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Abstract

Retrieval-Augmented Generation (RAG)
systems have become pivotal in leveraging
vast corpora to generate informed and contex-
tually relevant responses, notably reducing
hallucinations in Large Language Models.
Despite significant advancements, these
systems struggle to efficiently process and
retrieve information from large datasets while
maintaining a comprehensive understanding of
the context. This paper introduces SKETCH,
a novel methodology that enhances the RAG
retrieval process by integrating semantic text
retrieval with knowledge graphs, thereby
merging structured and unstructured data for
a more holistic comprehension. SKETCH,
demonstrates substantial improvements in
retrieval performance and maintains superior
context integrity compared to traditional meth-
ods. Evaluated across four diverse datasets:
QuALITY, QASPER, NarrativeQA, and Italian
Cuisine—SKETCH consistently outperforms
baseline approaches on key RAGAS metrics
such as answer_relevancy, faithfulness, con-
text_precision and context_recall. Notably, on
the Italian Cuisine dataset, SKETCH achieved
an answer relevancy of 0.94 and a context
precision of 0.99, representing the highest
performance across all evaluated metrics.
These results highlight SKETCH’s capability
in delivering more accurate and contextually
relevant responses, setting new benchmarks for
future retrieval systems.

Keywords: RAG, Semantic Chunking,
Knowledge Graph, RAGAS

1 Introduction

Large Language Models (LLMs), despite their
growing size and capabilities, often lack sufficient
domain-specific knowledge for certain tasks
[27], and their encoded facts can quickly become

†This work does not relate to the position at Amazon AI.
‡This work does not relate to the position at Meta.

outdated due to the dynamic nature of information.
Updating the knowledge within LLMs through
fine-tuning or editing is a complex and resource-
intensive process, especially when dealing with
extensive text corpora [32]. An alternative ap-
proach is Retrieval Augmented Generation (RAG)
[45], which involves indexing large volumes of
text, divided into smaller segments, in a separate
information retrieval system [12]. Retrieved infor-
mation is then provided to the LLM along with the
query as context, enabling more factually updated
answers [6]. This method offers benefits such
as access to current, domain-specific knowledge,
improved interpretability, and provenance tracking,
which are often lacking in the opaque parametric
knowledge of LLMs [47].

However, existing RAG methods have no-
table limitations [17]. They typically retrieve only
a few short, contiguous text segments, limiting
their ability to represent and leverage large-scale
discourse structures. This limitation is particularly
problematic for complex queries that require
integrating knowledge from multiple parts of a text,
such as synthesizing information across chapters
or drawing conclusions from dispersed data in
scientific literature. Moreover, these methods often
struggle with multi-hop reasoning, where answer-
ing a query necessitates combining information
from multiple, non-adjacent text segments, leading
to incomplete or inaccurate answers and reducing
their usefulness in applications that demand
comprehensive understanding and synthesis.

To address these challenges, we introduce
SKETCH, a novel methodology that enhances the
retrieval process in RAG systems by integrating
semantic text retrieval with knowledge graphs
[16; 30]. This integration merges structured data
(knowledge graphs) and unstructured data (text
embeddings), enabling a holistic comprehension
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of the dataset and facilitating the retrieval of
relevant information across multiple contexts.
By combining these approaches, SKETCH can
perform multi-hop reasoning and retrieve contex-
tually relevant information even if it is dispersed
throughout the corpus. We evaluate SKETCH
on diverse datasets, including QuALITY [3; 34],
QAER [2; 8], NarrativeQA [1; 24], and an Italian
Cuisine corpus, covering a range of domains
and presenting various challenges. Our results
demonstrate significant improvements in answer
relevancy and context precision metrics compared
to baseline methods. SKETCH outperforms tra-
ditional RAG approaches by maintaining context
integrity and delivering more precise, contextually
enriched responses, setting new benchmarks for
RAG systems in handling large-scale discourse
structures and complex queries across various
domains.

2 Related Work

2.1 Retrieval Augmented Generation

RAG is a technique that enhances the capabilities
of large language models (LLMs) by integrating
external knowledge sources into the generation pro-
cess [9; 25]. This approach addresses several limi-
tations inherent in LLMs, such as their reliance on
static training data and the potential for generating
outdated or inaccurate information. By incorpo-
rating real-time, domain-specific knowledge, RAG
systems can provide more accurate, relevant, and
contextually enriched responses. This method not
only improves the factual accuracy of the gener-
ated content but also enhances interpretability and
provenance tracking, which are often lacking in
traditional LLMs [13].

2.2 Retrieval Strategies

Retrieval methods have evolved from traditional
term-based techniques like TF-IDF [21] to ad-
vanced strategies utilizing large language models as
retrievers [10; 23; 26; 31; 41]. Innovations such as
Fusion-in-Decoder (FiD) [20], combining DPR and
BM25, and RETRO [5], employing cross-chunked
attention and chunkwise retrieval, represent sig-
nificant advancements. However, many models
still rely on conventional techniques like chunk-
ing text corpora and using BERT-based retrievers,
which have limitations in capturing the semantic
depth of text [28], often leading to context loss
in technical or scientific documents [7; 29; 46].

RAPTOR (Recursive Abstractive Processing for
Tree-Organized Retrieval) [36] addresses these lim-
itations by constructing a hierarchical tree structure
that recursively embeds, clusters, and summarizes
text chunks using SBERT [35] and Gaussian Mix-
ture Models (GMMs) [11; 14; 40].

2.2.1 Semantic Chunking
Semantic chunking is a relatively new technique
used to divide text into semantically meaningful
units, significantly improving the efficiency and
accuracy of information retrieval in RAG systems
[22]. Unlike traditional chunking methods based on
simple rules or statistical models, semantic chunk-
ing leverages the inherent meaning of the text. The
process begins by splitting the text into individual
sentences, which are then grouped with neighbor-
ing sentences based on a window size k, repre-
senting the number of sentences before and after
the current sentence to form a window. Vector
embeddings are calculated for each window, and
the cosine distance between sequential windows
is evaluated. Window-merging strategies, such as
calculating the 95th percentile of distance differ-
ences to set a threshold T as mentioned in [22], are
employed. When the cosine distance difference be-
tween sequential windows is within this threshold
T, the windows are merged into one chunk, and
this process repeats until the threshold is breached,
resulting in reformed documents within the corpus.

2.3 Knowledge Graphs

Knowledge graphs are powerful tools for represent-
ing and reasoning over structured knowledge by
modeling entities and their relationships in a graph
structure, enabling integration of information
from diverse sources and facilitating knowledge
discovery [15]. They provide rich context for
understanding and retrieving information [4],
with roots in semantic networks and conceptual
graphs. Developments in the Semantic Web and
standards like RDF and OWL have enhanced their
utility [19; 33], leading to prominent examples like
DBpedia, Wikidata, and the Google Knowledge
Graph. Knowledge graphs have applications in
domains such as question answering, recommender
systems [38], and natural language processing
tasks [18]. Research has focused on knowledge
graph construction [39], embedding [37], comple-
tion [43], and reasoning [44], as well as integrating
them with deep learning models for enhanced
performance and explainable AI.
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An approach of adding a semantic theme to
chunking and creating hybrid retrievers with
combination of structured data through knowledge
graphs and unstructured data through semantic
chunks are new and introduced through SKETCH.

3 SKETCH

3.1 Overview

3.1.1 Semantic Chunking
In SKETCH, Semantic Chunking is crucial for
enhancing the retrieval process by ensuring that
text is segmented into semantically coherent
units. Unlike traditional chunking methods that
may disrupt the flow of ideas by splitting text
arbitrarily, our Semantic Chunking approach
preserves the thematic integrity of the content.
This means each chunk represents a complete
and meaningful segment of information, which
is essential for accurate semantic embedding and
retrieval. By maintaining the semantic continuity
within chunks, SKETCH ensures that important
contextual cues are not lost, which often happens
with naive splitting techniques. This is particularly
important when dealing with complex queries
that require a deep understanding of the content.
Semantic Chunking lays a strong foundation for
the unstructured retrieval component of SKETCH,
enabling more precise matching between queries
and relevant text segments.

Moreover, this approach complements the
structured retrieval provided by Knowledge
Graphs. While Knowledge Graphs capture the
relationships between entities, Semantic Chunking
ensures that the unstructured text associated with
these entities remains contextually rich and seman-
tically intact. Together, they enable SKETCH to
perform more accurate and contextually relevant
retrievals, effectively handling complex queries
that span multiple contexts within the corpus. By
integrating Semantic Chunking into the SKETCH
framework, we enhance the system’s ability to
understand and process large volumes of text,
leading to significant improvements in retrieval
accuracy and overall system performance.

3.1.2 Knowledge Graphs
In SKETCH, Knowledge Graphs (KGs) are
integral to enhancing the retrieval process by
providing a structured representation of entities

and their interrelationships within the corpus. We
use LLM to derive the main subject or entities
from a text snippet and then KGs to represent
entities as nodes and their relationships as edges.
In SKETCH, entity refers to the main subject that
is under discussion in a sentence whereas the edges
are the relationship that they have to other subjects
in that sentence.

By encoding relationships between entities,
KGs provide additional context that is not easily
captured by text embeddings alone. This enriched
context helps in understanding complex queries
and retrieving more accurate information. When
a user submits a query, SKETCH employs the
KG for structured retrieval. We perform Named
Entity Recognition (NER) [42] on the query using
GPT-4 to extract relevant entities. These entities
correspond to nodes in the KG. We then construct
cypher queries to traverse the KG and retrieve
pertinent nodes and their relationships based on
the extracted entities. More specifically, KGs
enable multi-hop reasoning, allowing the system
to traverse multiple relationships to infer new
information. When it comes to multi-context ques-
tions, the multi-hop feature of KG’s fits perfectly
in helping retrieve the required information that
is potentially missed out during naive or even
semantic chunking due to the distance between the
texts in the corpus. This capability is particularly
useful for answering complex, multi-faceted
queries that require synthesizing information from
various sources.

3.1.3 Rationale for Combining Semantic
Chunking and Knowledge Graphs

The innovative fusion of Semantic Chunking
and Knowledge Graphs in SKETCH marks a
significant leap forward in the field of Retrieval-
Augmented Generation (RAG) systems. This
strategic integration addresses core challenges in
information retrieval, enabling SKETCH to deliver
unprecedented accuracy and depth in handling
complex queries across large corpora.

Semantic chunking ensures that text chunks
are semantically coherent for a specific entity,
while Knowledge Graphs (KGs) provide structured
context about the relationships between entities.
KGs enable multi-hop reasoning, which helps
address complex queries that require integrating
information from multiple distant sources. Addi-
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tionally, Knowledge Graphs offer clear traceability
of information, making it easier to understand the
flow of retrieval. The combination of Semantic
Chunking and Knowledge Graphs creates a
synergistic effect that amplifies the strengths of
each approach while mitigating their individual
limitations. This integration allows SKETCH to:

• Maintain Semantic Integrity: Ensuring that
each chunk represents a semantically coherent
unit reduces the risk of misinterpretation and
enhances the quality of embeddings used for
retrieval.

• Enable Complex Reasoning: Knowledge
Graphs empower SKETCH to navigate the
intricate web of relationships between enti-
ties, facilitating the retrieval of information
that requires understanding multiple layers of
context.

• Enhance Retrieval Accuracy: The dual ap-
proach ensures that both the depth (through
semantic coherence) and breadth (through re-
lational mapping) of information are captured,
leading to more accurate and relevant retrieval
results.

When merging results, SKETCH prioritizes se-
mantic alignment: tokens that appear in both
structured and unstructured contexts are treated
as confirmation signals, reinforcing their relevance
and importance. Therefore, integrating Semantic
Chunking and Knowledge Graphs offers a more
holistic context for each entity, enhancing the over-
all comprehension of the complete dataset.

3.2 Approach and Reproducibility

Refer Figure 2 to understand the architecture of
SKETCH and how documents are pre-processed
and embeddings are created and finally how user
queries are processed through hybrid retrievers.

3.2.1 Indexing

3.2.1.1 Document Loading and Initialization:
We load the dataset which serves as the initial cor-
pus for indexing and retrieval. Additionally, two
separate text splitters are initialized: a semantic
text splitter and a recursive character text splitter.
These splitters are responsible for dividing the text
into meaningful chunks for further processing.

3.2.1.2 Semantic Text Splitting: The loaded
documents are processed through a semantic text
splitter. This segments the text based on semantic
content rather than arbitrary lengths like paragraphs
or sentences, ensuring each segment maintains the-
matic consistency. A new set of documents are
created, where each document chunk represents a
coherent semantic unit. This step is crucial for pre-
serving the context and meaning within each chunk,
enhancing the quality of information retrieval.

3.2.1.3 Recursive Text Splitting: The semanti-
cally segmented documents are further processed
using a recursive character text splitter. This split-
ter divides the text into chunks of 100 tokens with
a overlapping window of 16 tokens, ensuring that
even large documents are broken down into smaller,
more manageable pieces. By maintaining a chunk
size of 100 tokens, the recursive text splitter en-
sures that the chunks remain contextually coherent,
preventing the loss of important information that
might occur if sentences were instead arbitrarily
cut off.

3.2.1.4 Embedding and Vector Store: The
embeddings generated after the recursive text split-
ting process are stored in a vector database, FAISS.
These embeddings represent the semantic mean-
ing of the text chunks and are used for effi-
cient similarity-based retrieval during the querying
phase.

3.2.1.5 Knowledge Graph: The initial set of
documents is converted into graph documents. This
involves parsing the text and identifying entities,
attributes, and relationships, which are then struc-
tured into a graph format. Using the graph docu-
ments, a comprehensive Knowledge Graph (KG)
is constructed. The KG captures the intricate rela-
tionships and connections between various entities,
providing a structured representation of the infor-
mation contained within the documents. Refer Fig-
ure 3 to understand the KG representation for the
Italian Cuisine dataset. Each node here represents
the entities that are retrieved from the Italian Cui-
sine corpus and their relationships are represented
here as edges. Each node stores the smaller context
of the corpus.

3.2.2 Querying
3.2.2.1 Structured Retriever: The first step in
the structured retriever is Named Entity Recogni-
tion (NER). We identify all the plausibe entities
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present in the user query and create a cypher query
based out of it, treating each entity as a node. We
perform NER by passing the user query through
GPT-4 and extracting a list of all entities in the sen-
tence. The cypher query is designed to access and
retrieve the relevant nodes and their relationships
from the KG based on the extracted entities and
relationships from the user’s query.

3.2.2.2 Unstructured Retriever: This compo-
nent queries the vector embeddings of the text
chunks created during the recursive text splitting
phase. By leveraging similarity-based retrieval
technique, cosine similarity, the unstructured re-
triever can identify and retrieve the most relevant
text chunks based on their semantic similarity to
the user’s query.

3.2.2.3 Hybrid Retrieval: The system com-
bines the results from both the structured and un-
structured retrievers to create a comprehensive and
contextually rich retrieval mechanism. The re-
trieved results from these two components are then
combined, forming a unified context that is subse-
quently fed to the Large Language Model (LLM)
for generating answers to the user’s queries. By
leveraging the contextual coherence of semanti-
cally meaningful text chunks and the structured
relationships captured in the Knowledge Graph,
the system can provide more accurate and relevant
information to the LLM, ultimately improving the
quality of the generated responses.

3.3 Datasets
We evaluate the performance of SKETCH using
four diverse datasets that present various chal-
lenges: a small "Italian Cuisine and Heritage"
dataset and three large-scale datasets—QuALITY,
QASPER, and NarrativeQA. These datasets test
SKETCH’s ability to handle long documents,
multi-context questions, domain-specific knowl-
edge, and multi-hop reasoning.

The Italian Cuisine dataset, consisting of
6,000 tokens across three text files, serves as
an initial testbed for our methodology. We
generated multi-context questions and ground
truth data using the RAGAS framework and
evaluated the approaches using RAGAS metrics:
answer_relevancy, faithfulness, context_precision,
and context_recall.

QuALITY [3; 34] is a multiple-choice ques-

tion answering dataset designed for long document
comprehension, with passages averaging 5,000
tokens. It tests the system’s ability to process
lengthy texts and answer deep comprehension
questions that require understanding the entire
passage. We used the training set, containing
approximately 2,090 entries, for our experiments.

QASPER [2; 8] focuses on question answer-
ing over scientific papers, comprising 5,049
questions on 1,585 NLP papers. The questions
cover methodology, results, and conclusions,
requiring navigation through complex scientific
texts and multi-hop reasoning to arrive at correct
answers. We evaluated our approaches on the
validation set, which contains 281 entries with
questions, answers, and ground truths.

NarrativeQA [1; 24] involves question an-
swering on long-form narrative texts, including
1,567 stories (books and movie scripts) and 46,765
question-answer pairs. The dataset challenges
systems to understand and reason about complex
narratives involving character relationships, plot
developments, and thematic elements. Answers
are free-form, allowing for nuanced and detailed
responses. We used the validation set, containing
approximately 3,460 entries, for our comparisons.

Table 1: Performance Comparison of Different Ap-
proaches against Italian Cuisine Dataset

Approach Answer
Rele-
vancy

Faith-
fulness

Context
Preci-
sion

Context
Re-
call

F1
Score

Naive RAG 0.61 1.00 0.81 0.88 0.84

Semantic 0.84 0.86 0.92 0.83 0.87

KG 0.94 0.21 0.77 0.33 0.46

RAPTOR 0.75 0.73 0.38 0.71 0.50

SKETCH 0.94 0.87 0.99 0.72 0.83

4 Results and Discussion

We evaluated the performance of SKETCH across
four diverse datasets: the "Italian Cuisine" dataset,
QuALITY, QASPER, and NarrativeQA. Our
analysis focused on comparing the effectiveness
of SKETCH in enhancing retrieval accuracy and
contextual relevance against existing approaches,
including Naive RAG, RAPTOR, Semantic-only,
and KG-only methods. To ensure a comprehensive
evaluation, we assessed four key RAGAS metrics:
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answer_relevancy, faithfulness, context_precision,
and context_recall. GPT-3.5-turbo-16k served
as the evaluation judge for all datasets, ensuring
consistency in assessing the quality of responses
generated by each method.

The results, visualized in Figure 2, clearly
demonstrate SKETCH’s significant advantage over
other models in retrieval performance. SKETCH
consistently performed better across multiple
datasets, showing particular strength in answer
relevancy, context precision metrics, making it a
superior choice for accurate and contextually rich
retrieval. Each plot in Figure 2 contrasts SKETCH
with baseline models, providing a detailed visual
representation of how SKETCH excels in various
metrics, further emphasizing its robustness and
balanced capability compared to the other tested
approaches.

4.1 Italian Cuisine Dataset
The "Italian Cuisine" dataset, consisting of 6,000
tokens distributed across three text files, served as
an ideal testbed to assess the core capabilities of
SKETCH in a controlled environment. This dataset
enabled us to evaluate SKETCH’s performance in
retrieving accurate and contextually relevant infor-
mation. We generated a set of 9 multi-context ques-
tions that have answers spanning across different
parargraphs in three files using the RAGAS frame-
work to facilitate a comprehensive performance
comparison.

• Controlled Complexity for Initial Testing:
The dataset encompasses a variety of topics
within the domain of Italian cuisine, such as
regional dishes, traditional ingredients, culi-
nary techniques, and cultural heritage. This
diversity within a confined scope allows us to
test SKETCH’s ability to handle multi-faceted
queries that require integrating information
from different parts of the text.

• Multi-Context Retrieval Challenges: By
generating a set of 9 multi-context questions
using the RAGAS framework, we designed
queries whose answers span across different
paragraphs and even across multiple files.

• Domain Diversity: Including a dataset from
a different domain ensures that our evalu-
ation of SKETCH covers a broader spec-

trum of content types. While the other
datasets—QuALITY, QASPER, and Narra-
tiveQA—are centered around long-form nar-
ratives and scientific papers, the Italian Cui-
sine dataset represents a domain with unique
characteristics.

• Complexity Without Overhead: The dataset
strikes a balance between complexity and
computational efficiency. It is rich enough
to present significant retrieval challenges but
small enough to allow for rapid iteration and
testing. This is particularly beneficial during
the development phase, where quick feedback
loops are essential.

Table 1 presents the comparative metrics for the
Italian Cuisine dataset across all five retrieval
approaches: Naive RAG, RAPTOR, SKETCH,
Semantic-only, and KG-only. SKETCH demon-
strated clear superiority, achieving the highest
Answer Relevancy score of 0.94, comparable only
to the KG-only approach. However, SKETCH
outperformed KG in Faithfulness (0.87 vs. 0.21)
and Context Recall (0.72 vs. 0.33), highlighting
SKETCH’s ability to maintain context consistency
more effectively. Compared to Naive RAG,
SKETCH delivered a 54.1% improvement in
Answer Relevancy, and it also exceeded RAPTOR
by 26%. On the Context Precision metric,
SKETCH outperformed RAPTOR by 160% and
achieved an 22% higher score than Naive RAG.
Although SKETCH’s context-F1 score (0.83) was
competitive, the Semantic-only approach slightly
outperformed it in this metric (0.87), suggesting
that while SKETCH excels in most areas, there
may be room for further optimization in balancing
precision and recall.

Figures 4, 5, 6, 7 and 8 illustrate the perfor-
mance heatmaps for Naive RAG, RAPTOR,
Semantic-only, and KG-only and SKETCH
approaches, respectively. These heatmaps provide
a deeper understanding of how each approach
handled the 9 questions in the test set. SKETCH
consistently demonstrated a higher level of answer
relevancy and contextual accuracy compared to
the other methods, emphasizing its capability to
deliver precise and contextually rich responses.
The additional heatmaps for Semantic-only
and KG-only approaches further illustrate that
SKETCH excels in providing well-rounded
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Figure 1: RAGAS metrics against all datasets and approaches

retrieval results, surpassing the limitations seen in
isolated semantic or structured retrieval methods.

4.2 QuALITY Dataset

The QuALITY validation dataset, designed for
long-form document comprehension, provided
a challenging evaluation ground for retrieval-
augmented systems. Despite the complexity of
extended passages, SKETCH outperformed all
baseline methods, demonstrating its capability to
retrieve and integrate context effectively. Table 2
compares SKETCH and other approaches across
key performance metrics.

For Answer Relevancy, SKETCH achieved

a score of 0.73, representing a 49% improvement
over Naive RAG (0.49) and a 15.87% improve-
ment over RAPTOR (0.63). The Semantic-only
and KG-only approaches scored significantly
lower at 0.07 and 0.27, respectively. In terms
of Faithfulness, SKETCH recorded 0.69, while
Naive RAG performed better with 0.83. Although
Naive RAG had higher faithfulness, SKETCH’s
strong performance across other metrics gave it
an overall edge. The Semantic-only and KG-only
approaches scored 0.80 and 0.43, respectively.
This demonstrates SKETCH’s effectiveness in
synthesizing relevant information from different
parts of long passages.
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Regarding Context Precision, SKETCH achieved
0.31, a 675% improvement over Naive RAG’s 0.04
and a 19.23% improvement over RAPTOR’s 0.26.
SKETCH also surpassed the KG-only approach,
which scored 0.23. For Context Recall, SKETCH
recorded 0.23, comparable to Naive RAG’s 0.22.
RAPTOR, Semantic-only, and KG-only scored
0.14, 0.07, and 0.17, respectively. Compared to
other approaches, SKETCH’s superior context
based F1 score underscores its ability to provide
both accurate and contextually consistent retrieval,
even in the face of complex, long-form content.
These results illustrate SKETCH’s superior
performance across key metrics, reinforcing its
effectiveness as an integrated retrieval mechanism
for comprehending long and complex documents
over other baseline approaches and showcasing
SKETCH’s advantage in accurately pinpointing
relevant context.

Table 2: Performance Comparison of Different Ap-
proaches against QuALITY Dataset

Approach Answer
Rele-
vancy

Faith-
fulness

Context
Preci-
sion

Context
Re-
call

F1
score

Naive RAG 0.49 0.83 0.04 0.22 0.07

RAPTOR 0.63 0.48 0.26 0.14 0.18

Semantic 0.07 0.80 0.003 0.07 0.01

KG 0.27 0.43 0.23 0.17 0.20

SKETCH 0.73 0.69 0.31 0.23 0.26

4.3 QASPER

The QASPER dataset, consisting of scientific
papers, presented a challenging environment due
to its complexity and technical nature. Despite
these challenges, SKETCH demonstrated strong
capabilities, outperforming all baseline meth-
ods across several key metrics, as shown in Table 3.

For Answer Relevancy, SKETCH achieved
a score of 0.56, significantly surpassing Naive
RAG’s 0.28 a 100% improvement and outper-
forming RAPTOR’s 0.27 by 107.41%. The
Semantic-only and KG-only approaches scored
0.27 and 0.49, respectively. On the Faithfulness
metric, SKETCH scored an impressive 0.93,
exceeding Naive RAG (0.61) by approximately
52.46% and RAPTOR (0.62) by 50%. Regarding
Context Precision, SKETCH achieved 0.67,
outperforming Naive RAG’s 0.28 by 139.29% and

RAPTOR’s 0.27 by 148.15%. While the KG-only
approach achieved a slightly higher precision at
0.71, SKETCH’s performance was more balanced
across all metrics.

For Context Recall, SKETCH recorded a
score of 0.49, improving over Naive RAG’s 0.43
by 13.95%. Although the KG-only approach
scored higher at 0.60, SKETCH demonstrated su-
perior balance, excelling in relevancy, faithfulness,
and precision. Although KG-only achieves the
highest F1 score (0.65), SKETCH still maintains
a strong F1 performance at 0.57, reflecting its
balanced effectiveness. These results indicate
that SKETCH consistently outperforms other
approaches in the QASPER dataset, emphasizing
its strength in providing accurate, faithful, and
contextually precise retrieval, particularly in
challenging scientific content.

Table 3: Performance Comparison of Different Ap-
proaches against QASPER Dataset

Approach Answer
Rele-
vancy

Faith-
fulness

Context
Preci-
sion

Context
Re-
call

F1
score

Naive RAG 0.28 0.61 0.28 0.43 0.34

RAPTOR 0.27 0.62 0.27 0.44 0.33

Semantic 0.27 0.62 0.29 0.43 0.35

KG 0.49 0.61 0.71 0.60 0.65

SKETCH 0.56 0.93 0.67 0.49 0.57

4.4 NarrativeQA

The NarrativeQA dataset posed unique challenges
requiring deep narrative understanding, including
handling plot development and character interac-
tions across extended text passages. SKETCH
demonstrated a notable advantage in addressing
these complexities compared to baseline methods,
as detailed in Table 4.

For Answer Relevancy, SKETCH achieved
a score of 0.50, significantly surpassing Naive
RAG’s 0.08 (a 525% improvement) and slightly
outperforming RAPTOR and KG-only, both at
0.47. The Semantic-only approach scored 0.10. In
Faithfulness, SKETCH recorded 0.87, outshining
Naive RAG (0.09) by 866.67% and improving over
RAPTOR and KG-only, both at 0.72, by 20.83%.
Regarding Context Precision, SKETCH achieved
0.51, better than Naive RAG’s 0.10 and RAPTOR’s
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0.30. Although KG-only slightly outperformed
SKETCH with 0.58, SKETCH’s overall balanced
performance ensured its superiority. For Context
Recall, SKETCH scored 0.46, significantly higher
than Naive RAG’s 0.05 (an 800% improvement)
and surpassing RAPTOR (0.16) and Semantic-only
(0.14), with KG-only slightly ahead at 0.47.

These results indicate that SKETCH consis-
tently outperformed baseline methods in answer
relevancy and faithfulness. While KG-only showed
slightly better scores in context precision and
recall, SKETCH’s balanced excellence across
all metrics made it the most effective approach
for retrieving and synthesizing narrative content.
This demonstrates SKETCH’s ability to provide
contextually rich and accurate retrieval in the
NarrativeQA dataset, confirming its superiority
in comprehending and generating answers from
complex narrative passages.

Table 4: Performance Comparison of Different Ap-
proaches against NarrativeQA Dataset

Approach Answer
Rele-
vancy

Faith-
fulness

Context
Preci-
sion

Context
Re-
call

F1
score

Naive RAG 0.08 0.09 0.10 0.05 0.07

RAPTOR 0.10 0.46 0.30 0.16 0.21

Semantic 0.10 0.51 0.004 0.14 0.01

KG 0.47 0.72 0.58 0.47 0.52

SKETCH 0.50 0.87 0.51 0.46 0.48

5 Conclusion and Limitations

This research introduced SKETCH, an innovative
methodology that enhances Retrieval-Augmented
Generation (RAG) systems by combining semantic
chunking with knowledge graphs. By integrating
structured and unstructured data, SKETCH
addresses the limitations of traditional retrieval
methods, such as context loss in large datasets
and limited comprehension of complex queries.
Our experiments on diverse datasets—including
Italian Cuisine, QuALITY, QASPER, and Narra-
tiveQA—demonstrate SKETCH’s superior ability
to maintain context integrity and generate highly
relevant responses, consistently outperforming
baseline methods like Naive RAG, RAPTOR,
Semantic-only, and KG-only approaches.

SKETCH achieved remarkable improvements

across key metrics, showcasing its adaptability to
both short and long documents and its effectiveness
in navigating complex texts. For instance, on
the Italian Cuisine dataset, it achieved an answer
relevancy score of 0.94 and context precision
of 0.99, improving over Naive RAG by 54.1%
and 22.2%, respectively. On the QuALITY
dataset, SKETCH improved answer relevancy
by 49%, and on the QASPER dataset, it doubled
the answer relevancy score over Naive RAG
while increasing context precision by 139.29%.
Even on the challenging NarrativeQA dataset,
SKETCH delivered balanced performance with
a 525% improvement in answer relevancy and
an 866.67% increase in faithfulness over Naive
RAG. While KG achieved the highest F1 score
(0.52), SKETCH closely followed with 0.48,
demonstrating its balanced effectiveness despite
the complexity of narrative content. These findings
confirm that SKETCH’s combined approach offers
a robust framework for advancing RAG systems,
setting new benchmarks in accuracy, context
comprehension, and cross-domain xapplicability,
and paving the way for future advancements in
natural language processing.

Limitations While SKETCH significantly im-
proved Answer Relevancy and Context Precision,
certain limitations remain. Faithfulness, though
better than most baselines, still lags behind Naive
RAG on QuALITY (0.69 vs. 0.83, a 16.9% short-
fall). Scalability and cost are also concerns, as
constructing large-scale knowledge graphs is labor-
intensive, and relying on paid LLMs like GPT-4
for semantic evaluation increases expenses. Fur-
thermore, SKETCH’s dependence on GPT models
for query parsing and RAGAS evaluation can in-
troduce errors and variance due to sampling ran-
domness, prompt sensitivity, and occasional hallu-
cinations, potentially affecting reproducibility. Em-
ploying sampling strategies (e.g., multiple runs)
and aggregating judgments could help mitigate
these issues. Future work should focus on reduc-
ing computational costs, refining knowledge graph
construction, and improving metrics like Context
Recall and Faithfulness to achieve more consistent,
high-quality, and stable retrieval results.
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Figure 2: Architecture of SKETCH with a Hybrid Retriever combining structured and unstructured retrievers
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Figure 3: Italian Cuisine KG Representation
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Figure 4: Naive RAG Italian Cuisine Performance Heatmap

Figure 5: Semantic only Italian Cuisine Performance Heatmap
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Figure 6: KG only Italian Cuisine Performance Heatmap

Figure 7: RAPTOR Italian Cuisine Performance Heatmap
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Figure 8: SKETCH Italian Cuisine Performance Heatmap
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