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Abstract

Multi-hop question generation is a challenging
task in natural language processing (NLP) that
requires synthesizing information from multi-
ple sources. We propose GNET-QG, a novel
approach that integrates Graph Attention Net-
works (GAT) with sequence-to-sequence mod-
els, enabling structured reasoning over multi-
ple information sources to generate complex
questions. Our experiments demonstrate that
GNET-QG outperforms previous state-of-the-
art models across several evaluation metrics,
particularly excelling in METEOR, showing its
effectiveness in enhancing machine reasoning
capabilities.

1 Introduction

Question generation (QG) is the task of producing
a natural language question given an input context
and an answer. While recent neural models have
achieved considerable success in QG, they often
fail to generate complex, multi-hop questions that
require reasoning across multiple contexts. Unlike
simple questions that rely on a single fact, multi-
hop questions demand the integration of knowledge
from multiple pieces of information to formulate a
coherent query.

Multi-hop question generation is not only a chal-
lenging task but also a critical one, with applica-
tions ranging from improving query suggestions
for search engines to enhancing educational tools
for reading comprehension (Zamani et al., 2020;
Heilman and Smith, 2010) . Despite advancements
in models like MulQG (Su et al., 2020) and CQG
(Fei et al., 2022), existing methods still struggle to
consistently generate high-quality multi-hop ques-
tions across diverse contexts.

To address this gap, we introduce GNET-QG,
a model that incorporates Graph Attention Net-
works (GAT) to identify and focus on relevant enti-
ties within a context. By enriching the input con-
text using GAT and combining it with a powerful

sequence-to-sequence model, GNET-QG is able to
generate more complex, coherent, and answerable
questions. Our method shows significant improve-
ments over existing techniques, especially in the
METEOR metric, indicating better semantic align-
ment in generated questions.

Context1:
The Oberoi family is an Indian family that is
famous for its involvement in hotels, namely
through The Oberoi Group .

Context2:
The Oberoi Group is a hotel company with its

head office in Delhi .

Answer: Delhi

Simple Question: Where is the head office of
The Oberoi Group ?

Complex Question: Oberoi family is part of
a hotel company that has a head office in what
city?

Figure 1: Example of multi-hop question generation.
Context 1 introduces the Oberoi family and their con-
nection to The Oberoi Group, while Context 2 provides
information about the group’s head office location. A
simple question asks for the head office location directly,
while a multi-hop question integrates information from
both contexts to identify the head office city. In this
context, ’complexity’ refers to the need for synthesizing
information from multiple contexts. This example is
adapted from the HotpotQA dataset (Yang et al., 2018).

2 Related Work

Early research in question generation focused on
rule-based methods for single-hop QG, transform-
ing declarative sentences into questions via hand-
crafted rules (Heilman and Smith, 2010). Neu-
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ral methods soon emerged, leveraging sequence-
to-sequence models to improve reading compre-
hension QG, but struggled with multi-hop reason-
ing due to their reliance on local context (Du and
Cardie, 2017).

Recent approaches, such as MulQG (Su et al.,
2020) and CQG (Fei et al., 2022), have incorpo-
rated graph-based models to address multi-hop
QG. MulQG used Graph Convolutional Networks
(GCNs) to represent context and perform multi-hop
encoding fusion, while CQG utilized a controlled
framework to focus on key entities during ques-
tion generation. Building upon these methods, Lin
et al. (2024) introduced a type-aware semantics
extraction-based chain-of-thought (TASE-CoT) ap-
proach for few-shot multi-hop QG. This approach
begins by identifying question types and key se-
mantic phrases from the provided documents and
answer, then utilizes a three-step chain-of-thought
template to generate multi-hop questions based on
the extracted information. Despite these advance-
ments, there remains a need for models that con-
sistently perform well across different datasets and
contexts.

GNET-QG builds on this body of work by in-
tegrating Graph Attention Networks (GAT) into
the question generation process. GAT enables
our model to focus attention on important entities
within the input context, providing better entity
representation for complex reasoning tasks.

3 Research Methodology

3.1 Motivation and Overview

Multi-hop question generation (QG) requires rea-
soning across multiple interconnected information
pieces in a document. Traditional transformer mod-
els perform well in single-hop QG but struggle
with multi-hop tasks due to limitations in capturing
long-range dependencies and complex entity rela-
tionships. Existing methods often overlook explicit
modeling of these relationships, leading to less co-
herent questions that lack true multi-hop reasoning.

Moreover, many current approaches are tightly
coupled with specific models, lacking the flexibil-
ity to adapt to newer or different large language
models (LLMs). This rigidity hinders leveraging
advancements in the field and limits applicability
across diverse architectures.

To address these limitations, we propose GNET-
QG, a model integrating a graph entity network
with a transformer-based architecture. Our ap-

proach enhances the quality and complexity of
generated questions by explicitly modeling seman-
tic relationships between entities through an entity
graph and enriching the input context for the ques-
tion generation model. Crucially, the architecture is
designed to be compatible with various transformer-
based models due to its text-based enriched input
context, allowing greater flexibility and adaptabil-
ity.

In our experiments, GNET-QG demonstrates sig-
nificant improvements over baseline models in gen-
erating coherent and complex multi-hop questions.
We successfully integrate both BART and T5 mod-
els within our architecture, evidencing its compati-
bility and effectiveness with different LLMs.

3.2 Constructing the Entity Graph

To capture the relationships essential for multi-
hop reasoning, we construct an entity graph where
nodes represent entities extracted from the docu-
ment, and edges represent relationships between
these entities. Entities are identified using a BERT-
based Named Entity Recognition (NER) model,
resulting in a set E = {e0, e1, . . . , en}, Entities
and relationships are derived from the preprocessed
data provided by MULQG (Su et al., 2020).

Edges between nodes are defined as follows:

• Same Sentence Co-occurrence: Nodes are
connected if they appear within the same sen-
tence, capturing immediate contextual rela-
tionships.

• Paragraph Title Relations: Nodes are con-
nected if a paragraph’s title contains an entity
that also appears within the paragraph, high-
lighting hierarchical and topical associations.

• Cross-Paragraph Entity Consistency: En-
tities appearing in different paragraphs but
referring to the same concept are linked, en-
suring consistency across the document.

3.3 Enriching the Input Context

To effectively leverage the constructed entity graph,
we use a Graph Attention Network (GAT) to en-
hance node representations. The GAT computes
attention scores and updates node features as fol-
lows:
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αij =
exp(LeakyReLU(aT

i [Whi ∥ Whj ]))∑
k∈N (i) exp(LeakyReLU(aT

i [Whi ∥ Whk]))

(1)

h′
i = σ

 ∑
j∈N (i)

αijWhj

 (2)

In these equations, hi and hj represent the fea-
ture vectors of nodes i and j, respectively. N (i)
denotes the set of neighbors of entity i, while W
is a weight matrix that transforms input features
into a new space. The updated representation h′i
for node i is computed by aggregating information
from its neighbors. The attention coefficient αij

represents the importance of node j’s features in
updating node i. The learnable vector ai projects
the concatenated feature vector [Whi ∥ Whj ] into
a scalar score, allowing the model to compute the
relevance of neighboring nodes.

To further enhance the contextual information,
we apply multi-head attention at each step. This
mechanism allows the model to capture different
aspects of the neighbors’ features across multiple
attention "heads." Multi-head attention is defined
as follows:

MultiHead(hi) = Concat(head1, . . . , headh),
(3)

where each head is computed as:

headk = σ

 ∑
j∈N (i)

α
(k)
ij W (k)hj

 . (4)

Here, h denotes the number of attention heads,
and W (k) is the weight matrix for the k-th head,
and α

(k)
ij is the attention coefficient for the k-th

head. This multi-head setup allows the GAT to cap-
ture a richer representation by focusing on different
aspects of the input.

After applying the multi-head GAT, we flat-
ten the updated node features H ′ and pass them
through a linear transformation followed by a sig-
moid activation function:

Hflat = Flatten(H ′) (5)

Hlinear = WlHflat + bl (6)

P = σ(Hlinear) (7)

In these equations, Wl and bl are learnable pa-
rameters of the linear layer, and σ represents the

sigmoid activation function, which outputs proba-
bility scores for each node. Nodes with probability
scores greater than 0.5 are selected:

Esub = {h′i ∈ H ′ | Pi > 0.5} (8)

Here, the selected nodes Esub are the textual
representations of entities. These textual represen-
tations of entities are concatenated with the original
context C and the answer A to form the "enriched
input context":

Cenriched = [C;A;Esub] (9)

The enriched input context, now in textual form,
is subsequently fed into the transformer encoder for
question generation, enhancing the model’s ability
to integrate multi-hop reasoning with focused entity
relationships.

3.4 Encoder-Decoder Framework
The enriched input context is fed into the encoder
of a pre-trained transformer model, such as BART
or T5. The encoder generates contextualized em-
beddings that provide a compact representation of
the input. Incorporating the enriched context en-
hances the encoder’s ability to process long-range
dependencies and relationships.

The decoder generates the output question au-
toregressively, utilizing the encoder’s embeddings.
It applies masked self-attention to ensure each to-
ken prediction considers only previously generated
tokens, producing coherent and contextually appro-
priate multi-hop questions.

Figure 2 illustrates the encoder component of
GNET-QG with a BART backbone. Initially, en-
tities (nodes) from the contexts (C) are identified
and labeled as E0. A graph is created using these
entities, capturing their relationships based on co-
occurrence and paragraph structure. The entity
graph is then passed to the Graph Attention Net-
work (GAT), which processes the entity features.
After applying flattening, a linear transformation,
and a sigmoid activation, the resulting entity rep-
resentations are concatenated with the contexts to
form the enriched input context. This enriched
input is subsequently fed into the BART encoder.

4 Implementation Details

In the task of multi-hop question generation, we im-
plemented GNET-QG by integrating the GAT from
this GitHub repository1 with an encoder-decoder

1https://github.com/HLTCHKUST/MulQG

https://github.com/HLTCHKUST/MulQG
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Figure 2: Full architecture of GNET-QG with BART backbone. C represents the original context extracted from the
input, A denotes the answer provided as input to the model, and Esub consists of the selected textual entities derived
from the input context using the Graph Attention Network (GAT). These components are concatenated to form the
enriched input context fed into the BART encoder.

model as the main backbone. We connected the un-
trained GAT architecture with pre-trained versions
of both BART and T5 models to generate the multi-
hop questions, leveraging the filtered HotpotQA
dataset, following the preprocessing approach out-
lined in the MULQG (Su et al., 2020).

The GAT and the transformer models (BART
and T5) were trained end-to-end. During training,
gradients were backpropagated through both the
GAT and the transformer model, allowing the entire
network to learn jointly. This approach enables
the model to effectively incorporate the structural
information captured by the GAT into the question
generation process.

Our candidate pre-trained models for the pro-
posed architecture were the bart-squad-qg-hl2

version of the BART model and the
t5-base-finetuned-question-generation-ap3

version of the T5 model. These models were
selected due to their proven efficacy in ques-
tion generation tasks and their availability for
fine-tuning on domain-specific datasets.

4.1 Automatic Evaluation
To evaluate GNET-QG’s effectiveness, we em-
ployed automated evaluation metrics to assess its
predictions on samples from the test dataset, com-
paring the generated questions from the model with
the reference questions from the dataset. The met-
rics used include BLEU (Papineni et al., 2002),
ROUGE-L (Lin, 2004), and METEOR (Lavie and

2https://github.com/p208p2002/
Transformer-QG-on-SQuAD

3https://github.com/patil-suraj/question_
generation

Agarwal, 2007), chosen for their extensive adoption
in the question-generation research field. This eval-
uation allows us to directly compare GNET-QG’s
performance with previous studies on multi-hop
question generation.

In Table 1, we present comparative results of
GNET-QG with BART backbones against other
models, including BART by Lewis et al. (2019),
MulQG by Su et al. (2020), CQG by Fei et al.
(2022), and TASE-CoT by Lin et al. (2024).

Our model demonstrates superior performance,
particularly in the METEOR metric. This improve-
ment can be attributed to GNET-QG’s ability to
generate questions that are semantically richer and
more closely aligned with the reference questions.
METEOR places greater emphasis on semantic
similarity, synonymy, and recall, rewarding models
that capture the meaning of the reference even if the
exact wording differs. By explicitly modeling se-
mantic relationships between entities and enriching
the input context through the graph entity network,
GNET-QG generates questions that include rele-
vant synonyms, paraphrases, and morphological
variants, all of which METEOR recognizes and
rewards. This focus on semantic richness and rel-
evance allows our model to outperform others in
METEOR, highlighting its effectiveness in produc-
ing high-quality, semantically accurate multi-hop
questions.

Furthermore, the enriched input context enables
our model to capture more of the necessary in-
formation required to formulate comprehensive
questions, increasing recall, a component heavily
weighted in METEOR. In contrast, other models

https://github.com/p208p2002/Transformer-QG-on-SQuAD
https://github.com/p208p2002/Transformer-QG-on-SQuAD
https://github.com/patil-suraj/question_generation
https://github.com/patil-suraj/question_generation
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR
MulQG 40.15 26.71 19.73 15.20 35.30 20.51
CQG 49.71 37.04 29.93 25.09 41.83 27.45
BART 41.41 30.90 24.39 19.75 36.13 25.20
TASE-CoT 45.89 34.06 27.11 22.37 39.68 23.39
GNET-QG (BART backbone) 49.72 38.95 32.88 27.93 40.25 49.87

Table 1: Automatic evaluation results on HotpotQA. The table compares the performance of various models across
multiple metrics, including BLEU, ROUGE-L, and METEOR.

may excel in n-gram precision metrics like BLEU
but may not capture the deeper semantic nuances
that METEOR evaluates. Therefore, GNET-QG’s
superior performance in METEOR underscores its
capability to generate questions that are not only
grammatically correct but also semantically mean-
ingful and contextually appropriate.

4.2 Human Evaluation
To comprehensively assess the performance of our
model, we performed a human evaluation compar-
ing the questions generated from three sources: the
baseline BART model, our proposed GNET-QG
model and human-generated questions. We evalu-
ated the questions based on four metrics:

• Fluency: Grammatical correctness and read-
ability.

• Completeness: Whether the questions are
fully formed and coherent.

• Answerability: If the questions are answer-
able based on the given context.

• Multi-hop Relevance: Whether the questions
require synthesizing information from multi-
ple contexts (binary classification).

Each metric, except for Multi-hop Relevance,
was rated on a scale from 1 to 5, with higher scores
indicating better performance. Five annotators eval-
uated 50 randomly sampled test cases from the test
set.

The results are summarized in Tables 2 and 3.
GNET-QG achieved a 76% rate of generating multi-
hop questions, significantly higher than BART’s
54%. In terms of question quality, GNET-QG
scored higher in Completeness (4.14) and An-
swerability (4.18) compared to BART’s scores of
3.96 and 3.97, respectively. Although GNET-QG
showed improvements in fluency over BART, it
still fell slightly short of human-generated ques-
tions, suggesting room for further refinement.

Models Yes No Percentage (% Yes)
BART 27 23 54.0
GNET-QG 38 12 76.0
Human 40 10 80.0

Table 2: Counts and percentages of multi-hop questions
generated by each model.

Models Completeness Answerability Fluency
BART 3.96 3.97 3.86
GNET-QG 4.14 4.18 3.94
Human 4.28 4.42 4.30

Table 3: Mean ratings for Completeness, Answerability,
and Fluency.

4.3 Model Compatibility and Experimental
Evidence

A key advantage of our GNET-QG architecture
is its compatibility with various large language
models (LLMs). Since the enriched input con-
text is text-based, it integrates seamlessly with any
transformer-based model capable of processing text
input. To demonstrate this flexibility, we imple-
mented GNET-QG using both BART and T5 back-
bones and compared the results against standard
fine-tuned versions of BART and T5.

For the baseline models, we utilized
BART as proposed by Lewis et al. (2019)
and the fine-tuned version of T5, specifically
t5-base-finetuned-question-generation-ap4.
We evaluated the models on the HotpotQA dataset
to ensure a fair comparison. The results are
presented in Table 4, which shows the superior
performance of GNET-QG, especially in terms
of METEOR scores, in both the BART and T5
backbones.

These results highlight the architecture’s abil-
ity to enhance performance across different trans-
former models, validating its effectiveness and flex-

4https://github.com/patil-suraj/question_
generation

https://github.com/patil-suraj/question_generation
https://github.com/patil-suraj/question_generation
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Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR
BART Baseline 41.41 30.90 24.39 19.75 36.13 25.20
GNET-QG (BART backbone) 49.72 38.95 32.88 27.93 40.25 49.87
T5 Baseline 32.08 22.04 17.26 13.68 30.78 27.72
GNET-QG (T5 backbone) 42.10 31.92 26.42 22.05 34.38 42.51

Table 4: Comparison of performance metrics (BLEU-1 to BLEU-4, ROUGE-L, and METEOR) for question
generation on HotpotQA dataset. GNET-QG shows significant improvements with both BART and T5 backbones.

ibility.

5 Conclusion

In this work, we introduced GNET-QG, a graph-
based approach to multi-hop question generation
that effectively reduces model complexity without
sacrificing performance. By explicitly modeling
semantic relationships between entities and enrich-
ing the input context for transformer-based models,
GNET-QG addresses the limitations of existing
methods. A key contribution of GNET-QG is its
ability to reduce the model size by approximately
7.5 million parameters compared to CQG, a highly
competitive model in this space. This substantial
reduction leads to improvements in computational
efficiency, lower memory usage, and faster infer-
ence speeds, making GNET-QG a more practical
and scalable solution for real-world applications.
Despite the smaller parameter size, our experimen-
tal results demonstrate that GNET-QG outperforms
CQG in terms of the quality of generated questions,
highlighting its effectiveness and efficiency.

Furthermore, we validated the versatility of our
architecture by integrating well-known sequence-
to-sequence frameworks such as BART and T5.
The consistent performance improvements across
these models underscore GNET-QG’s compatibil-
ity with different large language models and its
ability to generate high-quality, complex multi-hop
questions requiring sophisticated reasoning over
multiple interconnected pieces of information.

Future research could focus on enhancing the
model’s reasoning capabilities to better address
abstract or causal questions and extending its ap-
plication to other NLP tasks like summarization
or machine translation. Additionally, exploring
GNET-QG’s performance on non-English datasets
could unlock its potential for multilingual question
generation, further broadening its impact.

References
Xinya Du and Claire Cardie. 2017. Identifying where to

focus in reading comprehension for neural question
generation. In Proceedings of the 2017 conference on
empirical methods in natural language processing,
pages 2067–2073.

Zichu Fei, Qi Zhang, Tao Gui, Di Liang, Sirui Wang,
Wei Wu, and Xuan-Jing Huang. 2022. Cqg: A sim-
ple and effective controlled generation framework
for multi-hop question generation. In Proceedings
of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 6896–6906.

Michael Heilman and Noah A Smith. 2010. Good ques-
tion! statistical ranking for question generation. In
Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 609–
617.

Alon Lavie and Abhaya Agarwal. 2007. METEOR:
An Automatic Metric for MT Evaluation with High
Levels of Correlation with Human Judgments. In
Proceedings of the Second Workshop on Statistical
Machine Translation, pages 228–231, Prague, Czech
Republic. Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De-
noising Sequence-to-Sequence Pre-training for Natu-
ral Language Generation, Translation, and Compre-
hension.

Chin-Yew Lin. 2004. ROUGE: A Package for Auto-
matic Evaluation of Summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Zefeng Lin, Weidong Chen, Yan Song, and Yongdong
Zhang. 2024. Prompting few-shot multi-hop ques-
tion generation via comprehending type-aware se-
mantics. In Findings of the Association for Computa-
tional Linguistics: NAACL 2024, pages 3730–3740.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: A Method for Automatic Eval-
uation of Machine Translation. In Proceedings of
the 40th Annual Meeting on Association for Compu-
tational Linguistics, ACL ’02, page 311–318, USA.
Association for Computational Linguistics.

https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734
https://aclanthology.org/W07-0734
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://aclanthology.org/W04-1013
https://aclanthology.org/W04-1013
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.3115/1073083.1073135


26

Dan Su, Yan Xu, Wenliang Dai, Ziwei Ji, Tiezheng
Yu, and Pascale Fung. 2020. Multi-hop question
generation with graph convolutional network. arXiv
preprint arXiv:2010.09240.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Ben-
gio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. 2018. Hotpotqa: A dataset
for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.

Hamed Zamani, Susan Dumais, Nick Craswell, Paul
Bennett, and Gord Lueck. 2020. Generating clarify-
ing questions for information retrieval. In Proceed-
ings of the web conference 2020, pages 418–428.


	Introduction
	Related Work
	Research Methodology
	Motivation and Overview
	Constructing the Entity Graph
	Enriching the Input Context
	Encoder-Decoder Framework

	Implementation Details
	Automatic Evaluation
	Human Evaluation
	Model Compatibility and Experimental Evidence

	Conclusion

