@inproceedings{jamshidi-chali-2025-gnet,
title = "{GNET}-{QG}: Graph Network for Multi-hop Question Generation",
author = "Jamshidi, Samin and
Chali, Yllias",
editor = "Gesese, Genet Asefa and
Sack, Harald and
Paulheim, Heiko and
Merono-Penuela, Albert and
Chen, Lihu",
booktitle = "Proceedings of the Workshop on Generative AI and Knowledge Graphs (GenAIK)",
month = jan,
year = "2025",
address = "Abu Dhabi, UAE",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2025.genaik-1.3/",
pages = "20--26",
abstract = "Multi-hop question generation is a challenging task in natural language processing (NLP) that requires synthesizing information from multiple sources. We propose GNET-QG, a novel approach that integrates Graph Attention Networks (GAT) with sequence-to-sequence models, enabling structured reasoning over multiple information sources to generate complex questions. Our experiments demonstrate that GNET-QG outperforms previous state-of-the-art models across several evaluation metrics, particularly excelling in METEOR, showing its effectiveness in enhancing machine reasoning capabilities."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jamshidi-chali-2025-gnet">
<titleInfo>
<title>GNET-QG: Graph Network for Multi-hop Question Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samin</namePart>
<namePart type="family">Jamshidi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yllias</namePart>
<namePart type="family">Chali</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2025-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Generative AI and Knowledge Graphs (GenAIK)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Genet</namePart>
<namePart type="given">Asefa</namePart>
<namePart type="family">Gesese</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harald</namePart>
<namePart type="family">Sack</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heiko</namePart>
<namePart type="family">Paulheim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Albert</namePart>
<namePart type="family">Merono-Penuela</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lihu</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Abu Dhabi, UAE</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multi-hop question generation is a challenging task in natural language processing (NLP) that requires synthesizing information from multiple sources. We propose GNET-QG, a novel approach that integrates Graph Attention Networks (GAT) with sequence-to-sequence models, enabling structured reasoning over multiple information sources to generate complex questions. Our experiments demonstrate that GNET-QG outperforms previous state-of-the-art models across several evaluation metrics, particularly excelling in METEOR, showing its effectiveness in enhancing machine reasoning capabilities.</abstract>
<identifier type="citekey">jamshidi-chali-2025-gnet</identifier>
<location>
<url>https://aclanthology.org/2025.genaik-1.3/</url>
</location>
<part>
<date>2025-01</date>
<extent unit="page">
<start>20</start>
<end>26</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GNET-QG: Graph Network for Multi-hop Question Generation
%A Jamshidi, Samin
%A Chali, Yllias
%Y Gesese, Genet Asefa
%Y Sack, Harald
%Y Paulheim, Heiko
%Y Merono-Penuela, Albert
%Y Chen, Lihu
%S Proceedings of the Workshop on Generative AI and Knowledge Graphs (GenAIK)
%D 2025
%8 January
%I International Committee on Computational Linguistics
%C Abu Dhabi, UAE
%F jamshidi-chali-2025-gnet
%X Multi-hop question generation is a challenging task in natural language processing (NLP) that requires synthesizing information from multiple sources. We propose GNET-QG, a novel approach that integrates Graph Attention Networks (GAT) with sequence-to-sequence models, enabling structured reasoning over multiple information sources to generate complex questions. Our experiments demonstrate that GNET-QG outperforms previous state-of-the-art models across several evaluation metrics, particularly excelling in METEOR, showing its effectiveness in enhancing machine reasoning capabilities.
%U https://aclanthology.org/2025.genaik-1.3/
%P 20-26
Markdown (Informal)
[GNET-QG: Graph Network for Multi-hop Question Generation](https://aclanthology.org/2025.genaik-1.3/) (Jamshidi & Chali, GenAIK 2025)
ACL