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Abstract

Most models for triple extraction from texts pri-
marily focus on named entities. However, real-
world applications often comprise non-named
entities that pose serious challenges for entity
linking and disambiguation. We focus on these
entities and propose the first LLM-based entity
revision framework to improve the quality of
extracted triples via a multi-choice question-
answering mechanism. When evaluated on two
benchmark datasets, our results show a signif-
icant improvement, thereby generating more
reliable triples for knowledge graphs.

1 Introduction

Triple extraction (TE) is a well-established NLP
task where several deep learning models (Bouziani
et al., 2024; Wang et al., 2022; Santosh et al., 2021;
Wadhwa et al., 2023; Xu et al., 2023), and more
recently, LLMs (Trajanoska et al., 2023; Chia et al.,
2022; Li et al., 2024; Chen et al., 2023) have suc-
cessfully been employed in benchmark datasets in
different domains and languages (e.g., SemEval-
2010 Task 8 (Hendrickx et al., 2010), TACRED
(Zhang et al., 2017), BioRed (Luo et al., 2022)).

Most relation extraction models focus primarily
on named entities such as person names, locations,
and organizations, making them fail in dealing
with a richer array of complex, non-named entities
(hearafter N-NE). According to Paris and Suchanek
(2021), N-NE are defined as noun phrases (NPs)
that can be the subject or object of a predicate
within a sentence such as "decision list" and
"parsing-based ne rules" in Figure 1. N-NE can
have several forms ranging from nominal group
(e.g., year 1944), containing adjectives and adverbs
(e.g., very good questions), prepositional phrases
(e.g., in the Arab World), relative clauses or more
complex syntactic constructions (e.g., near-term
growth prospects of the global economy). N-NE
are relatively frequent in textual data. For example,

when manually analysing around 2K NPs extracted
from Wikipedia, Paris and Suchanek (2021) found
that 78% of NP heads are N-NE among which 38%
are modified by an adjective, and 34% have a prepo-
sition. Despite their importance, their frequency in
popular benchmark datasets is relatively low (e.g.,
TACRED only involves named entities).

Figure 1: Triple extraction involving N-NE as given by
gold manual annotations, Falcon-2 and GPT4 models.
Wrong entities are in red.

N-NE pose serious challenges in knowledge
graph (KG) construction and reasoning, because
they remain silent with no chance to be linked into
an existing knowledge bases (KBs) such as YAGO4
(Tanon et al., 2020) or Wikidata (Vrandečić, 2012).
Figure 1 illustrates the impact these entities have on
triple extraction from a sentence taken for SemEval
2018 Task 7. We compare the outputs of Falcon-2
(Sakor et al., 2020), a entity and relation linking
tool over Wikidata, and zero-shot GPT-4 against
the gold label. Although both models successfully
identified the boundaries of the entities, they failed
to correctly extract both the head and tail entities
together.

N-NE have received little attention in the litera-
ture. Among the few works, Open Information Ex-
traction tools such as OpenIE (Angeli et al., 2015)
(see (Zhou et al., 2022) for a survey) output triples
of subject, predicate, and object in an unsupervised
way relaying on dependency parsers where relation
arguments can contain N-NE. Paris and Suchanek
(2021) performed a qualitative manual study of the
nature of N-NE in Wikipedia. In this paper, we go
one step further by proposing, for the first time as
far as we know, an end to end LLM-based entity
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revision framework that (a) automatically extracts
triples from raw texts, (b) identifies N-NE, (c) en-
hances their quality by augmenting their likelihood
of being successfully linked to an external knowl-
edge base, which is a first important step to overall
KG quality assessment (Chen et al., 2019).

To this end, we adopt a multiple choice prompt-
ing (MCP) strategy on top of a triple extractor to
verify the extracted entities. MCP has been success-
fully used as a self-evaluation method to mitigate
LLMs errors in complex problems like arithmetic
and commonsense reasoning (Miao et al., 2023;
Weng et al., 2023; Ren et al., 2023). It is newly
employed here for entity quality enhancement. Our
contributions are as follows:

1. A multiple-choice question answering
(MCQA) strategy for enhancing LLMs to
revise their extracted entities,

2. Comprehensive experiments with both open
source and closed LLMs on two benchmark
datasets for relation extraction,

3. A manual analysis of our results demonstrat-
ing the effectiveness of our framework in cor-
rectly identifying and selecting N-NE.

This paper is organized as follows. Section 2
presents our overall framework, Section 3 details
the datasets used for evaluation, the experimental
settings and evaluation metrics. We finally gives
our results together with an error analysis in Sec-
tion 4.

2 Entity Revision through LLM-based
Question Answering

Figure 3 shows our three-steps framework: (1) It
first extracts triples using an in-context learning ap-
proach. (2) It then ranks candidate entities and (3)
refines entity selection through a multiple-choice
format to improve accuracy by learning from com-
mon extraction errors.

It is important to note that our framework has
been designed with modularity in mind, indepen-
dently from the method used for triple extraction
and how N-NE are initially identified. However as
a first step and in order to evaluate the effective-
ness of our approach when evaluated on benchmark
datasets, we experiment with target relations as in-
put to Step 1, the subsequent steps are agnostic to
this guidance. This allows to increase the number

of matching triples generated by LLMs when com-
pared to gold annotations (see below) and therefore
ensure a sufficient number of instances to derive
meaningful conclusions (see Section 3.3 about the
evaluation protocols). We detail below each step.

2.1 Step 1: Triple Extraction and Matching
We instruct the LLMs to extract triples via an in-
context learning method following (Ozyurt et al.,
2024; Lyu et al., 2023; Ma et al., 2023a) where
prompts only contain the definition of the target
relation. Given is a set of contexts C = {ci}. For
each context ci, the aim is to enumerate triples
{(hij , rij , tij)}Ri

j=1, where rij ∈ R is a relation
and hij and tij are the head and tail entities for
the relation rij , and where Ri is the number of
relations in ci (cf. Figure 2).

Step 1 is evaluated by matching LLMs generated
triples to gold ones based on overlapping entities.
For instance, the gold triple for the given context
in Figure 2 is (global variables, USED-FOR,
global properties), of which only the ex-
tracted triple (global variables, USED-FOR,
representing global properties) matches the
gold standard.

Figure 2: Example of prompt used for triple extraction.
The green, blue and black in the top box represent the
instruction, demonstration and test context in the prompt
respectively. The red parts are the LLMs outputs.

2.2 Step 2: Candidates Selection
Let G = (E ,R, T ) be a knowledge graph, where
E is the set of entities, R the set of relations, and
T = {(h, r, t)|h ∈ E , r ∈ R, t ∈ E} the set of
triples. Given a query (h, r, ?) (resp. (?, r, t)), the
graph completion task ranks each entity by calcu-
lating its score to determine how well it makes the
query hold, thereby achieving knowledge graph
completion (Wei et al., 2023). This task inspired
our approach; however, as we do not possess a pre-
defined set of entities, we must generate a list of



138

Figure 3: Overview of our entity revision framework: (1) Triple extraction from the given context to identify
relevant relationships; (2) Candidate selection, where potential entities are shortlisted as relevant targets; (3)
Multiple-choice question-answering to determine the most suitable entity.

potential candidates to fill the queries (hij , rij , ?)
(resp. (?, rij , tij)) based on context ci and utilize
LLMs as a ranker.

Our candidate selector relies on SpaCy 1 parser,2

known for its fast and accurate syntactic analysis,
to select all noun phrases from context ci that either
contain the entity tij (resp. hij) or are contained
by tij (resp. hij), along with the root of those
noun phrases. This method ensures that the se-
lected candidates are contextually relevant and are
more likely to be correct entities that can replace
low-quality extracted entities. Step 2 is then evalu-
ated by checking if the selected candidate entities
include the gold entities or not.

2.3 Step 3: Multiple Choice Question
Answering (MCQA).

LLMs are generally not effective as few-shot in-
formation extractors, but they excel as rankers Ma
et al. (2023b). We therefore employ prompting
strategies similar to QA4RE (Zhang et al., 2023),
transforming our task into multi-choice questions
to more accurately select entities.

To enhance entity extraction, we utilize a set of
K demonstration examples that target common ex-
traction errors. These include entities mistakenly
containing verbs, excessive adjectives, pronouns,
determiners, and pseudo-sentences. Such errors of-
ten lead to inaccuracies in the model’s outputs, par-
ticularly in sentences where the distance between

1https://spacy.io/
2Although this step could also be performed by LLMs, we

opted to use SpaCy here to keep the LLM more focused on
the entity revision task.

head and tail entities in the context is long (Xu
et al., 2023; Ezzabady et al., 2024). Following Mo
et al. (2024) that use direct comparisons to better
guide LLMs, each example is selected based on its
ability to clearly demonstrate these specific issues,
offering a dual presentation of both incorrect and
correct entity identifications.

Here are our demonstration questions-answer
pairs.

Verb phrase
Question: Which one is a better entity
for knowledge graphs?
1. slowing down of Japan’s economy
2. Japan’s economy
3. None of the above
Answer: 2. Japan’s economy

Redundant adjective
Question: Which one is a better entity
in a knowledge graph?
1. sars-cov-2 outbreak
2. outbreak
3. large sars-cov-2 outbreak
4. None of the above
Answer: 1. sars-cov-2 outbreak

Determiner
Question: Which one is a better entity
in a knowledge graph?
1. identification
2. both language identification
3. language identification

https://spacy.io/
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4. None of the above
Answer: 3. language identification

Pronoun
Question: Which one is a better entity
in a knowledge graph?
1. application
2. My application
3. None of the above
Answer: 1. application

None of the above
Question: Which one is a better entity in
a knowledge graph?
1. keep inflation high in the near term
2. keep inflation high
3. None of the above
Answer: 3. None of the above

3 Experiments

3.1 Datasets
As far as we know, only two benchmark relation
extraction datasets involving N-NE exist: SemEval
2018 Task 7 (Gábor et al., 2018) and SciERC (Luan
et al., 2018). Both are document-based datasets
annotated for entities and their relations extracted
from scientific abstracts. They are a good choice
to evaluate our framework (see Table 1) as their
triples contain less than 5% of named entities (as
given by SpaCy) and more importantly less than
35% are linked to Wikidata. This is also aligned
with recent work by Zhu et al. (2024) who showed
that SciERC is a challenge for making knowledge
graphs, so that the performance of the best model
(GPT-4) is less than 10%.

SemEval SciERC
Gold Triples 1,595 4,265

Head Tail Both Head Tail Both

% Named entities 3.71 2.13 0.13 4.71 3.42 0.49
% Linked with Wikidata 35.05 31.97 13.29 29.00 28.07 8.30

Table 1: SemEval and SciERC datasets statistics.

3.2 Experimental Settings
To increase triple matching and simplify the pro-
cess for LLMs, we narrow down each document to
sentences such that our input is a set of sentences
{s|s ∈ d, h ∈ s, t ∈ s}.3 This leads to a total of

3We also tested using documents as input, but the outcomes
were inconclusive, e.g., in SciERC, the match rates for docu-
ments vs. sentences were 33.95% vs. 54.14%, respectively.

1,578 sentences for SemEval and 4,151 for SciERC.
For the inter-sentence relations (1.07% and 2.67%
of triples in SemEval and SciERC respectively),
we employ their documents as context.

Position bias and No answer is true are well
known issues in MCQA with language models
(Robinson et al., 2023). To address them, we fol-
low the solutions proposed by Ren et al. (2023) as
follows. We employ shuffle and average method
that de-bias and correct answer position effects. To
handle cases where none of the provided answers
may be correct, we introduce a None of the Above
option into the answer set, enhancing the model’s
ability to avoid overconfident incorrect predictions.

For our experiments, we rely on GPT-4,4

LLaMA-3.1 8B-instruct5 and Mistral 7B-instruct.6

We compare our MCQA framework against two
baselines:7

(a) LLM with simple prompt (simple): which
is similar to zero-shot learning where only the
description of the task is given,

(b) LLM with detailed prompt (detailed): that
provides in addition a definition of what are
considered to be good entities for a KG.

To demonstrate the superiority of our method
over having specific guideline, we applied our
method only on the simple baseline (hearafter sim-
ple+MCQA). Both baselines operate in a zero-shot
setting, MCQA being a few-shot prompting strat-
egy where demonstration question-answer pairs are
used to instruct the LLMs.

In Figure 4, we provide examples for different
prompts as input and the corresponding output from
GPT-4. In dialogues with LLMs, there are three
key roles: the System role, which sets how the
model answers; the User role, representing the
individual who inputs queries; and the Assistant
role, which encompasses the model’s responses
to user inputs. These roles collectively ensure a
structured and effective interaction. A multi-turn
dialogue involves a series of exchanges between the
user and the assistant where each response builds
on the previous interaction.

For all the models, and to avoid bias the same
prompts have been used and more importantly,

4https://platform.openai.com/docs/models/
gpt-4-turbo-and-gpt-4

5https://llama.meta.com/llama3
6https://ollama.com/library/mistral:7b
7As this work focuses on improving LLMs performance,

non-LLM methods are out of the scope of this paper.

https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://platform.openai.com/docs/models/gpt-4-turbo-and-gpt-4
https://llama.meta.com/llama3
https://ollama.com/library/mistral:7b
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demonstration questions were not sourced from
evaluation datasets (cf. Section 2.3). Additionally,
we set the number of demonstrations K to 4.8 For
implementation details see Appendix A.

3.3 Evaluation Protocol

We evaluate the performances in terms of four met-
rics, each metric aims to evaluate a particular step
of our approach:

(a) Matched Triples. It counts the number of ex-
tracted triples from Step 1 that successfully match
with at least one corresponding gold-standard
triple. The matching is determined based on an
overlap function, where a partial or complete
overlap between the extracted and gold triples is
sufficient to consider them matched. This metric
provides an initial measure of how accurately the
system can identify potential relationships from
the context. For example, in Figure 4, none of the
extracted triples via detailed prompt matches with
the gold triple (words, PART_WHOLE, corpus).

(b) Candidate selector success rate. It evaluates
the effectiveness of the candidate selection step
(Step 2). Specifically, it measures how often the
true gold-standard entity is included among the
set of candidates presented during the selection
process. A candidate selection is successful when
the gold entity is present in the generated options.
This metric highlights the robustness of the can-
didate generation process and its ability to retain
contextually relevant entities for further refinement.
For example in Figure 4, we can observe that the
candidate selector in our simple+MCQA method
successfully included the gold entity "words" as
options for the question corresponding to the triple
(words, PART_WHOLE, corpus).

(c) Correct entities. This metric evaluates
Step 3 and focuses on the quality of entities
within matched triples. It counts the number of
entities within these triples that exactly match
the corresponding entities in the gold-standard
triples. We consider matches of entities at the
head, tail and both head and tail positions. This
metric is essential for assessing how accurately the
framework identifies both the head and tail entities
in relation to their expected true values, providing
insight into the precision of the extraction pro-
cess. For the gold triple (words, PART_WHOLE,

8We tested several values of K∈ [1, 4] and 4 was the best.

corpus) from Figure 4, the outputs of the
simple baseline and our simple+MCQA approach
are 100,000 words and words, respectively, as
head entities, with the latter being the correct entity.

(d) Linking coverage. This metric is used to
evaluate the overall LLM-based revision frame-
work. It computes the percentage of entities that
are linked to Wikidata, the largest collaborative
general knowledge graph with more than 52 mil-
lion instances (Heist et al., 2020). For example,
in the gold triple (words, PART_WHOLE, corpus)
from Figure 4, the tail entity corpus was linked to
the entity with ID Q461183 in Wikidata. To this
end, we rely on SpaCy entity linker module9

4 Results and Discussions

4.1 Overall Results

Results are shown in Table 2. GPT-4 demonstrates
notable improvements post-revision across all met-
rics on both datasets, most significantly in the
whole triple category (i.e., head, tail and both),
where the performance scores in terms of correct
entities, rise 11% for SemEval and 9% for SciERC.

Conversely, LLaMA-3 exhibits a general decline
in performance after revision across all categories.
An interesting observation holds for the detailed
baseline where LLaMA-3 seems to handle guide-
lines better than GPT-4 in the SemEval dataset
where the matched triples was 323 vs. 218 for
GPT-4. This could suggest that despite its smaller
size and simpler architecture, which might hinder
the integration of sophisticated entity revision tech-
niques, LLaMA-3 is more compliant with struc-
tured guidelines.

Mistral initially performs worse than both GPT-4
and LLaMA-3; however, by applying our revision
framework, its results notably improve. For in-
stance, we observe an increase in correct entities
in the head, tail and both for both datasets (except
the head in SciERC). More importantly, the linking
coverage also increases in particular for entities in
tail positions in the extracted triples.

Finally, our results show the variability in per-
formances between different LLMs in the triple
extraction step where GPT4 is the best achieving a
matching triples of 87% and 54.13% in SemEval
and SciERC, respectively. This finding is inline
with recent studies in generative relation extrac-

9https://github.com/egerber/
spaCy-entity-linker

https://github.com/egerber/spaCy-entity-linker
https://github.com/egerber/spaCy-entity-linker
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Figure 4: Prompts and responses for our three models: LLM with simple prompt (the first baseline on the left), LLM
with detailed prompt (second baseline in the middle) and our framework (on the right, for the sake of readability we
only put one demonstration).

Method SemEval (1,595 gold triples) SciERC (4,265 gold triples)

Matched Triples Correct Head Correct Tail Correct Both Matched Triples Correct Head Correct Tail Correct Both

LLaMA-3 (simple) 310 232 (8.40) 210 (5.39) 171 (2.95) 957 688 (8.75) 551 (4.60) 435 (1.83)
LLaMA-3 (detailed) 323 223 (6.46) 211 (4.76) 161 (2.13) 1,010 545 (8.02) 472 (4.95) 283 (1.95)
LLaMA-3 (simple + MCQA) 310 [75] 215 (7.08) 199 (5.77) 137 (2.38) 957 [70] 621 (6.80) 542 (5.89) 381 (1.74)

Mistral (simple) 191 124 (2.19) 92 (1.38) 68 (0.25) 677 461 (2.58) 307 (1.74) 229 (0.47)
Mistral (detailed) 106 91 (1.76) 79 (1.07) 69 (0.38) 263 211 (1.34) 190 (0.94) 153 (0.19)
Mistral (simple + MCQA) 191 [72] 128 (1.88) 120 (1.82) 82 (0.31) 677 [70] 441 (2.30) 354 (1.85) 245 (0.38)

GPT-4 (simple) 1,384 694 (12.92) 833 (13.98) 454 (1.15) 2,309 1,745 (10.34) 1,137 (6.61) 935 (1.95)
GPT-4 (detailed) 218 159 (2.63) 93 (1.00) 79 (0.25) 1,948 1,106 (9.87) 850 (6.54) 547 (1.85)
GPT-4 (simple + MCQA) 1,384 [79] 850 (19.94) 890 (18.37) 609 (5.39) 2,309 [79] 1,794 (10.88) 1,408 (10.39) 1,142 (2.30)

Table 2: Overall results of our LLM-based revision framework, in terms of: (a) Matched triples and Correct entities
in the head, tail and both: number of instances, (b) Linking coverage: percentages between (), (c) Candidate selector
success rates: percentages between []. The best scores per LLM are in bold font whereas best overall results are
underlined. Please note that candidate selector success only concerns simple+MCQA as the baselines do not perform
any selection.

tion (see for example (Jiang et al., 2024)). The
second variability concerns LLMs performances
when applying the MCQA technique. While the
method demonstrates strong results with models
like GPT-4 due to its advanced contextual reason-
ing and comprehension capabilities, it does not

show similar improvements with models such as
LLaMA-3. This inconsistency points to potential
limitations in model architecture and pre-training
data, which may affect how effectively they handle
MCQA tasks. Future work should investigate these
disparities to understand the specific features that
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Figure 5: An example of errors made by our MCQA revision framework taken from the SciERC dataset. On the
left, the output from triple extraction and matching (step 1) is displayed, highlighting the target entity that needs
enhancement. On the right, we show a list of candidate entities obtained in step 2 (i.e., candidate selection) intended
to refine the target entity. The entities predicted by our MCQA method answers (step 3) are incorrect (red cross),
failing therefore in extracting the correct ones (marked by a green check).

enable some models to leverage MCQA success-
fully while identifying modifications or alternatives
needed to improve performance in others.

4.2 Error Analysis

A manual error analysis of GPT-4 simple+MPQA
outputs shows that our candidate selector missed
21% of the gold entities across both datasets. For
the remaining 79%, the question-answering com-
ponent achieved accuracies of 87% for SciERC
and 81% for SemEval. Figure 5 shows some incor-
rect answers produced by our approach. Although
providing demonstrations helped LLMs make bet-
ter choices, the error categories (containing verbs,
excessive adjectives, pronouns, determiners, and
pseudo-sentences) have not been completely elim-
inated. For example, in the SciERC dataset using
GPT-4, the number of entities containing verbs re-
duced from 737 to 352. Additionally, we observed
that when LLMs are given inputs targeting multiple
error categories (first example in Figure 5), they
struggle to avoid all of them.

5 Conclusion

In this paper, we explore the potential of LLMs in-
context learning for entity revision. To address the
challenges posed by non-named entities, we intro-
duced a multiple-choice question-answering frame-
work that revises extracted entities from LLMs

while increasing their linking coverage with the
largest open knowledge base. When evaluated on
two benchmark relation extraction datasets, our
results demonstrate the effectiveness of our frame-
work. We believe our work is a first important step
to account for non-named entities in knowledge
graph construction.

In this work, we apply a limited set of prompt-
ing techniques (zero-shot and few-shot in-context
learning), which can be further explored in future
research. We will also consider how improved en-
tities affect downstream applications like question
answering over knowledge graphs.
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Despite their focus on scientific abstracts, our ap-
proach demonstrates the potential for broader appli-
cability. Future research will expand this evaluation
to include diverse datasets from various domains
and languages, thereby providing a comprehensive
assessment of the generalizability and robustness
of our framework.

Our evaluation metric is based on the percentage
of entities linked to Wikidata. Although it is the
largest open knowledge graph in terms of the num-
ber of instances, some entities correctly retrieved
by our model may be missed by the linking cov-
erage metric simply because those entities do not
exist in Wikidata. It will therefore be interesting to
also measure the linking rate with other knowledge
bases such as DBPedia and YAGO.
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