
Proceedings of the Generative AI and Knowledge Graph Workshop (GenAIK), pages 13–19
January 19, 2025. ©2025 International Committee on Computational Linguistics (ICCL)

13

Learn Together: Joint Multitask Finetuning of Pretrained KG-enhanced
LLM for Downstream Tasks

Anastasia Martynova
Sber AI, HSE

Moscow, Russia
ans.martynova@gmail.com

Vladislav Tishin
Sber AI / Moscow, Russia

ITMO / St. Petersburg, Russia
vvikttishin@sberbank.ru

Natalia Semenova
Sber AI, AIRI

Moscow, Russia
semenova.bnl@gmail.com

Abstract

Recent studies have shown that a knowl-
edge graph (KG) can enhance text data
by providing structured background knowl-
edge, which can significantly improve the
language understanding skills of the LLM.
Besides, finetuning of such models shows
solid results on commonsense reasoning bench-
marks. In this work, we introduce expandable
Joint Multitask Finetuning of Pretrained KG-
enchanced LLM approach for Question An-
swering (QA), Machine Reading Comprehen-
sion (MRC) and Knowledge Graph Question
Answering (KGQA) tasks. Extensive experi-
ments show competitive performance of joint
finetuning QA+MRC+KGQA over single task
approach with a maximum gain of 30% accu-
racy.

1 Introduction

Large language models (LLMs), pretrained on ex-
tensive text corpus, have demonstrated high per-
formance across a wide range of natural language
processing (NLP) tasks. However, despite their
success in various applications, these models have
notable shortcomings. Studies show that LLMs fre-
quently fail to accurately recall factual information
and tend to generate hallucinations - statements that
are false or misleading. Furthermore, LLMs pre-
trained on general text data may not effectively ap-
ply domain-specific knowledge without additional
training on relevant datasets.

To improve the efficiency of large language mod-
els (LLMs) and address the aforementioned chal-
lenges, a promising solution is to integrate LLMs
with knowledge graphs (KGs). Knowledge graphs
represent factual information in a structured format,
using triples composed of a head entity, a relation,
and a tail entity. KGs are widely applied across
various domains due to their structured, intercon-
nected representation of data, offering a more com-
prehensive and interpretable view of information

and facilitating easier interaction with it.
There are several strategies to integrate LLMs

with KGs (Pan et al., 2024). The first approach
involves enhancing large language models using
knowledge graphs. In this approach, KGs can
be incorporated during the pretraining and in-
ference stages of the LLM to enrich its linguis-
tic representations with external knowledge and
provide insights into its reasoning process. For
example, the ERNIE (Zhang et al., 2019) and
KALM (Corby Rosset, 2021) architectures lever-
age this method by feeding pairs of sentences and
corresponding entities from the knowledge graph
into the LLM, subsequently training the model to
predict relationships between these entities.

The second approach takes the opposite di-
rection—strengthening knowledge graphs using
LLMs. This technique aims to enhance the pro-
ductivity of KGs and improve their performance in
KG-related tasks. For example, the authors of the
QA-GNN (Yasunaga et al., 2021) architecture em-
ploy a graph neural network (GNN)-based model
to jointly analyze the input context and KG infor-
mation through message passing. The input text
information is transformed into a special node via a
pooling operation and then connected with other en-
tities in the KG. Another model, GreaseLM (Zhang
et al., 2021), facilitates deeper interaction between
text tokens and KG entities. Information from both
modalities propagates to each other, allowing rep-
resentations of linguistic context to be grounded in
structured world knowledge and enabling linguis-
tic nuances in context to inform graph knowledge
representations.

Another increasingly popular way to leverage
the benefits of LLMs and KGs simultaneously is
to integrate these models into a single framework
where they can mutually reinforce each other. In
this framework, LLMs are used to understand nat-
ural language, while KGs serve as a knowledge
base providing factual information. The DRAGON
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(Deep Bidirectional Language-Knowledge Graph
Pretraining) architecture (Yasunaga et al., 2022) ex-
emplifies this approach by pretraining a deeply in-
tegrated language-knowledge foundation model us-
ing both text and KGs at scale. This self-supervised
model processes text segments and their corre-
sponding KG subgraphs, integrating information
from both modalities bidirectionally.

Since DRAGON demonstrated superior perfor-
mance in commonsense reasoning and tasks in-
volving complex reasoning compared to the QA-
GNN and GreaseLM baselines, we decided to in-
vestigate the effectiveness of this model within
the frameworks of the Machine Reading Com-
prehension (MRC) task, the Knowledge Graph
Question Answering (KGQA) task, and the com-
bined MRC+QA+KGQA task. This study tests
the hypothesis that training on the combined
MRC+QA+KGQA task will yield better perfor-
mance, as the model learns to solve tasks of differ-
ent types, which in turn aids in solving each task
individually. By leveraging the complementary
strengths of both textual and structured knowledge
understanding, the integrated approach is expected
to enhance the model’s reasoning capabilities.

2 Related Work

In this work, we consider tasks from the field of
natural language processing, such as MRC, QA
and KGQA. These tasks are crucial as they rep-
resent key challenges in language understanding,
demanding models to comprehend, interpret, and
interact with text in a meaningful way. Addressing
these tasks advances neural networks’ capabilities
in processing human language.

The Machine Reading Comprehension (MRC)
task involves developing systems capable of au-
tomatically understanding and processing textual
passages to accurately answer questions about the
content. This necessitates advanced natural lan-
guage processing techniques to capture the seman-
tics, context, and nuances of the text, facilitating
effective question answering. Prominent large lan-
guage models, including GPT-4 (Achiam et al.,
2023), PaLM 2 (Anil et al., 2023), and Claude 2
from Anthropic, have demonstrated consistently
high performance in this domain.

Question answering (QA) is the process of pro-
viding answers to asked questions, while refraining
from attempting to answer questions outside the
context provided. In addition to large language

models trained using few-shot learning (similar to
the MRC task), architectures with fewer parameters
can also handle the QA task effectively.

For example, GrapeQA (Taunk et al., 2023) en-
hances commonsense question-answering by com-
bining pretrained Language Models with Knowl-
edge Graphs reasoning. It addresses two key
challenges faced by typical approaches: difficulty
in capturing all QA information in the Working
Graph (WG) and inclusion of irrelevant KG nodes.
GrapeQA introduces two improvements to the WG:
prominent entities for graph augmentation identi-
fies relevant text chunks from QA pairs and aug-
ments the WG with corresponding LM latent rep-
resentations, and context-aware node pruning re-
moves less relevant nodes. These enhancements
allow GrapeQA to consistently outperform its pre-
decessor QA-GNN (Yasunaga et al., 2021), demon-
strating notable improvements on datasets such as
OpenBookQA (Mihaylov et al., 2018) and Com-
monsenseQA (Talmor et al., 2019).

Another model, KEAR (Xu et al., 2022), extends
the transformer architecture with an external atten-
tion mechanism, integrating external knowledge
from sources like knowledge graphs, dictionaries,
and training data. This additional knowledge is
retrieved using the input as the key and then inte-
grated with the input. KEAR achieves this without
altering the model architecture, opting for text-level
concatenation for external attention.

Knowledge Graph Question Answering
(KGQA (Yang et al., 2014)) involves the task
of responding to natural language queries by
utilizing the structured information stored within
a knowledge graph. The goal is to provide
accurate and contextually appropriate answers
to a wide range of natural language questions by
effectively navigating the interconnected nodes
and relationships within the knowledge graph.

Methods for solving KGQA problems can be
broadly categorized into two types: Information
Retrieval-based (IR-based) and Semantic Parsing-
based (SP-based). SP-based methods adopt a parse-
then-execute approach, starting with semantic anal-
ysis to parse the relations and entities in complex
questions. Next, they construct logical formulas
by translating the subgraph into an executable for-
mat, such as SPARQL. Finally, these methods use
the query language to interact with the Knowledge
Graph, retrieving and presenting the results. While
SP-based methods are often praised for their inter-
pretability due to the intermediate step of generat-
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ing detailed logic forms, they face computational
challenges, especially with complex questions that
involve multiple relations. This results in a larger
search space and increased computational cost.

IR-based approaches to Knowledge Graph Ques-
tion Answering (KGQA) typically involve several
steps. First, they extract a question-specific sub-
graph from the knowledge graph, including all rel-
evant entity nodes and relation edges without gen-
erating an executable logic formula. Next, they
use a question representation module to encode
user-question tokens into low-dimensional vectors.
Following this, an extracted-graph-based reasoning
module applies a semantic matching algorithm to
aggregate information from the subgraph, concen-
trating on the neighborhood of the central entity.
Finally, an answer-ranking module ranks the entity
scores within the subgraph to predict the top-ranked
entities as the final answers.

In developing our own approach for multitask
finetuning, which integrates a language model with
a knowledge graph, several foundational IR-based
methods for the KGQA task were considered. For
instance, Rce-KGQA (Jin et al., 2022) focuses on
enhancing reasoning by leveraging both explicit
and implicit relational chains within the knowl-
edge graph. EmbedKGQA (Saxena et al., 2020)
addresses knowledge graph sparsity by integrat-
ing external knowledge and utilizing KG embed-
ding techniques, which improves performance in
multi-hop KGQA tasks. SRN (Qiu et al., 2020) ap-
proaches KGQA as a sequential decision problem
and employs reinforcement learning to effectively
search for paths within knowledge graphs. Addi-
tionally, KVMemNN (Eric et al., 2017) introduces
a key-value retrieval mechanism that enables neural
dialogue agents to interact seamlessly with knowl-
edge bases across various domains. These methods
were considered for their valuable concepts to form
a strategy for finetuning the model on the KGQA
and joint task. Our study is not intended to be a
direct comparison with all the models listed in this
section.

3 Methodology

3.1 Encoders

DRAGON, as previously described, is the basis for
all experiments conducted in this study. At the first
stage of the study, we tested the lightweight T5-
base (Raffel et al., 2020) encoder but we received
insufficient results. We used RoBERTa-large (Liu

et al., 2019) encoder for input text data and text
data from the knowledge graph.

3.2 Datasets & Metrics

Variations of the basic DRAGON method with dif-
ferent encoders are pretrained on a dataset con-
sisting of pairs of “text data + knowledge graph
data.” The pretraining dataset was derived from the
large text corpus BookCorpus and the ConceptNet
knowledge graph. BookCorpus is a comprehensive
English-language dataset containing 11,038 unpub-
lished books (approximately 74 million sentences)
across 16 different subgenres, including romance,
history, adventure, and others. ConceptNet is one
of the most widely used general knowledge graphs,
comprising about 300,000 nodes. Preprocessing
involved extracting a subgraph from ConceptNet,
containing all concepts mentioned in each line of
text from BookCorpus. This process took approxi-
mately two weeks and was executed on a CPU.

After that we finetune and evaluate the pretrained
DRAGON general domain model1 on three down-
stream tasks: Question Answering, Machine Read-
ing Comprehension and Knowledge Graph Ques-
tion Answering as single tasks and also make joint
finetuning. Finetuning was carried out on monolin-
gual (English) datasets. We followed the common-
sense reasoning benchmark setup with accuracy
metric (Talmor et al., 2019).

The following datasets were used for finetuning
on the QA task:

1. CommonsenseQA (Talmor et al., 2019) is a
dataset for multiple-choice question answer-
ing, designed to assess various facets of com-
monsense knowledge necessary for predicting
correct answers. It contains 12,102 questions
with four distractor answers and one correct
answer.

2. OpenBookQA (Mihaylov et al., 2018), in-
spired by open book exams, assesses human
understanding in specific subjects. It con-
tains 5,957 elementary-level science ques-
tions, probing comprehension of 1,326 core
science facts and their applications. The
dataset maps each question to a core fact for
targeted training.

To finetune on the MRC task, the subsequent
dataset was utilized:

1https://github.com/michiyasunaga/dragon

https://github.com/michiyasunaga/dragon
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1. DREAM (Sun et al., 2019) is a multiple-
choice Dialogue-based REAding comprehen-
sion exaMination dataset, distinct from ex-
isting reading comprehension datasets by its
focus on comprehensive multi-turn multi-
party dialogue comprehension. It comprises
10,197 multiple-choice questions extracted
from 6,444 dialogues, sourced from English-
as-a-foreign-language exams curated by hu-
man experts.

Finally, for KGQA task finetuning we used the
following dataset:

1. KQA Pro (Cao et al., 2022) is a large-scale
dataset designed for intricate question answer-
ing over knowledge base. Its questions are
remarkably diverse and demanding, calling
for various reasoning abilities, such as compo-
sitional reasoning, multi-hop reasoning, quan-
titative comparison and set operations. The
target knowledge base of KQA Pro comprises
a dense subset of Wikidata. The dataset is
divided into training, validation, and test sets,
with 94376, 11797, and 11797 questions re-
spectively.

RoBERTa

(BookCorpus)

KGQA QA MRC Joint QA + MRC Joint QA + MRC + KGQA

KQA Pro DREAMCommonSenseQA



OpenBookQA

CSQA + DREAM



OBQA + DREAM

CSQA + DREAM + KQA Pro



OBQA + DREAM + KQA Pro

Figure 1: Scheme for finetuning the basic approach with
variations of encoders on datasets for QA, MRC, KGQA
tasks and their combinations.

3.3 Data Preprocessing
Note that all of the listed datasets for the QA and
MRC tasks were also preprocessed with the Con-
ceptNet graph. Specifically, for each question and
answer choices, concepts from the original knowl-
edge graph were searched and a subgraph was com-
piled. KG node embeddings in the case of finetun-
ing on the QA and MRC datasets were initialized
with pre-computed ConceptNet entity embeddings
as proposed in the MHGRN (Feng et al., 2020)
method. This scheme involves converting triplets
from KG into sentences. The resulting sentences
are then passed to BERT-Large (Devlin et al., 2019)

to calculate the embeddings for each sentence. Fi-
nally, for each entity, all sentences containing that
entity are collected, all token representations of
the entity’s mention spans in those sentences are
retrieved, and the average pooling of these repre-
sentations is returned.

In the case where the dataset contained only the
correct answer, 4 incorrect answer choices for each
question were generated using the Meta-Llama-3-
8B-Instruct model in order to follow the pattern of
questions and answers used in other datasets.

To train model on KGQA task, a subset contain-
ing 12,102 questions was extracted from the KQA
Pro dataset, since the original KQA Pro is too large.
This approach resolved the issue of dataset size dis-
crepancies across tasks and simplified the selection
of learning rate and batch size for training. Pre-
processing for the KQA Pro subset was performed
using a subgraph from the Wikidata knowledge
graph that was provided by the authors of KQA
Pro which we matched by entities and links to Con-
ceptNet to make a proper grounding.

3.4 Joint MRC & QA finetuning

Data Prep.
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Figure 2: Multitask finetuning scheme for joint
MRC+QA+KGQA task. The framework provides train-
ing the main KG-enchanced LLM.

Figure 2 depicts our approach to finetuning
DRAGON pretrained model on QA, MRC and
KGQA tasks, except for the grounding step where
we put together text tokens and KG nodes. After
that, we fed these pairs to the fusion layer, which
is a cross-modal encoder that bidirectionally ex-
changes information between text and node repre-
sentations. We used a linear combination of Cross
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Entropy loss (Good, 1952) for each task in the fol-
lowing way:

L = LQA + LMRC + LKGQA (1)

3.5 Experiments & Results

Dataset Combination Dev Acc. Test Acc.

CSQA 0.755 0.689
CSQA + DREAM 0.783 0.73
CSQA + DREAM + KQA Pro 0.7707 0.6954

Table 1: Comparison of accuracy metrics resulting from
finetuning on only one QA task (on the CSQA dataset)
and metrics resulting from finetuning on a combination
of tasks (DREAM, ARC - MRC task, KQA Pro - KGQA
task). Validation and testing was performed on the QA
task.

Dataset Combination Dev Acc. Test Acc.

OBQA 0.62 0.632
OBQA + DREAM 0.744 0.720
OBQA + DREAM + KQA Pro 0.67 0.678

Table 2: Comparison of accuracy metrics resulting from
finetuning on only one QA task (on the OBQA dataset)
and metrics resulting from finetuning on a combination
of tasks (DREAM, ARC - MRC task). Validation and
testing was performed on the QA task.

Dataset Combination Dev Acc. Test Acc.

DREAM 0.4098 0.419
DREAM + CSQA 0.704 0.722
DREAM + OBQA 0.702 0.696
DREAM + CSQA + KQA Pro 0.7225 0.7227

Table 3: Comparison of accuracy metrics resulting from
finetuning on only one MRC task (on the DREAM
dataset) and metrics resulting from finetuning on a com-
bination of tasks (CSQA, OBQA - MRC task, KQA Pro
- KGQA task). Validation and testing was performed on
the MRC task.

Based on the results, DRAGON with a
RoBERTa-large encoder was chosen as the most ef-
ficient architecture with which further experiments
were carried out.

Tables 1-4 show overview of performance
DRAGON with the RoBERTa-large encoder on
QA, MRC, KGQA, QA+MRC and QA + MRC +
KGQA tasks.

With finetuning on the CSQA (QA task),
DREAM (MRC task) and KQA Pro (KGQA task)

Dataset Combination Dev Acc. Test Acc.

KQA Pro 0.5512 0.5728
KQA Pro + CSQA 0.5611 0.6
KQA Pro + DREAM 0.5610 0.5702
KQA Pro + CSQA + DREAM 0.6085 0.6211

Table 4: Comparison of accuracy metrics resulting from
finetuning on only one KGQA task (on the KQA Pro
dataset) and metrics resulting from finetuning on a com-
bination of tasks (DREAM - MRC task, CSQA - QA
task). Validation and testing was performed on the
KGQA task.

datasets, a significant increase in the metric was
shown when testing the model for the MRC task.
Finetuning only for the MRC task on the DREAM
dataset allows us to achieve an accuracy metric of
41.9%. With finetuning for QA and KGQA tasks,
the metric becomes equal to 72.27%. Training
on the CSQA+DREAM+KQA Pro datasets also
gave an increase for the KGQA task. The metric
increased from 57.28% to 62.11%.

Significant gains were demonstrated on the
CSQA+DREAM dataset for the QA task. Accu-
racy with multi-task finetuning increased by 4.1%
compared to finetuning only for the QA task on the
CSQA dataset (from 68.9% to 73%).

Detailed analysis revealed that KG-pretrained
model finetuned on QA task improved the gener-
alization of MRC in our experiments. Unlike QA
datasets MRC task assumes to proceed with rather
large text passages which is challenging for LLM
even with KG-pretraining. Our experiments re-
ported that using long enough texts from the MRC
dataset improves the ability of the model to answer
more complicated questions. Our code is available
at github repository2

4 Discussion & Limitations

All finetuning experiments were performed on
English-language datasets. This is due to the fact
that searching for datasets with overlapping lan-
guages for all three tasks (QA, MRC and KGQA) is
difficult. Thus, there are a large number of multilin-
gual datasets for QA and MRC tasks, and a limited
number of such datasets for the KGQA task, which
is associated with the difficulty of translating the
entire knowledge graph into another language. At
the moment, we were only able to use the QALD-
9-Plus (Perevalov et al., 2022) dataset, which con-

2Github repository

https://github.com/Vloods/multitask_finetune/tree/master
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tains questions in 10 languages, but has a small
size (about 1.5 thousand questions), as well as the
MLPQ (Tan et al., 2023) dataset, which covers only
Chinese, English and French, but contains about
300 thousand questions.

Moreover, we made a test to check if the ex-
pand of data for the same task can make the same
improvement as the adding other nlp-task. We
trained our backbone on two QA datasets - CSQA
and OBQA but the performance become 6 to 10%
worse than both of them in pair with MRC dataset
DREAM.

5 Conclusion & Future work

The paper presented expandable Joint Multitask
Finetuning on Pretrained KG-enhanced LLM ap-
proach which aims to improve the performance of
language models in a variety of language under-
standing tasks. We proposed a new multitask learn-
ing framework which jointly finetunes a language
model with a knowledge graph enhanced objective
on a few tasks and easily expanded to new nlp-tasks.
The paper provides a detailed description of the pro-
posed approach and presents experimental results
demonstrating its effectiveness. Our results show
strong improvements of synergized QA, MRC and
KGQA tasks on each other with a maximun gain of
30% accuracy. We plan to extend our experimental
setup by pretrained LLaMa v2 encoder. We also
plan to conduct finetuning experiments on multilin-
gual datasets containing English, Chinese, French,
and other languages.
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