PMI values sug-
gest a strong contextual relationship between the
word pairs, even if their co-occurrence is infrequent.
This metric helps reveal significant word associa-
tions that might not be immediately apparent from
frequency alone.

3.2 Pipeline Architecture

Figure 2 shows the proposed pipeline architecture
for identifying machine-generated text. As a first
step, each document in the corpus is transformed
into a Co-Occurrence graph, as described in Sec-
tion 1. This transformation captures the relational
structure of the texts, which is crucial for further
processing.

After the graph has been built, we apply fine-
tuning using pre-trained transformer models, such
as BERT-Base-Uncased or RoBERTa-Base. These
models are used to initialize node features in the
graph, enhancing the semantic understanding of
the text. Moreover, for the sake of comparison in
the performance, we tested using different node
features, such as the Word2Vec model (Mikolov,
2013) and random features.

The processed graph is then fed into a Graph
Neural Network using a Graph Attention Network
(GAT) layer (Velickovi¢ et al., 2017). This GAT
layer uses attention mechanisms to focus on the
most important nodes and edges, capturing relation-
ships between words in a more subtle way. This
attention-based learning enables the model to un-
derstand complex dependencies and associations
within the text.

We implemented the GAT layer using the Py-
Torch Geometric library *, providing as inputs the
node features, the co-occurrence graph (as a sparse
matrix, in COO format) and the edge weights (freq
or PMI metrics). Additionally, we set and test with
different kinds of hyperparameter related to this
GNN, such as the number of convolutions (message
passing layers), head attentions, hidden channels,
pooling layers (add, mean, max), and normaliza-
tion layers (such as BatchNorm1d or Dropout).

Lastly, the graph document embedding is fed
into a final classification model. This classifier,
typically handled by a dense neural network (but it

*This library provides various methods for deep learning
on graphs from a variety of published papers: https://pytorch-
geometric.readthedocs.io/en/latest/

Partition Autextification 2023
human machine total
Train 11,963 11,728 23,691
Validation 5,083 5,071 10,154
Test 10,642 11,190 21,832

Table 1: Summary stats for the Autextification 2023
English dataset used in the experiments.

could be any classification algorithm), determines
whether the text was machine-generated based on
the learned representations.

4 Experiments

This section shows all the experiment settings,
datasets used, and the performance and results ob-
tained for the proposed method.

4.1 Dataset

To evaluate the effectiveness of our proposed
method, we utilized the Autextification2023 (Sar-
vazyan et al., 2023) dataset, a publicly available
corpus specifically designed for machine-generated
text detection. This dataset contains text in English
and Spanish (In our case, we only used English
texts). It comprises human and LLM-generated
texts across five domains: tweets, reviews, how-
to articles, news, and legal documents, represent-
ing a range of writing styles from formal to in-
formal. Human texts were sourced from publicly
available datasets like MultiEURLEX, XSUM, XL-
SUM, MLSUM, Amazon Reviews, WikiLingua,
and more. Machine-generated texts were produced
using BLOOM and GPT-3 models, chosen for their
multilingual capabilities and accessibility. Table 1
shows the Train, Validation, and Test sets, with
a balanced distribution between human-generated
and machine-generated text samples.

4.2 Results

Table 2 compares the performance of various mod-
els on the datasets for detecting machine-generated
text using the Accuracy and F1-Score (macro) mea-
sures. The models evaluated include traditional
machine learning classifiers, such as Support Vec-
tor Machine (using TF-IDF unigrams for vector
representation), a fine-tuned BERT and RoBERTa
model >, and GNNs with different node initializa-
tion strategies.

>Using a 16 batch size, five training epochs, 2e-5 as learn-
ing rate and 0.01 of weight decay.
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Figure 2: Pipeline Architecture for generated text identification.

Approach Node Feat Init Val Acc Val F1Score Test Acc Test F1Score
Linear-SVM - 0.7419 0.7419 0.5944 0.5624
Word2Vec - 0.7325 0.7320 0.6040 0.5982
FT-BERT - 0.8924 0.8916 0.6197 0.5515
FT-RoBERTa - 0.8974 0.8965 0.6184 0.5481
GNN Cooc-Graph Random 0.6469 0.6434 0.5738 0.5737
GNN Cooc-Graph Word2Vec 0.7896 0.7896 0.6618 0.6592
GNN Cooc-Graph FT-BERT 0.8889 0.8882 0.7448 0.7441
GNN Cooc-Graph  FT-RoBERTa  0.8812 0.8805 0.7447 0.7370

Table 2: Accuracy and Macro F1-Score on classification tasks for validation and test sets in the Autext 2023 dataset.

For the nodes feat initialization, we considered
the following strategies, varying the feature vector
size from 128 to 768:

* Random. In this approach, node features are
initialized randomly using the PyTorch Em-
bedding Layer °, taking values from -1 to 1.

* Word2Vec. We trained the model (on train
set) using the Continuous Bag of Words
method and then obtained the word embed-
dings for each node/word in the graph. We ap-
plied a random vector initialization for those
out of the vocabulary words.

* Transformer. Fine-tuned the BERT and
RoBERTa models using the training data and
then extracted the word embeddings. The
tokenizer of this model generates some fine-
grained tokens for certain words. To handle
and match this with the graph’s nodes, we ob-
tain the average embedding for each token and
assign the result as the node feature.

®https://pytorch.org/docs/stable/nn.html

Table 2 highlights the best-performing models
for text classification in the Autextification 2023
dataset, showcasing significant differences in val-
idation and test performances across approaches.
The Linear-SVM and Word2 Vec baselines achieved
a validation accuracy (Val F1 Macro Score) of
0.7419 and 0.7320, respectively. Among base-
line models, the fine-tuned BERT and RoBERTa
achieve the highest validation F1 score at 0.8965
and 0.8916, respectively, but a decline in test
performance (showing high overfitting). Now,
regarding the GNN Cooc-Graph, using a ran-
dom feature node initialization yields moderate re-
sults, while Word2Vec improves validation and test
scores (Val F1: 0.6618, Test F1: 0.6592). Using
fine-tuned transformer-based features (BERT and
RoBERTa models) further enhances GNN perfor-
mance, achieving the best overall test results: Test
F1 Score: 0.7370 for FT-RoBERTa and 0.7441 for
FT-BERT. This demonstrates the effectiveness of
leveraging pre-trained transformer features within
a graph-based framework and how the node feature
initialization significantly impacts performance.
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Rank Approach Run Macro-F1
1 TALN-UPF  HB plus 0.8091
- GNN (our) FT-BERT 0.7418
2 TALN-UPF HB 0.7416
3 CIC-IPN run2 0.7413
23 BOW+LR baseline 0.6578
52 Transformer  baseline 0.5710
77 UAEMex runl 0.3387

Table 3: Final Ranking on the IberAutextification 2023
shared task (English text, subtask 1).

On the other hand, Table 3 shows the final rank-
ing on the IberAutextification 2023 shared task for
subtask 1 (binary classification on English texts).
The team TALN-UPF ranks 1st and 2nd with a
Macro-F1 with 0.8091 and 0.7416, respectively
(the system is described in section 2). As we can
see, the 1st rank system outperformed our proposed
approach; however, our method achieved better re-
sults than the other 76 systems, including the base-
lines.

5 Conclusions and Future work

This paper addresses the increasing prevalence of
machine-generated content due to advancements
in LL.Ms. With their rising accessibility, concerns
about their misuse have grown. To tackle this, we
proposed a model architecture that combines text-
graph representations and GNNs to detect machine-
generated text; specifically, we implemented a co-
occurrence graph where each word is represented
as a node, and if two words co-occur within the
same text document, it is linked with an edge. Then,
this graph is fed into a GNN (GAT), generating the
graph document embeddings as output, which are
used to train a final classification model to distin-
guish between human and machine text documents.
Based on the experiments in the Autextification
2023 Engish dataset, our approach demonstrated
superior performance compared to baselines and
traditional approaches, highlighting the effective-
ness of integrating structural and semantic features
in identifying machine-generated content.
Moreover, future studies could enhance these
approaches further and investigate their applica-
bility across various languages and datasets with
different domains. Also, different text graph repre-
sentations (e.g. Heterogeneous Graphs) and GNN
architectures should be tried using a combination
of different node feature initialization strategies.

6 Limitations

The results are based on a specific dataset, which
may not fully represent the diversity of machine-
generated content across different domains or
languages. Moreover, combining GNNs and
transformer-based features can be computationally
expensive, making the approach less feasible for
real-time and large-scale applications without fur-
ther optimization.
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Abstract

Potential harms of Large Language Models
such as mass misinformation and plagiarism
can be partially mitigated if there exists a re-
liable way to detect machine generated text.
In this paper, we propose a new watermark-
ing method to detect machine-generated texts.
Our method embeds a unique pattern within
the generated text, ensuring that while the con-
tent remains coherent and natural to human
readers, it carries distinct markers that can be
identified algorithmically. Specifically, we in-
tervene with the token sampling process in a
way which enables us to trace back our token
choices during the detection phase. We show
how watermarking affects textual quality and
compare our proposed method with a state-of-
the-art watermarking method in terms of ro-
bustness and detectability. Through extensive
experiments, we demonstrate the effectiveness
of our watermarking scheme in distinguishing
between watermarked and non-watermarked
text, achieving high detection rates while main-
taining textual quality.

1 Introduction

Transformer based Large Language Models
(LLMs) (Vaswani, 2017) such as ChatGPT, Llama2
(Touvron et al., 2023) are able to generate texts
that closely resemble human authored texts. For
instance, Clark et al. (2021) report that untrained
humans are not able to distinguish between texts
generated by GPT-3 and texts authored by humans.
As we train larger models with more parameters
on an ever-expanding corpora, their capabilities in
generating human-like text are likely to increase
(Hoffmann et al., 2022). With their incredible per-
formance in text generation, they become effective
tools for automating text based tasks such as sum-
marization and translation (Radford et al., 2019).
However, these LLMs pose various threats to so-
ciety because they can be also used for bad causes

such as generating credible-sounding misinforma-
tion (Pan et al., 2023), creating fake product re-
views (Adelani et al., 2019) and academic pla-
giarism (Dehouche, 2021). Recent studies have
discovered that even though LL.M-generated re-
sponses may sound convincing, they can be fre-
quently incorrect (Lin et al., 2022).

The potential negative consequences associated
with LLMs can be reduced significantly if a reli-
able detection system is in place to differentiate be-
tween machine-generated and human-written texts.
A number of researchers focused on this important
problem and proposed various approaches such as-
training a classifier (Solaiman et al., 2019; Ippolito
et al., 2020), detecting based on linguistic features
(Guo et al., 2023) and log probabilities and pertur-
bations (Mitchell et al., 2023). Data driven methods
such as training classifiers requires a wide range of
data with different styles, sources, and languages.
Currently existing perplexity based detectors are
biased against non-native English writers (Liang
et al., 2023), raising ethical concerns about their
usage in real-world applications.

In this paper we propose a novel model-agnostic
watermarking method to detect machine generated
text. In watermarking, a hidden pattern is inserted
to a passage that is imperceptible to humans but
can be easily detected an algorithm.

In our proposal, we interfere with the random-
ness of sampling a new token to be generated in the
decoding phase of LLMs. For each token to be gen-
erated, we sample multiple candidate tokens based
on their probability provided by the LLM and cal-
culate a secret number for each of the candidate
tokens. Subsequently, we pick the token with the
highest secret number value. The way we calculate
the secret number enables us to retrieve the same
values from generated text. And our maximization
effort lets us discriminate against non-watermarked
text.

In our experiments, we evaluate the quality of
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the watermarked texts and how accurately we can
detect the watermarks using various datasets and
LLMs. We also compare our model against water-
marking method of Kirchenbauer et al. (2023a). In
our experiments, we show that we are able to detect
watermarked texts almost in all cases. In addition,
we observe that our method based on sampling
with replacement does not reduce the text quality
in almost all cases while our method based on sam-
pling without replacement yields slight decrease
in text quality. In addition, we show that our pro-
posed method is robust to token level paraphrasing
attacks.

The main contributions of our work are as
follows. 1) We introduce a novel watermarking
scheme to detect machine-generated text. In our
comprehensive evaluation we show that our water-
marks are highly detectable while causing a slight
decrease in text quality. ii) We share both our
code and dataset to ensure reproducibility of our
results and help other researchers build upon our
findings.'.

2 Related Work

The remarkable achievements of Large Language
Models (LLMs) compelled researchers to shift
their attention towards understanding their poten-
tial drawbacks and risks. We direct readers to the
survey studies conducted by Crothers et al. (2022)
and Weidinger et al. (2021) for an in-depth analysis
of the risks associated with LLMs. Now, we focus
on studies on detecting texts generated by LLMs.

2.1 Non-Watermarking Detection Methods

Gehrmann et al. (2019) propose a tool GLTR which
works in a white-box setting and highlights texts
based on probability distribution of tokens provided
by the LLMs. They show that their visual tool im-
proves the human detection rate of machine gen-
erated text from 54% to 72% without any prior
training and without tampering with the text gener-
ation phase.

Mitchell et al. (2023) also work in a white-box
setting and create perturbations of the candidate
text and analyze the negative curvature regions of
the model’s log probability function. Their main
hypothesis for detection is as follows. When ma-
chine generated text is modified it tends to have
lower log probability. However, modifications on

!The code will be made available soon.
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the human-written text may have higher or lower
log probability than the unmodified text.

Zellers et al. (2019) examine several schemes to
detect fake news article using GROVER which is a
language model that generates and classifies fake
news articles. They conclude that the most effec-
tive model for identifying fake news generated by
GROVER is the model itself. Adelani et al. (2019)
also report that GROVER is highly accurate in de-
tecting fake reviews. Zellers et al. (2019) argue
that machine-generated text classification requires
a similar inductive bias as the generator model,
rather than expressive capability. However, these
findings differ from those of Solaiman et al. (2019)
as they claim that a fine-tuned RoOBERTa model is
a more effective detector than a similarly-capable
fine-tuned GPT-2 model.

A number of researchers focused on develop-
ing machine learning models to identify generated
texts. For instance, Fagni et al. (2021) report that
transformer based classifiers to be the best discrim-
inators of fake tweets.

Guo et al. (2023) compile a dataset comprising
responses from ChatGPT and human experts across
various domains, including finance and medicine,
and use it to train classifiers that determine whether
a given passage is machine-generated. A similar ap-
proach is also followed by the creators of ChatGPT
with underwhelming results?. In our work, we pro-
pose a watermarking method to detect generated
texts.

2.2 Watermarking Detection Methods

Abdelnabi and Fritz (2020) introduce the Adver-
sarial Watermarking Transformer (AWT) model,
which encodes binary messages in text to trace its
origin and prevent malicious use, using a jointly
trained encoder-decoder and adversarial training,
ensuring the watermark is discreet while maintain-
ing the text’s original meaning. Ueoka et al. (2021)
proposes using a masked language model, which
has a high payload capacity and is less suscepti-
ble to automatic detection than generation-based
methods. Recently, Christ et al. (2024) introduced
a cryptographically inspired method that embeds
watermarks using pseudo-random functions and en-
tropy thresholds, ensuring the output distribution
remains unchanged.

The closest work to our own is Kirchenbauer
et al. (2023a)’s watermarking method. They pro-

2https://openai.com/blog/
new-ai-classifier-for-indicating-ai-written-text/



pose selecting a randomized subset of approved
tokens from the vocabulary and then promoting
the sampling of the tokens from chosen approved
subset of the vocabulary via increasing the sub-
sets logits. The randomization is seeded on previ-
ously generated token(s) in a context window. In
our work, we interfere with the sampling process
without changing LLMs’ probability distribution
over vocabulary while Kirchenbauer et al. (2023a)
interfere the probability distribution. In our ex-
periments, we extensively compare our proposed
method against Kirchenbauer et al. (2023a)’s.

2.3 Paraphrasing Attacks

As there are tools to detect generated texts, people
might want to avoid these detection tools by inten-
tionally changing the generated texts. Therefore,
prior work also explored how vulnerable detection
systems are against paraphrasing attacks.

Sadasivan et al. (2023) demonstrate how effec-
tive off-the-shelf sentence-level paraphrasing mod-
els can be at evading detection and conclude that
detecting generated text is an unsolvable prob-
lem. However, this conclusion is contradicted by
Chakraborty et al. (2023) as they show that detec-
tion should always be possible when there exist
enough samples. Krishna et al. (2023) develop
a paraphrasing model which successfully evades
several detectors including watermarking (Kirchen-
bauer et al., 2023a) and DetectGPT (Mitchell et al.,
2023). In their proposed detection scheme, the API
provider maintains a database containing every se-
quence generated by their LLM. When a detection
query is initiated, this database is queried to iden-
tify a previously-generated sequence that exhibits
the highest semantic similarity to the query. If the
level of similarity surpasses a predefined threshold,
the query is classified as machine-generated.

3 Problem Definition

Our goal is to develop a model-agnostic water-
marking method to identify generated texts. Let
LLM be a large language model and LLM™ is
its version with watermarking feature. In addi-
tion, let 77,0 (P)/T}; 5 (P) be a text generated
by LLM/LLM™ for the given prompt P. An ideal
watermarking method should have the following
properties:

* The watermarking process should not decrease
the quality of the texts, i.e., the quality of

Trrm(P) and T}% ,,(P) should be similar for
any given P.

» Watermarking text should not necessitate retrain-
ing or fine-tuning.

* We should have the capability to compute a statis-
tical confidence interval with interpretable values
for the detection and sensitivity analysis of the
watermark.

* The watermark should be robust to perturbations.
An adversary must make significant modifica-
tions to remove the watermark.

4 Proposed Methodology

In this section, we explain our proposed method to
generate watermarked text (Section 4.1) and how
to detect the watermark within a given text (Section
4.2).

4.1 Generating Watermarked Texts

In our watermarking method, we interfere with the
randomness of picking the next token according to
its conditional probability provided by a language
model in the decoding stage. The details of our
method are shown in Algorithm 1.

For a given input prompt P, LLM produces a
text T in an iterative way [Lines 1-9]. In each iter-
ation, LLLM outputs a conditional probability dis-
tribution vector over the vocabulary V' for the next
token to be generated [Line 3]. We multinomially
sample y candidate tokens based on the probability
distribution vector [Line 4]. Subsequently, we com-
pute a secret number for each candidate token ¢
[Lines 5-7]. In order to compute the secret number
of a candidate token (S*), we first concatenate the &
previous tokens and the candidate token ¢ and then
calculate their SHA256 hash value. Subsequently,
we seed a random number generator with the hash
value [Line 6] and generate a random number. Next
we pick the token with the highest secret number
for the next token [Line 8].

The secret number of any token in a candidate
passage only depends on itself and the k tokens
that precede it. This enables us to retrieve the same
secret number for every token in a passage outside
of the generation process. Moreover, if a passage is
watermarked we expect the average secret number
of the tokens that make up the text to be signifi-
cantly higher than otherwise. This is because while
the production of the non-watermarked text is com-
pletely ignorant of the secret numbers of tokens,
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Algorithm 1 Text Generation with the Sampling Watermarker

Input: P {Prompt given to the model}
Parameter-1: y {The sampling count}
Parameter-2: k& {The context window size}

1: Trom(P) = P {Keeps the whole text}

2: for each token to be generated do

3: D =LLM(Trrm(P))) {Get the probability distribution from the LLM}

4: Cp—y) =sample(D,y) {Sample y candidate tokens}

5: forie{l,...,y}do

6: 5% = RNG(seed = hash(Trra (P)™-N =+ (C;)) {Calculate the secret number}
7:  end for - o

8  Trom(P) = Trpm(P)+ ¢orgmas(S7h.S™) (Concatenate the selected token}

9: end for

our watermarking scheme actively attempts to max-
imize this value.

During sampling, we have the option to sam-
ple candidate tokens with or without replacement.
When we sample without replacement, the secret
numbers of the candidate tokens are guaranteed to
be distinct values. Maximizing the use of distinct
values tends to result in larger secret number val-
ues, making the watermark more detectable. On the
other hand, if the entropy of the probability distri-
bution is low, i.e., there are few plausible tokens to
be generated, sampling without replacement would
cause the model to pick the unlikely tokens, reduc-
ing the quality of the generated text. Therefore, we
also explore sampling with replacement and evalu-
ate the impact of both sampling methods in Section
5.

4.2 Detecting the watermark

In order to detect whether a given text X is water-
marked or not, i.e., a text generated by our scheme
or not, we first tokenize X and calculate the secret
number of each token in X. The secret number of
the rt" token of X can be calculated as follows.

S*r = RNG(seed = hash(X(_py, -+, X(r)))

where RNG is a random number generator
which draws values from a continuous uniform
distribution spanning the interval from zero to one.
The anticipated mean of the secret number for the
tokens composing a text aligns with a normal dis-
tribution characterized by an expected mean of 0.5
and an expected variance of ﬁ (See Blitzstein
and Hwang (2015) for explanation), where N rep-
resents the number of tokens within the given text
X. As the length of the candidate text increases,
the average secret number for non-watermarked
text gradually approaches this theoretical distribu-
tion with diminishing variance, thus reducing the

likelihood of the text’s average secret number de-
viating significantly from 0.5. Conversely, during
the watermarking process, tokens are selected from
a set of candidates based on their possession of
the highest secret number (out of y candidates).
This selection dramatically alters the distribution
of the average secret number, rendering it exceed-
ingly improbable for the text to have arisen through
natural generation. Thus, we classify the text as
watermarked if a certain threshold is exceeded. For-
mally, we define the following null hypothesis.

Hy: The text sequence is generated without any
attempt to maximize the secret number average.

The formula of the z-score for testing the hypothe-
sis is as follows:

z = (sma—0.5)/y/1/(12- N) (1)

where sna denotes the secret number average of the
candidate text and N represents how many tokens
make up the candidate text. The null hypothesis
is rejected (and the watermark is detected) if z —
score is above a chosen threshold .

5 Experiments

5.1 Experimental Setup

In this section, we explain evaluation metrics (Sec-
tion 5.1.1) to assess the quality of our watermark-
ing method, describe the models we used for wa-
termarking (Section 5.1.2), baseline methods we
compare against our methods (Section 5.1.3), and
datasets we utilized in our experiment (Section
5.1.4). Lastly, we provide details about implemen-
tation details (Section 5.1.5).

5.1.1 Evaluation Metrics

In order to measure the quality of watermarking
methods, we focus on the quality of the generated
text and our detection rate. We adopt the mea-
sures used by related prior work (Kirchenbauer
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et al., 2023b; Krishna et al., 2023). In particular,
we calculate how the generated texts are similar
to the human authored ones using P-SP (Wieting
et al., 2023). In addition, we use diversity which
aggregates n-gram repetition rates. A high diversity
score represents a more diverse text where fewer
n-grams are repeated (Li et al., 2023). Given the
fraction of unique n-grams (which is denoted as
uy,) diversity up to the N* order is defined as fol-
lows.

N
diversity = — log (1 -JJa- un)> )

n=1

Lastly, we use coherence to measure the seman-
tic coherence between the prompt and the generated
text. We employ the sentence embedding method,
SimCSE (Gao et al., 2022) for this calculation.
Given the prompt « and the generated text &, the
coherence score is defined as v, vz /(||ve || - |val])s
where v, = SIimCSE(zx) and vz = SimCSE(Z).

5.1.2 Models

As our approach can be applied in any model, we
utilize three different models that our hardware
systems could execute. In particular, we use OPT
(Zhang et al., 2022) with 1.3B parameters, BTLM-
3B (Dey et al., 2023) with 3B parameters, and
Llama?2 (Touvron et al., 2023) with 7B parameters.
All of the models were loaded using 4-bit quanti-
zation (Dettmers et al., 2023) to minimize memory
usage.

5.1.3 Baseline Methods

We compare our proposed method against the study
by Kirchenbauer et al. (2023a), also known as the
“Maryland Watermark” (MWM). For their method’s
configuration parameters, we follow the default set-
tings specified in their publicly available reposi-
tory>, setting the greenlist fraction ~y to 0.25 and
the logit bias d to 2. Additionally, we utilized their
repository’s evaluation pipeline to compute their
Z-scores, ensuring consistency in the comparison
metrics.

5.1.4 Datasets

In our experiment, we use two different datasets: 1)
the train split of the 'realnewslike’ portion of the
C4 (stands for “Colossal Clean Crawled Corpus™)
dataset (Raffel et al., 2020) and ii) the train split for
Wikitext (103-v1-raw) dataset (Merity et al., 2016).
C4 is an extensive web text collection resembling

3https://github.com/jwkirchenbauer/lm-watermarking

real news articles while Wikitext consists of 100M
tokens extracted from the set of verified Good and
Featured articles on Wikipedia, providing a more
structured and manageable source.

We use the first 100 tokens of the passages as
prompts. In order to have a fair comparison, we
use 200 tokens for all cases. Therefore, we al-
low models to generate maximum 200 new to-
kens. For a given prompt, if any of the generated
text is less than 200 tokens, we discard it, and
try another prompt drawn from the corresponding
dataset. We continue this process until we reach
500 samples for each dataset. Eventually, for each
dataset and model we use, we create five text sub-
datasets: i) texts generated by Maryland watermark-
ing (Thrwar), 1i) texts generated by our approach
with sampling with replacement (T'syy g), iii) texts
generated by our approach with sampling without
replacement (T'sywor), iv) texts generated without
watermark (T'vo1ar), and v) texts authored by hu-
mans (THumcms)-

5.1.5 Implementation

We implemented the sampling watermarker using
the PyTorch (Paszke et al., 2019) backend of the
Hugging Face library (Wolf et al., 2019). We uti-
lized the generate API provided by Hugging Face
for generating text. This API allows for passing
a custom LogitsProcessor which can be used to
modify the prediction scores of a language model
head for generation. We use Top-k sampling (Fan
et al., 2018) with top — k = 40 before doing any
sampling on all methods. For our proposed method
we set the context window size k to 1 and sampling
count ¥ to 5 unless otherwise is mentioned.

5.2 [Experimental Results

This section comprises of four subsections, each
serving distinct research objectives. The first (Sec-
tion 5.2.1) assesses watermark detectability, the sec-
ond (Section 5.2.2) examines textual quality under
watermarking, the third (Section 5.2.3) evaluates
watermark robustness against attacks, and the final
subsection (Section 5.2.4) investigates the impact
of various generation parameters on watermarking
performance.

5.2.1 Detectibility Experiments

In this experiment, we assess how accurate water-
mark detection mechanisms work. Specifically, we
run our watermarking methods and MWM for all
datasets we create and calculate average z-scores
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over the generations. In addition, we set the z-score
threshold (u) to 4 for both watermarking schemes
as in Kirchenbauer et al. (2023a) and calculate the
percentage of the texts detected as watermarked.
The results are shown in Table 1.

The average z-scores exceed 10 in most of
the watermarked texts, and is near O for non-
watermarked text, showing the effectiveness of wa-
termarking schemes. SWOR achieves achieves the
highest z-score and detection rates in watermarked
texts.

Our watermarking methods consistently avoid
false positives when applied to human authored
text, whereas MWM occasionally misidentifies
such content as watermarked. Moreover, both
MWM and our approach have higher false posi-
tive when dealing with non-watermarked machine-
generated text compared to human authored
text. This is because non-watermarked machine-
generated text inherently resembles watermarked
machine-generated text.

5.2.2 Textual Quality Experiments

In this experiment, we assess how watermarking
affects the textual quality. We report P-SP, diver-
sity, and coherence scores in in Table 2 for texts
watermarked with our approaches, Maryland Wa-
termarking, and without any watermark.
Regarding similarity with respect to human au-
thored text (P-SP), we observe that MWM achieves
higher scores than our methods for OPT-1.3B and
BTLM-3B. However, SWR outperforms others
when Llama2-7B is used for generation. Interest-
ingly, SWR even yields higher P-SP score than
non-watermarked text with Llama2-7B in Wikitext.
We observe a similar pattern in other metrics such
that MWM yields higher score with OPT-1.3B and
BTLM-3B models than our models in most of the
cases. On the other hand, SWR outperforms others
with the largest model we use. Regarding SWOR
vs. MWM with Llama2-7B is mix such that SWOR
outperform MWM in Wikitext but not in C4.

5.2.3 Robustness Experiments

In order to assess how vulnerable the watermark-
ing methods are against token level paraphrasing
attacks, we conduct an experiment similar to the
one in Kirchenbauer et al. (2023a). In particular,
we randomly pick %t of tokens in the watermarked
and mask them. Next, we use DistilIRoBERTa-Base
model (Sanh et al., 2020) to replace masked tokens,
ensuring that the model did not predict the same to-

ken that was initially masked. Figure 1 shows how
different attack percentages effect the detection of
the watermarked text. Sampling without replace-
ment achieves high detection rates even in attacks
with %40, outperforming all other methods. Sam-
pling with replacement and Maryland Watermarker
achieve similar detection rates.

N \

60~ —8— OPT-1.38 Sampling WM WR N

100

80

—#—- OPT-1.3B Sampling WM WOR
OPT-1.3B Maryland WM
40~ —@— BTLM-3B Sampling WM WR
—— BTLM-3B Sampling WM WOR
BTLM-3B Maryland WM
20~ —@— Llama2-7B Sampling WM WR
—— Llama2-7B Sampling WM WOR
Llama2-7B Maryland WM

10 20 30 40 50
The percentage of tokens changed

Detection Rate

Figure 1: Impact of paraphrasing attacks on the detec-
tion rate of watermarked texts.

5.2.4 The Impact of Sampling Count

We explore the impact of the sampling count used
for secret number generation, y on the quality of the
generated texts and the detection rate. In particular,
we vary y from 2 to 11 and generate text using our
approach with and without replacement using C4
dataset and Llama-2-7B model. Table 3 shows the
text quality metrics along with average z-score and
detection rate. We observe that increasing the sam-
pling count y results in decreasing quality scores in
all cases, but yields higher z-scores. Detection rate
for SWOR remains at %100 even at a low sampling
count of y = 2 and SWR achieves 99% rate when
y = b.

5.2.5 Entropy in Probability Distribution

The effectiveness of our proposed method and the
Maryland watermarking depends on the language
model’s output distribution. For instance, if the
model outputs a low entropy distribution for the
next token, our sampling with replacement based
method is likely to sample the same y tokens as can-
didates. However, in sampling without replacement
case, the watermarker is guaranteed to sample y
unique tokens and pick the one that has the highest
secret number.

In this experiment, we manually manipulate the
output distribution entropy of our models by adjust-
ing the sampling temperatures to assess its impact.
Table 4 shows the average z-score for varying tem-
perature values for Llama2-7B model on C4 dataset.
As expected we observe that both SWR and MWM
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C4 Wikitext
OPT-1.3B BTLM-3B Llama2-7B OPT-1.3B BTLM-3B Llama2-7B
Text Detector | z-score | WM || z-score | %DWM || z-score | %BWM || z-score | WM | z-score | WM || z-score ‘ %0 WM
Tswr SWR 11.31 | 99.8% 10.11 | 99.8% 9.44 99% 12.09 | 99.8% 10.33 | 100% 10.36 | 99.8%
Tswor SWOR 16.85 | 100% 16.29 | 100% 16.66 | 100% 16.92 | 100% 16.26 | 100% 17.23 | 100%
Tuywy ~ MWM 10.77 | 100% 9.82 | 100% 9.71 | 99.4% 11.79 | 100% 10.43 | 100% 10.65 97%
T SWR 0.27 0% -0.07 0% 0.22 0% 0.03 0% -0.05 0% 0.28 0%
Humans M -0.23 0% -046 | 0.2% 021 | 02% 035 | 0.6% 021 | 02% -0.01 | 0.2%
T SWR 0.22 0% -0.25 0% 0.44 1.4% 0.69 | 0.6% -0.22 0% 0.17 | 3.6%
NoWM: MWM -0.25 0% | -042| 02% 0.32 1% 001 | 04% | -017| 02% 039 | 34%

Table 1: The average z-scores over the generations when attempted to detect the watermark and the ratio of
samples detected as “watermarked" by the corresponding detector. The text in bold represent the highest z-score for

watermarked text and lowest for baseline completion text.

Metric Method C4 Wikitext
OPT-1.3B BTLM-3B Llama2-7B OPT-1.3B BTLM-3B Llama2-7B
SWR 0.44 0.48 0.48 0.45 0.48 0.52
P.SP SWOR 0.40 0.42 0.38 0.42 0.43 0.44
MWM 0.46 0.49 0.45 0.47 0.49 0.41
NWM 0.47 0.50 0.48 0.49 0.49 0.46
SWR 6.92 7.50 8.16 6.26 7.06 6.96
Diversity SWOR 6.84 7.49 7.48 6.42 7.23 6.66
MWM 7.40 7.90 5.88 6.77 7.46 5.38
NWM 7.87 7.87 6.17 7.16 7.55 6.1
SWR 0.63 0.64 0.64 0.67 0.66 0.65
Coherence SWOR 0.58 0.59 0.53 0.63 0.60 0.54
MWM 0.64 0.64 0.65 0.68 0.66 0.58
NWM 0.66 0.66 0.67 0.70 0.66 0.62

Table 2: The impact of watermarking on the the quality of the generated text. The highest score among watermarked
texts for each case is shown in bold. MWM: Maryland Watermarking, SWR: Sampling with replacement, SWOR:

Sampling without replacement, NWM: No Watermarking.

Y P-SP Diversity Coherence Z-score Detection Rate
SWR SWOR SWR SWOR SWR SWOR SWR SWOR SWR SWOR
2 049 045 833  8.65 0.66  0.61 4.79 8.33 %76 %100
5 0.48  0.38 8.16 748 064 0.53 9.44 16.66 %99 %100
8 046 034 7.66 6.4 0.62  0.50 11.72  19.51 %100 %100
11 045 030 7.65 583 0.62 046 1291 20.94 %100 %100

Table 3: The effect of sampling count y on textual quality metrics. Model: Llama-2-7B, Dataset:c4, k:1.

exhibit stronger watermarks when the output dis-
tribution entropy is higher. SWOR shows slight
variations in the average z-score but these are just
statistical noises as SWOR is designed to be unaf-
fected by the underlying distribution entropy.

Temperature | 0.8 0.9 1 1.1 1.2

SWR 8.14 8.91 9.44 10.38  10.82
SWOR 16.89 16.75 16.66 16.68 16.61
MWM 8.02 8.85 9.71 10.65 11.24

Table 4: The effect of sampling temperature on the aver-
age z-score. Lower temperatures yield output distribu-
tions with lower entropy vice versa. Model: Llama2-7B,
Dataset:C4, k:1,y:5

6 Limitations

While our work makes a significant contribution
to the research on LLMs, there are certain limita-
tions that warrant further exploration in the future.
Firstly, the prompts used in our experiments are
derived from two datasets. However, watermark-
ing performance is highly dependent on the nature
of the prompt. For example, when asking a fac-
tual question (e.g., "What is the full text of the
U.S. Constitution?"), watermarking the generated
output becomes challenging due to the limited flex-
ibility in the model’s response. To address this, a
broader range of datasets covering diverse topics
is necessary. Furthermore, our experiments were
conducted using only three models, primarily due
to hardware constraints. Since the performance of
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watermarking methods is influenced by the specific
models used for text generation, evaluating a wider
variety of LLMs is essential for more robust assess-
ments. Additionally, we did not account for human
paraphrasing in our evaluation, which limits the
scope of robustness testing and highlights another
avenue for future research.

Furthermore, in our study, we focus on only the
task of completing a text for a given prompt. We ac-
knowledge that further evaluation of the proposed
watermark across different down stream tasks such
as question answering and summarization would
be beneficial. We leave this exploration as future
work.

Lastly, we explore only token level paraphrasing
attacks to measure the robustness of the models.
There exist different methods for manipulating text
to evade watermarking detection such as deletion,
unicode attacks and human paraphrasing. Thus,
other types of attacks should be explored to further
analyze the robustness of watermarking methods.

7 Conclusion and Future Work

In this work, we propose a watermarking scheme
which embeds a unique pattern into the generated
text while preserving its coherence and natural read-
ability for human readers. Specifically, We modify
the token sampling process of LLMs. In particular,
we first sample multiple tokens based on probabil-
ity distribution over vocabulary and then calculate
a unique secret number for each sampled one. We
always pick the token with the highest secret num-
ber, allowing us to trace the hints of generation
process.

In our experiments with multiple datasets and
LLMs, we show that our method we show that our
watermarking is detectable and reduce slight de-
crease in text quality. Furthermore, our method
outperforms Kirchenbauer et al. (2023a)’s method
in terms of detectability and robustness. Regarding
text quality, we achieve slightly superior results
compared to Kirchenbauer et al. (2023a) when ap-
plied to larger models, albeit with less favorable
outcomes when dealing with smaller models.

There are multiple research directions we plan
to extend in the future. Firstly, we plan to conduct
our experiments on a larger scale in terms of data
and model size and types. Secondly, a more so-
phisticated watermark could be implemented by
adaptively choosing the sampling count y based on
the entropy of the output distribution. Specifically,

when the output distribution exhibits low entropy,
we can select a smaller value for y and conversely,
when the entropy is high, we can opt for a larger
value. This method would ensure less perplexity
on low entropy text while allowing for a stronger
watermark to be embedded on higher entropy text.
We leave this extension as a future work.

Lastly, there are no inherent obstacles to abstain-
ing from the concurrent application of both our and
Kirchenbauer et al. (2023a)’s watermarks during
text generation. This would enable texts that are
detectable by both watermarking methods. Em-
ploying two relatively less intrusive watermarks
might potentially better maintain the textual quality
while preserving high detectability.
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Abstract

This paper presents our approach to the MGT
Detection Task 1, which focuses on detecting
Al-generated content. The objective of this task
is to classify texts as either machine-generated
or human-written. We participated in Subtask
A, which concentrates on English-only texts.
We utilized the RoOBERTa model for semantic
feature extraction and the LLaMA3 model for
probabilistic feature analysis. By integrating
these features, we aimed to enhance the sys-
tem’s classification accuracy. Our approach
achieved strong results, with an F1 score of
0.7713 on Subtask A, ranking ninth among 36
teams. These results demonstrate the effective-
ness of our feature integration strategy.

1 Introduction

In recent years, with the rapid development of large
language models, distinguishing between machine-
generated text and human-authored text has be-
come increasingly challenging. This issue can lead
to several potential problems. Low-quality gener-
ated text, when posted on social media, can reduce
user experience, hinder the growth of platforms and
high-quality content creators (Radivojevic et al.,
2024). Generated text that lacks fact-checking can
lead to the spread of rumors and misinformation
(Chen and Shu, 2023), causing public panic and un-
dermining government credibility. In academia, the
presence of generated text raises ethical concerns
regarding academic integrity (Meyer et al., 2023).
Therefore, there is an urgent need to develop ef-
fective techniques for detecting machine-generated
content (Wu et al., 2023).

Unlike typical machine-generated text, the data
for this shared task are derived from multiple mod-
els and spans various domains (Wang et al., 2025).
The human-authored texts in Subtask A originate
from over 20 specialized fields, including finance,

* Equal contribution.
 Corresponding author.
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Figure 1: A two-stage machine generated text detection
model architecture.

medicine, arXiv, WikiHow, IMDb, and Yelp. Cor-
respondingly, the machine-generated texts are pro-
duced by more than 40 different large language
models. Due to the diverse sources of this dataset,
many simple yet effective statistical features are no
longer viable, significantly increasing the challenge
of the detection task.

Machine-generated text often exhibits certain
characteristics, such as weaker emotional expres-
sion, fewer numeric details, simpler grammar and
vocabulary, and the absence of word order or
spelling errors. However, these characteristics can
be mitigated through iterative prompt optimization,
which makes detection less reliable. To address
this, we aim to develop a more generalized detec-
tion method that minimizes the risk of counter-
detection. Since large models are pretrained on
next-token prediction tasks, machine-generated
text inherently exhibits high-probability character-
istics. This feature remains consistent across texts
generated by different models or under various
prompt conditions. Specifically, we leverage the
[C'LS] vector of the ROBERTa (Liu, 2019) model
as the semantic feature of the text and use LLaMA3
(Dubey et al., 2024) model to calculate the differ-
ence between the probability of the actual next
token and the predicted next token at each token
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Figure 2: The x-axis represents the mean of the different dimensions of the probabilistic features H, for each text,
while the y-axis represents the number of texts with the same average value.

position, obtaining a vector as the probabilistic fea-
ture. By concatenating these two feature sets and
feeding them into a feedforward network for binary
classification, as illustrated in Figure 1, we achieve
robust detection performance.

2 Related Works

The task of detecting machine-generated text is es-
sentially a binary classification problem. Wu et al.
(2023) provide a comprehensive overview of the
field of LLM-generated text detection, thoroughly
examining the necessity of this task. They catego-
rize detection techniques into watermarking meth-
ods, statistical detectors, neural network-based de-
tectors, and human-assisted approaches, and also
list available data resources. Suvra Ghosal et al.
(2023) conducted a similarly excellent review, fo-
cusing on the possibilities and limitations of text
inspection. They categorize detection frameworks
into a priori and post hoc detectors, as well as ana-
lyzing novel attack strategies for evading detection
in machine-generated text. Due to challenges in
achieving consistency and widespread adoption of
watermarking methods, post hoc detection is cur-
rently the only feasible approach for real-world
detection tasks. This approach is further divided
into zero-shot detection and fine-tuned model de-
tection, with the latter being the category of this
shared task.

Zero-shot detection does not require labeled
datasets. Typically, it involves calculating entropy,
perplexity, n-gram frequency, or the average log
probability per token of a given sequence, fol-
lowed by thresholding. Mitchell et al. (2023) detect
machine-generated text by examining the curva-
ture of a language model’s log probability function.
They generate perturbations of a given text sample,
compares their log probabilities with the original
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text, and identifies machine-generated text based
on a higher discrepancy metric. Yang et al. (2023)
detects machine-generated text by truncating a text
in the middle, regenerating the remainder using a
language model, and then analyzing n-gram differ-
ences between the original and newly generated
text segments.

Fine-tuned model detection, on the other hand,
trains binary classifiers using features extracted
from pretrained language models. Petukhova et al.
(2024) combine RoBERTa-base embeddings with
diversity features and resample the training set.
Verma et al. (2023) calculate the log probability
of tokens using a series of weaker language mod-
els, generates additional synthetic features through
vector and scalar operations, and uses a logistic
regression classifier to detect machine-generated
text based on these features.

3 Method

As shown in Figure 1, our model is divided into
two stages. In the first stage, we perform super-
vised learning for binary classification using the
RoBERTa model, aiming to enhance the [C'LS]
vector of the ROBERTa model with features rel-
evant to the task of detecting machine-generated
text. In the second stage, we freeze the parameters
of the RoOBERTa model and obtain the [C'LS] vec-
tor for each text as the semantic feature H,. For a
given text x = [z1,...,x,], where n is the token
length of the text, we freeze the parameters of the
LLaMA3-8B-Instruct model and compute the prob-
abilistic features H, = [hq,..., hy], where h; is
calculated according to Equation 1:

h; = pg (Tiy1|r<i) — max pg (ylz<i) (1)
yeVv

That is, under model 6, the probability of pre-
dicting the next token x; 1 given the prefix z<;



is subtracted by the maximum probability of any
token being predicted as the next token given the
prefix x<;. V represents the entire vocabulary.
For the different dimensions h; of the probabilis-
tic features H), for the same text, we performed
normalization, as shown in Equation 2:

, h; — min(H,)

hi = max(Hp) — min(H,) @

We compute the mean of the probabilistic fea-
tures H), for a text. The distribution of the prob-
abilistic features mean is illustrated in Figure 2,
where we can observe that machine-generated text
tends to follow high-probability sampling for the
next token, whereas human-authored text does not
exhibit this distinct characteristic.

The semantic features H, and probabilistic fea-
tures H,, are first subjected to dimensionality re-
duction individually. These reduced vectors are
then concatenated to form a unified representation.
This concatenated representation is subsequently
processed through a series of linear layers. Finally,
a softmax activation function is applied to produce
the final label predictions.

4 Experiments

As shown in Figure 3, the text lengths in the dataset
are primarily concentrated around 500 words. In
the first stage illustrated in Figure 1, we uniformly
truncate texts to the first 512 tokens and exper-
iment with four models: RoBERTa, RoBERTa-
large, DeBERTa (He et al., 2021), and DeBERTa-
large. We use the baseline script for training, with
hyperparameters set as follows: a learning rate of
2e-5, batch size of 16, three epochs, and an L2
weight regularization of 0.01. On the validation
set, ROBERTa-large achieved the best performance,
with comparative results shown in Table 1.

score micro fl accuracy

Baseline 0.8163 - -

RoBERTa-large 0.8502  0.8571 0.8571
DeBERTa 0.8273  0.8378 0.8378
DeBERTa-large 0.8384  0.8439 0.8439
RoBERTa-large+LLaMA3  0.8980  0.9015 0.9015

Table 1: Performance Comparison of Models.

In the second stage, we select RoOBERTa-large to
extract the [C'LS| vector with a dimension of 1024.
The text is again truncated to the first 512 tokens
and input into LLaMA3-8B-Instruct to compute
the probabilistic feature vector with a dimension

of 512. We then train a feedforward neural net-
work with three hidden layers and ReL.U activation
functions. The first layer reduces both features to
128 dimensions, which are then concatenated. The
second layer further reduces the dimensionality to
64, and the final layer reduces it to 2 classes. We
use a learning rate of le-4 and a dropout rate of
0.5. This approach achieves a macro F1 score of
0.8980 on the validation set. Our experiments were
conducted using an NVIDIA GeForce RTX 4090
24GB.

Lim Human  Total
Train 381845 228922 610767
Dev 163430 98328 261758
Test - - 73941

Table 2: Statistics for datasets.

It is evident that using the same generative model
as the text source for computing the probabilis-
tic features in the second stage would yield better
results. However, on the one hand, the dataset
for the competition does not originate from a sin-
gle model, and on the other hand, in real-world
scenarios, we cannot know the potential model
source of the text. We chose to use LLaMA3-8B-
Instruct for computing the probabilistic features
because the LLaMA series models have had a sig-
nificant influence in the open-source model domain.
Many subsequent open-source models have been
affected by it and may have been trained on the
same general datasets, leading to similar probabil-
ity distributions in text generation. Additionally,
LLaMA3-8B-Instruct performs exceptionally well
in the English domain. Due to the large scale of the
competition dataset and our limited computational
resources, we did not conduct comparative exper-
iments using other large models for probabilistic
feature extraction.Table 2 presents the scale of the
dataset.

Although we did not participate in the final sub-
mission for Subtask B, we conducted experiments
on the validation set for this subtask. We used a
combination of XLM-RoBERTa (Conneau, 2019)
and LLaMA3-8B-Instruct, achieving a score of
0.6766 compared to the baseline of 0.6546 for Sub-
task B. This result suggests that probabilistic fea-
tures can be helpful for detecting multilingual text,
but the current model framework does not perform
outstandingly.
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Figure 3: The x-axis represents the text length segmented by words, while the y-axis shows the probability density
corresponding to each length. It can be observed that the text lengths in both the training and validation sets are

primarily concentrated within 500 words.

5 Conclusion

In this work, we proposed a two-stage detection
system for machine-generated text. By integrating
semantic features from RoBERTa with probabilis-
tic features from LLaMA3, our system achieves
a Macro F1 score of 0.7713 on the test set, rank-
ing ninth overall. Our experiments confirmed the
effectiveness and generalizability of this feature
integration approach. Compared to average results,
our proposed system demonstrates robustness and
strong generalization capability, which we aim to
further enhance in future work.
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Abstract

The widespread use of large language mod-
els (LLMs) influences different social media
and educational contexts through the over-
whelming generated text with a certain de-
gree of coherence. To mitigate their poten-
tial misuse, this paper explores the feasibil-
ity of finetuning LLaMA with label super-
vision (named LS-LLaMA) in unidirectional
and bidirectional settings, to discriminate the
texts generated by machines and humans in
monolingual and multilingual corpora. Our
findings show that unidirectional LS-LLaMA
outperformed the sequence language models
as the benchmark by a large margin (up to
7.39 and 5.29 percentage points in F1 in-
crease in monolingual and multilingual cor-
pora, respectively). Our code is publicly avail-
able at https://github.com/honghanhh/llama-as-
a-judge.

1 Introduction

The blooming of large language models (LLMs)
has led to a significant step forward in producing
different machine-generated content across diverse
channels and platforms (e.g., news, social media,
question-answering forums, educational, and even
academic contexts). The generated texts become
increasingly fluent and coherent with the advent of
recent models (e.g., GPT-4o, Claude 3.5). How-
ever, this also resulted in concerns regarding their
potential misuse, such as spreading misinformation
and causing disruptions in the education system.
Consequently, there is a need to develop automatic
systems to identify machine-generated text to miti-
gate its potential misuse.

Inspired by the work of Tran et al. (2024), we
investigate the feasibility of training a binary se-
quence classifier that can reliably differentiate be-
tween text generated by humans and text that ap-
pears human-like but is generated by machines but
leverage the performance with the integration of a
LLaMA-as-a-judge in three different settings on the

larger monolingual and multilingual corpora from
Wang et al. (2025).
The main contribution of this paper is as follows:

* We study a label-supervised adaptation config-
uration for LLaMA-as-a-judge to discriminate
between human-written (HW) and machine-
generated (MG) texts.

* We investigate the feasibility of employing
latent representations in LLaMA with three
settings: masked unidirectional, masked bidi-
rectional, and unmasked ones for discriminant
label prediction in the classification tasks.

* Our solution is publicly available on GitHub
to encourage openness, transparency, and re-
producibility in the research community.

2 Related Work

The success of LLMs in various downstream NLP
tasks (Vilar et al., 2022; Hegselmann et al., 2023)
leads to the overuse and abuse of the information
generated by LLMs. However, it is essential to
acknowledge that the outputs generated by LLMs
are not always accurate, giving rise to the issue of
hallucination (Azamfirei et al., 2023). Researchers
have developed several automatic detection meth-
ods (Zellers et al., 2019; Uchendu et al., 2021)
that can identify the MG texts from the HW texts,
which initially can be divided into two categories,
i.e., metric-based and model-based methods.

Metric-based methods Metric-based methods
leverage LLMs to process the text and extract its
distinguishable features. Then, predicted distribu-
tion entropy determines whether a text belongs to
MG or HW texts. Some metric-based detection
methods include Log-Likelihood, Rank, Entropy,
GLTR, Log-Rank, and DetectGPT (He et al., 2023),
to cite a few.
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Figure 1: Our general LLaMA architecture in three different settings.

Model-based methods The model-based meth-
ods (Habibzadeh, 2023; Guo et al., 2023) are of-
ten trained using a corpus that contains both MG
and MW texts to make predictions, for example,
ChatGPT Detector (Guo et al., 2023), GPTZero
(Habibzadeh, 2023), and LM Detector (Ippolito
et al., 2020). Regarding Wang et al. (2024b),
RoBERTa (Liu et al., 2019) and XLLM-R (Conneau
et al., 2020) are two baseline language models for
these specific tasks.

The comparative studies of both categories can
be found at the work of Tran et al. (2024).

3 Data

We evaluate the feasibility of our approach with
English! and multilingual® corpora from Wang
et al. (2025). Both corpora are the continuation
and improvement of Wang et al. (2024a) with ad-
ditional training and testing data generated from
novel LLMs and including new languages.

4 Methodology

This section tackles the problem by formulat-
ing it as supervised sequence classification tasks.
We then introduce our proposed architecture and
present how we fine-tune them before indicating
how we assessed their performance.

!Jinyan1/COLING_2025_MGT_en
2Jinyan1/COLING_2025_MGT_multingual

4.1 Problem Formulation

We formulate the problem as a binary supervised
classification task, whose objective is to learn a
mapping between a text representation and a binary
variable, which is 1 if the text is machine-generated,
and O otherwise. Mathematically, we learn a func-
tion f that, given an input text ¢;, represented as
a set of features [f}, ..., fi], outputs an estimated

label [; € {0,1},ie., [; = f(t;).

4.2 Our architecture

Our general architecture of the label-supervised
LLaMA-as-a-judge (short form: LS-LLaMA?) from
MG text detection with three different settings is
visualized in Figure 1.

4.2.1 Masked Unidirectional LS-LLaMA

The tokens 7" from the input sequence .S were fed
into pretrained models to extract the latent represen-
tation H from LLaMA for sequence classification.
First, we compute its embedding:

t = Tokenizer(S) (1)

then
x = Embedding(t) ()
the transformer decoder layers are computed as

T

K
AttnfF*MA(Q, K, V) = SoftMax (Q

VvV 3
\/E+M) (3)

3https://github.com/4AT/LS-LLaMA
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Q=Wyz+b K =Wiz+b V=W,x+b

M: denotes the causal mask.
We modify the LLaMA model to obtain all the
sequence representations:

hrrava = LLaMA(T) @)

The pooling operation is applied to the latent
representation to obtain the vector representation A
for sequence classification. After passing through
fully connected layers and a softmax layer, vec-
tor representation h is mapped to the label space.
Cross-entropy loss is calculated based on the output
logits and the ground-truth label.

4.2.2 Masked Bidirectional LS-LLaMA

To address the missing dependency information in
autoregressive LLMs, we explore how backward
dependencies affect sentence embedding learning.
This is done by converting certain attention layers
in the transformer decoder from unidirectional to
bidirectional, removing the causal masks. How-
ever, if we keep all the causal masks, performance
decreases significantly. Therefore, only the last
attention layer is converted to bidirectional.

Mathematically speaking, with input sentence .S
and its embedding x as computed in LS-LLaMA,
the embeddings are fed to the transformers to ob-
tain LLaMA "

T

Attnf L MA(Q, K, V) = SoftMax (QK
Vd

Then, we detach and transform it from uni- to
bi-directional to obtain BiLLaMA”~ 1"

—I—M) V (5)

QK'
Vd

The final representation can be formulated as:

At EEeMA(Q K| V) = SoftMax(

V.o (©)

h = LLaMA!"(x) + BiLLaMA™ '"(x) (7)

4.2.3 Unmasked Unidirectional LS-LLaMA

Instead of removing only the causal mask of the
last transformer layer, the causal masks will be
removed in all transformer layers with the assump-
tion to be replenished in token representations dur-
ing fine-tuning as all the tokens can attend to each
other. The computation of the transformer layer is
computed as:

QK'
Vd

Moreover, using bidirectional combining with
max-over-time pooling yields better performance
than average pooling and last-token pooling in clas-
sification tasks. The formula of unmasked unidi-
rectional LS-LLaMA can be represented as follows:

At} HeMe(Q K, V) = SoftMax(

Vo ®)

hunLLaMA = UnLLaMA(w) (9)

without causal masks.

4.3 Hyperparameters

We fine-tuned LLaMA-2-7b-hf* with the same con-
figuration for all three settings: batch size = 16,
learning rate = le-5, number of epochs = 5 with
max length = 128, and Lora = 12. All the ex-
periments were implemented on an NVIDIA RTX
H100 with a CUDA Version of 12.4 (95000MiB).

4.4 Evaluation metrics

We use Accuracy, macro-F1, and micro-F1 as the
evaluation metrics to measure our classifiers’ per-
formance. These are also the standard metrics in
Wang et al. (2025), which makes our work more
comparable with other solutions.

5 Results

Table 1 and 2 report the evaluation of LS-LLaMA
with three different learning settings in comparison
with the baselines on the monolingual and multi-
lingual subsets, respectively, in the development
phase before the test set was released.

Methods ‘ Accuracy Micro F1 Macro F1

LS-LLaMA | 09166 09166  0.9146
biLS-LLaMA | 0.8887 ~ 0.8928  0.8928
LS-unLLaMA | 0.8725 ~ 0.8725  0.8682

Baseline | 0.8483  0.8483  0.8407

Table 1: Evaluation on monolingual set in dev. phase.

Overall, LS-LLaMA demonstrates strong perfor-
mance in monolingual and multilingual corpora,
particularly excelling in accuracy and micro F1
metrics. However, the significant drop in macro F1
scores for the multilingual evaluation suggests that
while the model performs well on average, it may

*NousResearch/LLaMA-2-7b-hf
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Methods | Accuracy Micro F1 Macro F1
LS-LLaMA | 0.8703 0.8703 0.6715
biLS-LLaMA | 0.8514 0.8514 0.6540
LS-unLLaMA | 0.8025 0.8025 0.5890
Baseline ‘ 0.8561 0.8561 0.6186

Table 2: Evaluation on multilingual set in dev. phase.

have difficulty with less frequent classes, indicat-
ing a potential area for improvement in handling
multilingual data where there exists an imbalance
in HW and MG classes in different languages and
resources. While providing some performance, the
other models do not surpass LS-LLaMA, reinforc-
ing their effectiveness in this evaluation phase.

Based on the subset’s performance in the devel-
opment phase, we applied LS-LLaMA to the test set
in the test phase, which achieved 0.7463 in macro
F1 and 0.7554 in accuracy for the monolingual test
set, 0.7427 in macro F1 and 0.744 in accuracy for
the multilingual test set.

6 Discussion

Unidirectional vs. Bidirectional Context. The uni-
directional LS-LLaMA’s focus on sequential learn-
ing, coherence recognition, and specialized train-
ing objectives makes it particularly well-suited for
the task of MG text detection. In contrast, the
bidirectional LS-LLaMA, while powerful in captur-
ing overall context, may struggle with the specific
sequential dependencies that are critical for effec-
tively distinguishing HW from MG texts. This
fundamental difference in architecture and training
approach likely contributes to the observed perfor-
mance advantage of unidirectional LS-LLaMA.

Masking Strategy. The “masked” aspect refers
to how models are trained to predict missing parts
of the input. In unidirectional masked LS-LLaMA,
the focus is often on learning to predict the next
token or fill in gaps based on prior context. This
can enhance their ability to understand coherent
patterns typical in HW texts, which explains the
higher performance of masked LS-LLaMA com-
pared to unmasked settings, which can potentially
suffer from data leaks.

7 Error Analysis

We conduct several analyses to investigate how
different factors would affect the detection perfor-
mance of our best classifier, namely LS-LLaMA.

Figure 2 illustrates the confusion matrices for the
English and multilingual test sets. These matrices
reveal a notable tendency for higher error rates in
detecting MG content. This observation suggests
the model may be calibrated to prioritize detecting
MG (label 1) instead of HW texts (label 0).

True label

0 1
Predicted label

(a) The monolingual test set.

True label

0 1
Predicted label

(b) The multilingual test set.

Figure 2: Confusion matrices for LS-LLaMA.

We elaborated our analysis regarding the error
rate by text length and textual analysis of misclas-
sification. The results suggest that error rates may
not consistently increase or decrease with longer
or shorter texts; instead, they vary based on data.
However, there is a tendency for the classifier to
have higher errors when the length of the text is
from 10,000 to 20,000 words (see Figure 3).

8 Conclusions

In conclusion, we conducted a comparative study
of label supervision LLaMA, so-called LS-LLaMA
to highlight the potential and feasibility of fine-
tuning an LLM to discriminate between HW and
MG texts. Three different settings have been ap-
plied, including unidirectional masked, unidirec-
tional unmasked, and bidirectional. Our findings
suggest that unidirectional masked LS-LLaMA out-
performed two other settings and the benchmarks
for both monolingual and multilingual sets.
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A Error Rate by Text Length

Figure 3a and 3b show fluctuating error rates across
text lengths of the English set and multilingual test
set, we can not see a clear linear relationship be-
tween text length and error rate. This suggests
that errors may not consistently increase or de-
crease with longer or shorter texts; instead, they
vary based on data. However, there is a tendency
for the classifier to have higher errors when the
length of the text is from 10,000 to 20,000 words
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Figure 3: Error rates based on text length using LS-LLaMA.
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Abstract

The ever-increasing spread of Al-generated
text, driven by the considerable progress in
large language models, entails a real problem
for all digital platforms: how to ensure con-
tent authenticity. The team TechExperts(IPN)
presents a method for detecting Al-generated
content in English and multilingual contexts,
using the google/gemma-2b model fine-tuned
for COLING 2025 shared task 1 for English
and multilingual. Training results show peak
F1 scores of 97.63% for English and 97.87%
for multilingual detection, highlighting the
model’s effectiveness in supporting content in-
tegrity across platforms.

1 Introduction

The rise of large language models (LLMs), such
as GPT-4, has significantly increased the volume
of Al-generated content across various digital plat-
forms. These models can generate coherent and
contextually relevant text, making it much more
difficult for users to distinguish between human-
authored and machine-generated content. The re-
cent rise in Al-generated content is making many
question the credibility and reliability of informa-
tion, especially regarding journalism, academia,
and social media, where the integrity of the content
is critical. This has brought the need to develop
effective methods to detect Al-generated content to
an all-time high (Fraser et al., 2024).

Recent gains in the capabilities of LLMs have
brought new challenges to their detection. Ap-
proaches such as reinforcement learning with hu-
man feedback and instruction tuning have given
these models more versatility to follow even com-
plex prompts and thus develop plausible responses
that further complicate the detection problem (Ab-
dali et al., 2024). Traditional detection methods,
which rely on identifying patterns of word choice,
sentence structure, or perplexity, are often insuf-
ficient as these models improve in mimicking hu-
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man writing styles (Goddard et al.). One avenue
of research lies in resorting to transformer-based
models in the detection effort, whereby such mod-
els make possible fine-grained differentiation of
human-generated from Al-generated texts through
fine-tuning curated datasets (Zhao et al., 2024).
These models have demonstrated high accuracy
in identifying Al-generated content, even when the
text is short or resembles typical human writing
(Mao et al., 2024).

The proposed research introduces an ap-
proach that utilizes the google/gemma-2b
model, an advanced Large Language Model
(LLM), to identify Al-generated content across
English and multilingual contexts, using
both the COLING_2025_MGT _en and COL-
ING_2025_MGT_multilingual datasets. By
leveraging google/gemma-2b, a powerful multilin-
gual LLM, our approach aims to enhance detection
precision through sophisticated machine learning
techniques. This method is expected to contribute
significantly to maintaining content integrity and
mitigating risks associated with the improper use
of Al-generated textual content across diverse
linguistic landscapes.

This paper is structured as follows: Section 2
reviews related work in Al-generated content de-
tection, Section 3 describes the methodology and
dataset used, Section 4 presents the experimental
results, and Section 5 discusses the findings and
their implications. Finally, we conclude with po-
tential future directions for research in this field.

2 Related Work

Detecting Al-generated content has become a crit-
ical research area due to advancements in large
language models (LLMs) like GPT-4. These mod-
els can produce content that closely mimics human
writing, raising concerns about authenticity across
academia, journalism, and social media. Early
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methods relied on lexical, syntactic, and stylistic
features, but these often fell short as modern LLMs
became more sophisticated. Detecting machine-
generated text is a complex task'.

Recent advancements involve machine learning,
particularly transformer models like ROBERTa and
BERT, which show high accuracy when fine-tuned
on human and machine-generated datasets. Studies
have demonstrated significant improvements using
these models on specialized datasets (Zeng et al.).
Advanced approaches leverage token-level analysis,
focusing on log probabilities and entropy to detect
patterns typical of Al-generated text. This strategy
exploits the probabilistic nature of LLMs, identi-
fying subtle deviations from human writing [4].
Ensemble methods have also effectively combined
models like ROBERTa with domain-specific clas-
sifiers. Techniques such as paraphrasing and back-
translation further enhance robustness, allowing
better generalization across different text sources
(Wang et al., 2024).

Emerging trends focus on hybrid approaches,
blending linguistic features with machine learning
models to capture nuances that traditional statistical
methods miss. Zero-shot learning methods are also
being explored, enabling detection without explicit
examples, though with mixed success (Mitchell
et al., 2023). Ethical considerations are increas-
ingly important, particularly avoiding biases that
might misclassify content from non-native English
writers. Future research aims to develop inclusive
systems that ensure high detection accuracy across
diverse user demographics (Fraser et al., 2024).

In summary, while advancements in machine
learning and transformer-based models have
strengthened Al-generated text detection, chal-
lenges remain, particularly in addressing di-
verse linguistic contexts. Motivated by these
backgrounds, we employ the google/gemma-
2b model (a multilingual LLM) to local-
ize Al-generated text in English and multilin-
gual with COLING_2025_MGT_en and COL-
ING_2025_MGT_multilingual datasets, respec-
tively. This approach aims to enhance detection
accuracy, supporting efforts to uphold content in-
tegrity and responsible Al use across varied lan-
guages and settings.

"University of Pennsylvania School of Engineering and
Applied Science. (2024, August 16). Detecting machine-
generated text: An arms race with the advancements of large
language models. ScienceDaily. Retrieved December 12,

2024, from https://www.sciencedaily.com/releases/
2024/08/240816121550.htm

3 Methodology

This section outlines the datasets employed and the
proposed google/gemma-2b model used for both
English and Multilingual settings.

3.1 Dataset

In this work, we use two primary datasets to iden-
tify Al-generated (AG) texts in English and mul-
tilingual texts: COLING_2025_MGT_en, COL-
ING_2025_MGT_multilingual. The datasets (see
Table 1) are rich and diverse, including human-
and machine-generated examples across finance,
medicine, social media feeds, and scientific litera-
ture.

3.1.1 English Dataset

(COLING_2025_MGT_en): This dataset in-
cludes 610,767 samples in total, with 228,922
human-written and 381,845 machine-generated
texts. The development set contains 261,758 sam-
ples (98,328 human and 163,430 machine).

3.1.2 Multilingual Dataset

(COLING_2025_MGT_multilingual): Spanning
languages such as Chinese, Italian, Arabic, Rus-
sian, Bulgarian, and Urdu, this dataset com-
prises 629,384 training samples, split into 253,625
human-written and 375,759 machine-generated

texts. The development set includes 271,215 sam-
ples (107,467 human and 163,748 machine).

3.2 Proposed Model

This study utilizes the google/gemma-2b model,
a transformer-based architecture for detecting Al-
generated content across English and multilingual
contexts. As illustrated in Figure 1, the process
begins with tokenizing input text, where each to-
ken is converted into a vector representation. Po-
sitional embeddings are added to these token vec-
tors to preserve sequence information, allowing the
model to recognize word order and contextual re-
lationships—an approach common in transformer
architectures (Vaswani, 2017). This step is essen-
tial for distinguishing nuanced linguistic patterns
that differentiate human-generated content from
Al-generated text.

The model’s core lies in the Decoder Block,
where multiple layers process these embeddings
to refine the token representations further. Each
layer employs multi-head self-attention to capture
diverse contextual relationships across tokens, en-
abling the model to focus on various aspects of the
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Dataset Training Set Development Set  Grand Total
English Human: 228,922 Human: 98,328 872,525
Machine: 381,845 Machine: 163,430
Multilingual Human: 253,625 Human: 107,467 900,599
Machine: 375,759 Machine: 163,748
Table 1: Datasets (English + Multilingual) Details
o P OO CE these stratified samples to train the final model,
+ + + +

Token Classification Head

Figure 1: Architectural view of proposed gemma model

text, a technique effective in capturing semantic
relationships (Devlin, 2018). Following this, each
token embedding passes through a feed-forward
neural network (FFNN), which enhances repre-
sentation depth, allowing the model to interpret
complex language structures (Radford et al., 2019).
Additionally, layer normalization and residual con-
nections stabilize the outputs and ensure critical in-
formation flows through the layers without degrada-
tion, as demonstrated in various transformer-based
models (He et al., 2016). Finally, the output vec-
tors are passed to a token classification head, which
labels each token, distinguishing Al-generated con-
tent from human-written text with high precision
(Liu, 2019).

4 Results and Analysis

This section presented the experimental setup, eval-
uation metrics, and training results, demonstrating
the proposed model’s high accuracy and robust
multilingual detection performance.

4.1 Experimental Setup

The proposed gemma model was implemented
in the Python-based PyTorch framework.
High resources were used for model train-
ing on Google Colab Pro Plus. Due to the
size of COLING_2025_MGT_en and COL-
ING_2025_MGT_multilingual datasets (Wang
et al., 2025), we used only a subset of all these
data for experiment capabilities. For each data set,
60,000 examples were sampled from the training
set and 10,000 from the development set. We used

which confirms a balanced representation across
classes for both English and multilingual datasets.
Using this method, we could efficiently train the
model while keeping the detector’s performance
strong. Table 2 gives details on the hyperparameter
settings.

4.2 Evaluation Measures

We measured the model’s accuracy, precision, re-
call, and F1 score (Mehak et al., 2023). So, accu-
racy shows us correctness in general; precision is
the ratio of correctly identified Al detections to all
detected cases by Al, and recall shows how well
your model can detect Al instances out of every-
thing. It incorporates false positives and negatives,
i.e., identifying a balance between precision and
recall (F1 score). Combining these metrics gives a
good assessment of how well the model performs
in classifying Al-generated versus human-created
text.

4.3 Training Results on
COLING_2025_MGT_en Dataset

The model obtained high accuracy and F1 across
three training epochs for the English dataset. Train-
ing loss reduced over epochs, showcasing stable
learning, while validation loss fluctuated minimally.
As shown in Table 3, the third epoch reached the
highest scores for accuracy and F1, indicating ex-
cellent detection of Al-generated text in English.

4.4 Training Results on
COLING_2025_MGT_multilingual
Dataset

The results of the multilingual data set high-
lighted high precision and F1 scores across three
epochs. The training loss was minimized regu-
larly, while the validation was slightly varied (Ta-
ble 4). These metrics within and across the five
languages achieved optimal scores at epoch 3, indi-
cating effective Al-content detection and efficiency
in training and testing data separation (accuracy,
F1, precision, recall).
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Hyperparameter

Value

Model google/gemma-2b

Epochs 3

Learning Rate 0.0001

Train Batch Size 64, and 56

Eval Batch 