
Proceedings of the Generative AI and Knowledge Graph Workshop (GenAIK), pages 78–86
January 19, 2025. ©2025 International Committee on Computational Linguistics (ICCL)

78

Refining Noisy Knowledge Graph with Large Language Models

Dong Na1 Natthawut Kertkeidkachorn1 Xin Liu2 Kiyoaki Shirai1

1Japan Advanced Institute of Science and Technology, Ishikawa, Japan
2National Institute of Advanced Industrial Science and Technology, Tokyo, Japan

{s2320036, natt, kshirai}@jaist.ac.jp, xin.liu@aist.go.jp

Abstract

Knowledge graphs (KGs) represent structured
real-world information composed by triplets
of head entity, relation, and tail entity. These
graphs can be constructed automatically from
text or manually curated. However, regard-
less of the construction method, KGs often suf-
fer from misinformation, incompleteness, and
noise, which hinder their reliability and util-
ity. This study addresses the challenge of noisy
KGs, where incorrect or misaligned entities and
relations degrade graph quality. Leveraging re-
cent advancements in large language models
(LLMs) with strong capabilities across diverse
tasks, we explore their potential to detect and
refine noise in KGs. Specifically, we propose a
novel method, LLM_sim, to enhance the detec-
tion and refinement of noisy triples. Our results
confirm the effectiveness of this approach in
elevating KG quality in noisy environments.
Additionally, we apply our proposed method to
Knowledge Graph Completion (KGC), a down-
stream KG task that aims to predict missing
links and improve graph completeness. Tra-
ditional KGC methods assume that KGs are
noise-free, which is unrealistic in practical sce-
narios. Our experiments analyze the impact
of varying noise levels on KGC performance,
revealing that LLMs can mitigate noise by iden-
tifying and refining incorrect entries, thus en-
hancing KG quality.

1 Introduction

Knowledge Graphs (KGs) provide a structured
framework for representing interconnected data,
widely used in research fields such as natural lan-
guage processing and recommendation systems.
However, automated KG construction often intro-
duces noise, leading to inaccurate or misaligned
triples that degrade the quality and reliability of
downstream tasks like Knowledge Graph Comple-
tion (KGC) (Xie et al., 2018). Addressing noise in
KGs is crucial for maintaining KGC performance,

as this task relies on accurate triples to infer miss-
ing links and enhance KG completeness.

Large Language Models (LLMs), which demon-
strate impressive capabilities across a variety of
tasks like question answering (Lála et al., 2023),
summarization (Jin et al., 2024), and translation
(Huang et al., 2023), offer a promising solution for
KG noise detection. By encoding extensive fac-
tual and contextual knowledge, LLMs can evaluate
the coherence of entity-relationship pairs based
on learned semantic patterns (Petroni et al., 2019).
Leveraging LMs for noise detection presents a po-
tential advancement over traditional noise detec-
tion methods, which typically depend on KG em-
bedding models or rule-based techniques that may
not effectively handle nuanced or context-specific
noise.

In this study, we propose a novel approach,
LLM_sim, which uses a LLM, Llama31, to detect
and refine erroneous triples in noisy KGs. Our
LLM_sim, generates candidate triples for detected
noise and refines them using contextual similarity,
matching them to existing KG triples. Our experi-
ments show that LLM_sim is particularly effective
under high noise conditions, underscoring the value
of LLMs for KG refinement.

The contributions of this paper are as follows:

• We introduce LLM_sim, which leverages
LLMs to detect and refine noise in KGs, im-
proving downstream KG task performance.

• We validate our approach through experiments
on WN18RR2 and FB15k-2373.

• We systematically evaluate the impact of
various noise levels on KGC, showing our

1https://huggingface.co/meta-llama/
Meta-Llama-3-8B

2https://huggingface.co/datasets/VLyb/WN18RR
3https://huggingface.co/datasets/VLyb/

FB15k-237

https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/meta-llama/Meta-Llama-3-8B
https://huggingface.co/datasets/VLyb/WN18RR
https://huggingface.co/datasets/VLyb/FB15k-237
https://huggingface.co/datasets/VLyb/FB15k-237
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method’s robustness under different noise con-
ditions.

The remainder of this paper is organized as fol-
lows. Section 2 reviews related work on noise
detection and KGC methods. Section 3 explains
our proposed method LLM_sim for detecting and
refining noisy KGs. Section 4 describes the experi-
mental setup, including datasets and model config-
urations. Section 5 presents experimental results,
highlighting the effectiveness of our approach. Fi-
nally, Section 6 concludes the paper and outlines
future research directions.

2 Related Work

In noise detection research, various approaches
have been proposed to demonstrate the effective-
ness of their models in detecting noise. These meth-
ods can be broadly categorized into three types:
traditional KG embedding models, noise detection
based on pre-trained language models(PLMs), and
unsupervised rule-based noise detection models.

Knowledge Graph Embedding (KGE) models
assess the validity of triples by estimating confi-
dence scores for embedded representations, based
on the principle that correct triples approximate
the vector equation h+ r ≈ t, where h and t rep-
resent the head and tail entities, and r represents
the relationship. Notable models in this category
include TransE (Bordes et al., 2013), RotatE (Sun
et al., 2019), DistMult (Yang et al., 2014), and
ComplEx (Trouillon et al., 2016). However, noise
in training data can degrade embedding quality, as
KG embeddings rely on clean data for optimal per-
formance. While KGE models can determine a
triple’s validity, their performance remains limited
due to their sensitivity to noisy data.

PLMs, such as GPT-2 XL4, approach noise detec-
tion by assessing the semantic relationship between
text and entities within a triple. They evaluate
correctness by measuring the model’s confidence
or probability score for a given triple. However,
these models often struggle with domain-specific
or temporal knowledge, as they depend on the con-
texts present in their training data. Additionally,
these models primarily rely on associative reason-
ing rather than causal inference, making it challeng-
ing to detect implicit noise in complex knowledge
reasoning scenarios. Consequently, such models of-
ten have limited capacity for inferring non-explicit

4https://huggingface.co/openai-community/
gpt2-xl

relationships and may not effectively detect noise
in superficially similar triples.

Unsupervised rule-based noise detection models
use predefined rules or constraints to detect anoma-
lies or noise in triples. For example, (Hong et al.,
2021) introduced a rule-based triple confidence
framework for noise detection in KGE, assigning
confidence scores to improve noise filtering and
enhance the robustness and accuracy of embedding
models. Probabilistic models have also been ap-
plied to noisy data (Yi and Wu, 2019; Garg et al.,
2021), using statistical methods to quantify uncer-
tainty and model noise, facilitating robust error
correction and data refinement, thereby enhanc-
ing the quality, usability, and reliability of KGs.
However, these models often struggle to intuitively
grasp the semantic information of triples and lack
a solid foundation of real facts and logical coher-
ence. Although they are not dependent on labeled
data, rule-based approaches lose efficacy in dy-
namic KGs or frequently updated datasets, as fixed
rules may become outdated, leading to inefficiency
and reduced scalability.

3 Methodology

To effectively detect noise in KGs, which refers to
erroneous triples, we propose a novel framework
to detect and refine noisy triples in large-scale KGs
using LLMs. Our approach consists of two key
components: noise detection and noise refinement.
Figure 1 illustrates the overall process of noise de-
tection and refinement in KGs. The LLM detection
model first identifies noise within the KG, which
is detected as noise data, filtered KG in the figure,
which is then passed to the LLM refinement for cor-
rection. The refined KG along with detected correct
triplets, filtered KG, forms a new dataset, renewed
KG, which is subsequently utilized for KGC tasks.
The refinement process begins with the LLM gener-
ating five candidate triples for a given noisy triple.
The candidates are divided into head-relation and
relation-tail pairs, which are then matched against
the noisy KG. The most suitable candidate is se-
lected based on similarity calculations and used as
the final refinement triple.

3.1 Noise Detection

Noise detection plays a crucial role in our proposed
method. In this paper, we propose a novel ap-
proach that leverages the generative capabilities
of LLMs to detect noisy triples. We call this pro-

https://huggingface.co/openai-community/gpt2-xl
https://huggingface.co/openai-community/gpt2-xl
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Figure 1: Overview of LLM_sim. The red circles represent noisy triples, the blue circles indicate correct triples, and
the green circles represent stochastic triples, which may be either correct or noisy.

cess LLM_sim detection. To enhance the LLM’s
evaluation with relevant contextual information, we
employ a fuzzy search (Fu et al., 2016) to search
similar triplets within the original KG, which is pro-
vided as ADDITIONAL_CONTEXT. This context
includes triples that are structurally and semanti-
cally similar to the target triple ⟨E1, R,E2⟩, aid-
ing the LLM in evaluating factual accuracy. Our
method involves the following five steps.

Query Vector Construction: We encode the tar-
get triple as a query vector q that captures its se-
mantic information.

q = f(realization(E1, R,E2)), (1)

where f(·) is a function based on the Sentence
Transformer model all-MiniLM-L6-v25, mapping
each entity or relation to its corresponding embed-
ding. The function realization() is used to create
a simple sentence from a triple into a statement like
“E1 R E2".

Fuzzy Search in KG: We use the query vector q
to perform a fuzzy search over the KG and identify
triples with high semantic similarity, calculated
using cosine similarity:

5https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2

cosine(q, t) =
q · t

||q|| · ||t||
, (2)

where t represents embedding vectors of other
triples in the KG, as computed by Equation 1.

Selection of Similar Triples: To avoid confusion
from multiple contexts, we select the single triple
⟨E1′, R′, E2′⟩ most similar to q based on similar-
ity scores computed by Equation 2. This selected
triple serves as ADDITIONAL CONTEXT to sup-
port the LLM in assessing the validity of the target
triple.

Prompt Design: A structured prompt leverages
the ADDITIONAL CONTEXT to assist the LLM in
accurately evaluating the relationship between enti-
ties. The prompt is crafted to ensure the LLM can
process and reason through the query effectively.
The prompt format is as follows:

Based on all your knowledge and the given
context ⟨ADDITIONAL_CONTEXT⟩. De-
termine if the ⟨E1⟩ has a ⟨R⟩ with the ⟨E2⟩.
Answer the question by reasoning step-by-
step, and provide your final answer within
’yes’ or ’no’.
Answer in this format:
Final Answer: [yes/no]

https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
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Filtering of Erroneous Triplets : By system-
atically applying the prompt and interpreting the
LLMs’ responses, we effectively filter out false
triples, thereby enhancing the overall quality and
reliability of the data.

3.2 Noise Refinement

The bottom half of Figure 1 illustrates the work-
flow of refining noisy triples in KGs using LLMs.
Starting with a set of noisy triples, despite provid-
ing context, directly correcting erroneous triples
remains challenging for LLMs. In order to balance
model efficiency and prediction accuracy, the LLM
generates five candidate triples for each noisy in-
stance. These candidate triples are grouped based
on two distinct pairings: Head-relation and relation-
Tail. The KG is then utilized to compute similarity
scores between the candidate triples and the ref-
erence triples in the KG. Finally, the candidate
triple with the highest similarity score is selected
as the optimal refinement for the noisy triple, en-
suring improved data quality in the KG. This ap-
proach achieves higher accuracy compared to di-
rectly using the LLM to correct noisy triples (as
demonstrated in our experiments). In summary,
this methodology comprises three key steps: candi-
date generation, grouping strategy, and similarity
calculation.

3.2.1 Candidate Generation

To address the noisy triples, we designed a prompt
that allows the LLM to automatically refine the
mismatches. We designed the prompt as follows:

The entities in the given triple do not
correctly correspond to each other.
Based on your knowledge, please rectify
the triple and generate five correct triples,
ensuring that the original ⟨R⟩ remains
unchanged. Each refined triple should
include either ⟨E1⟩ or ⟨E2⟩ from the
given triple.
Please output the refined triples in the
following format:
1. (entity, relation, entity)
2. (entity, relation, entity)
3. (entity, relation, entity)
4. (entity, relation, entity)
5. (entity, relation, entity)

In this prompt, we first need to clearly indicate
that the given triples are not correct. In generating

refined triples, the task requires the model to retain
the original relation while modifying one of the
entities. This constraint significantly reduces
the likelihood of the LLM producing fabricated
or irrelevant information. By grounding the
refinement process in the given structure—fixing
either the head or tail entity and preserving the
original relation, we aim to enhance the factual
accuracy of the output and maintain consistency
with the KGs.

Each triple consists of a head entity (E1), a rela-
tion (r), and a tail entity (E2). In cases where the
entities and relations within a triple are misaligned,
it is often unclear whether the mismatch originates
from the E1 or the E2. To tackle this uncertainty,
our prompt instructs the model to fix one entity and
the relation while predicting the other entity. This
approach mitigates the risk of LLM hallucination
and improves both the prediction accuracy and the
efficiency of the model by systematically narrow-
ing down the sources of error within the triples.

3.2.2 Grouping Strategy
To address the uncertainty about whether noise
originates from the head or tail entity in a triple, we
employ a grouping strategy that enhances the accu-
racy of LLM predictions for both entities. Specifi-
cally, we organize generated candidate triples into
two grouping criteria: (1) the "Head-relation" pair
(E1, r), where triples that share the same head en-
tity and relation and (2) the "relation-Tail" pair
(r, E2), where those that share the same relation
and tail entity. This grouping process helps to miti-
gate noise introduced by entity permutations, ensur-
ing that semantically similar triples are compared
effectively.

After grouping, we search for similar combina-
tions in the reference dataset, which is the original
KG in this study. Instead of searching for the com-
plete triple (E1, r, E2), we search separately for
either the (E1, r) or the (r, E2) in the reference
dataset.

Without grouping, directly matching entire
triples (E1, r, E2) may lead to incorrect alignments
with unrelated KG entries. Grouping enables a fo-
cused comparison on each entity’s role, ensuring
accuracy and reducing noise.

3.2.3 Similarity Calculation
Both the original noisy triple and its generated can-
didates are embedded into a dense vector space by
converting them into textual representations. For
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any given triple (E1, r, E2), we construct its text
representation by concatenating the head entity, re-
lation, and tail entity into a single sequence:

T = “E1 r E2”. (3)

To represent these triples in a vector space, we
employ the Sentence Transformer model, specifi-
cally the all-MiniLM-L6-v2 variant. The model
encodes each triple’s textual representation into a
dense vector:

vT = SentenceTransformer(T ). (4)

Thus, for the sequence T of the given triple, the
corresponding embedding vector vT is obtained by
encoding its textual representation.

After generating embeddings for candidate and
reference triples, we measure their similarity using
cosine similarity. For a pair of triples (T1, T2), the
cosine similarity between their embeddings vT1

and vT2 is calculated as:

cos_sim(vT1 ,vT2) =
vT1 · vT2

∥vT1∥∥vT2∥
. (5)

For each group, we select the candidate triple
with the highest cosine similarity to any reference
triple, a triple in KG. A higher cosine similarity
indicates that the textual representations of the two
triples are more semantically consistent, suggest-
ing that the entity relationships they express are
more closely aligned. Let Gj represent a candidate
triple and Fi represent a reference triple from the
dataset. We aim to find the candidate triple G∗

j that
maximizes the cosine similarity to any reference
triple within the group:

G∗
j = arg max

Gj∈gen

(
max
Fi∈ref

cos_sim(vj ,vi)

)
, (6)

• gen represents the set for all generated candi-
date triples.

• ref represents the set for all reference triples
in the dataset.

Despite the presence of noise in the dataset, the
majority of triples remain accurate. Leveraging
this fact, our method addresses noise effectively
by calculating cosine similarity between generated
triples and reference triples. This similarity-based
approach allows us to isolate noise from correct

data with high accuracy, thereby enhancing the
dataset’s reliability.

This three-step refinement process aims to ef-
fectively enhance the quality of KGs by correcting
noisy triples.

4 Experiment

This section describes our experimental setup, in-
cluding the dataset description, noise construction
methods, and evaluation metrics.

4.1 Dataset

We conduct experiments on two datasets, WN18RR
and FB15k-237, derived from WordNet (Miller,
1995) and Freebase (Bollacker et al., 2008), respec-
tively, that are widely used for KGC benchmarks.
Both datasets contain structured triples represent-
ing relationships between entities, making them
suitable for evaluating KGC. Table 1 summarizes
key statistics for each dataset.

Dataset WN18RR FB15k-237
Entities 40,943 14,541
Relationships 11 237
Train Triples 86,835 272,115
Validation Triples 3,034 17,535
Test Triples 3,134 20,466

Table 1: WN18RR and FB15k-237 Datasets

4.2 Noisy KG Dataset Construction

To simulate real-world conditions where KGs are
often noisy, we introduce controlled levels of noise
into WN18RR and FB15k-237 by injecting erro-
neous triples. Specifically, we vary the noise ratio
at 10%, 20%, and 30%, based on reported noise
levels in real-world datasets (Hasan and Chu, 2022;
Song et al., 2022). Noise is introduced by replacing
one of the entities in a triple as:

G′ = (h′, r, t) or (h, r, t′), (7)

where h′ and t′ represent randomly chosen entities
that do not relate to t or h in the context of the
original relation r.

4.3 Baseline Methods

We evaluate our proposed method, LLM_sim,
against several baselines categorized as follows:
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Pre-trained Language Models: GPT-2 XL,
which detects noise based on general language
understanding. A prompt used for noise detection:

Is ⟨Entity1⟩ a ⟨relationship⟩ of ⟨Entity2⟩?
Answer the question within yes and no:

Note that this prompt differs from the one used for
Llama3, as described in subsection 3.1. Initially,
we used identical prompts for both GPT-2 XL
and Llama3. When Llama3 received prompts
designed for GPT-2 XL, the lack of specificity
led to irrelevant responses. Similarly, GPT-2
XL struggled with prompts tailored for Llama3,
resulting in inadequate answers. Consequently,
we developed distinct prompts for each model to
better suit their capabilities and improve output
quality.

KGE Models: We include TransE, RotatE, and
ExpressivE (Pavlović and Sallinger, 2022) as base-
line models, where the validity of triples is assessed
using embeddings from these models. For TransE,
for instance, noise detection is performed by veri-
fying if the norm of ||(h + r − t)|| is less than a
threshold γ. After testing various values from 0 to
1, we chose γ = 0.1 for TransE and RotatE, and
γ = 0.2 for ExpressivE for each score function,
respectively.

Rule-based Methods: For WN18RR, we iden-
tify noisy triples by assessing the consistency of
the part-of-speech tags for the head and tail enti-
ties in each relation. In FB15k-237, however, the
larger variety of relations makes it impractical to
design rules for each one. Instead, we first group
triples by relation, apply Named Entity Recogni-
tion (NER) within each group, and filter out entities
whose types deviate from the dominant entity types,
identifying them as noise.

Noise Detection Methods: For robust noise de-
tection, we adopt CAGED (Zhang et al., 2022) as
our baseline, a state-of-the-art approach renowned
for its effectiveness in identifying and filtering
noisy relations. CAGED leverages advanced entity
and relation embedding techniques to detect incon-
sistencies within KGs, providing high precision
in distinguishing authentic triples from erroneous
data.

4.4 Evaluation Metric
4.4.1 Noise Detection
The performance of noise detection is measured
using accuracy, precision, recall, and F1 score.

4.4.2 Noise Refinement
We evaluated the refinement process using two pri-
mary methods due to the lack of gold-standard
labels, which made direct evaluation challenging.
First, we assessed whether the generated triples
were present in the original noise-free dataset, refer-
ring to this metric as "correctness." This approach
offers an initial indication of refinement accuracy
by checking alignment with verified data. Sec-
ond, we performed a manual evaluation, where
100 randomly selected samples were inspected to
qualitatively assess refinement accuracy.

4.4.3 KGC task
We use KGC metrics to evaluate the impact of noise
detection and noise refinement on the downstream
task, selecting the ExpressiveE model to perform
KGC on the datasets. Evaluation metrics include
Mean Reciprocal Rank (MRR) and Hit@k (Hit@1,
Hit@3, and Hit@10), measuring model effective-
ness in predicting missing links. Specifically, MRR
represents the average of the reciprocal ranks of
the correct entities, highlighting how close the pre-
dictions are to the top rank. Hit@k calculates the
proportion of correct entities ranked within the top
k predictions, reflecting the model’s ability to rank
true triples highly.

We compare the following KGC models using
different KGs to systematically compare different
noise detection and refinement methods:

KGC: Original KG with injected noise at varying
ratios, without any filtering or refinement.

KGC + CAGED: KG filtered using the CAGED
model, which removes noisy triples based on
domain-specific criteria.

KGC + GPT2: KG filtered using GPT-2 XL,
which removes detected noisy triples.

KGC + LLM_sim: without context KG filtered
using Llama3. Noisy triples are not refined but just
removed. The additional context is not used for
noise detection.

KGC + LLM_sim: detection Similar to KGC
+ LLM_sim detection without context, but it in-
cludes context-based filtering, with neighboring
triples providing additional information for noise
detection.

KGC + LLM_sim: Final refined KG consisting
of both filtered and refined triples.
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Noise Level Model
WN18RR FB15k-237

Accuracy Precision Recall F1 score Accuracy Precision Recall F1 score

10% Noise

TransE 0.473 0.896 0.468 0.615 0.411 0.884 0.398 0.549
RotatE 0.511 0.900 0.509 0.650 0.464 0.895 0.459 0.606
ExpressivE 0.603 0.902 0.585 0.709 0.527 0.890 0.521 0.660
GPT-2 XL 0.823 0.562 0.468 0.511 0.787 0.899 0.860 0.879
Rule-base 0.672 0.900 0.715 0.797 0.681 1.000 0.645 0.784
CAGED 0.853 0.963 0.856 0.906 0.839 0.850 0.857 0.900
LLM_sim without context 0.868 0.980 0.871 0.922 0.806 0.969 0.810 0.883
LLM_sim detection 0.911 0.934 0.969 0.951 0.806 0.962 0.816 0.883

20% Noise

TransE 0.335 0.708 0.305 0.426 0.353 0.724 0.325 0.449
RotatE 0.423 0.774 0.407 0.533 0.438 0.782 0.425 0.551
ExpressivE 0.593 0.810 0.558 0.661 0.501 0.811 0.501 0.619
GPT-2 XL 0.786 0.811 0.960 0.829 0.775 0.809 0.945 0.872
Rule-base 0.634 0.811 0.715 0.760 0.719 1.000 0.653 0.790
CAGED 0.804 0.933 0.814 0.869 0.712 0.694 0.927 0.794
LLM_sim without context 0.869 0.960 0.875 0.915 0.798 0.935 0.807 0.866
LLM_sim detection 0.883 0.894 0.971 0.930 0.784 0.918 0.806 0.858

30% Noise

TransE 0.310 0.553 0.278 0.370 0.322 0.568 0.291 0.385
RotatE 0.377 0.630 0.352 0.452 0.403 0.655 0.383 0.483
ExpressivE 0.504 0.728 0.511 0.600 0.486 0.720 0.483 0.578
GPT-2 XL 0.712 0.730 0.960 0.829 0.717 0.737 0.953 0.831
Rule-base 0.600 0.730 0.716 0.723 0.749 1.000 0.656 0.792
CAGED 0.734 0.895 0.703 0.788 0.732 0.702 0.892 0.785
LLM_sim without context 0.865 0.934 0.875 0.904 0.798 0.903 0.809 0.854
LLM_sim detection 0.853 0.850 0.970 0.906 0.777 0.842 0.855 0.848

Table 2: Comparison of various noise detection models on WN18RR and FB15k-237 with different levels of noise
(10%, 20%, 30%).

WN18RR FB15k-237

correctness
Human evaluation

(randomly select 100 refined triple) correctness
Human evaluation

(randomly select 100 refined triple)

10% noise 82.37% 89.00% 87.24% 92.00%
20% noise 80.75% 87.00% 85.27% 88.00%
30% noise 78.46% 82.00% 83.46% 83.00%

Table 3: Results of noise refinement

5 Results and Analysis

In this section, we present the results of our ex-
periments and conduct a thorough analysis to gain
insight into the outcomes.

5.1 Result of Noise Detection

We analyze the performance of LLM_sim in
noise detection for both WN18RR and FB15k-237
datasets, using prior work as a baseline for compar-
ison.

Tables 2 shows the results for WN18RR and
FB15k-237 with 10%, 20%, and 30% noise, re-
spectively.

Our experimental results reveal several key in-
sights. First, both the PLMs and the noise detection
models outperform KGE models. KGE models per-
form notably worse in noise detection, likely due to

their inability to account for noise during training.

Second, the PLM, represented by GPT-2 XL,
performs well in recall but underperforms in other
metrics. This could be due to the high proportion of
positive samples in the datasets, making it difficult
for the model to distinguish between noisy and
non-noisy samples.

Third, the performance of LLM_sim differs be-
tween WN18RR and FB15k-237. In WN18RR,
LLM_sim detection surpasses LLM_sim without
context, at 10% and 20% noise. However, at 30%
noise, LLM_sim without context performs better,
possibly due to degraded quality from increased
noise. In contrast, LLM_sim detection consistently
underperforms in FB15k-237 due to low inter-triple
correlation, reducing the value of contextual infor-
mation.
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WN18RR FB15k-237
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

KGC in clean data 0.506 0.459 0.519 0.597 0.212 0.148 0.235 0.339
KGC 0.423 0.375 0.448 0.508 0.191 0.128 0.214 0.319
KGC + CAGED 0.400 0.343 0.429 0.505 0.176 0.117 0.195 0.298
KGC + GPT2 0.412 0.359 0.433 0.467 0.143 0.106 0.156 0.216
KGC + LLM_sim without context 0.402 0.343 0.430 0.509 0.174 0.116 0.193 0.293
KGC + LLM_sim detection 0.434 0.380 0.460 0.533 0.173 0.116 0.190 0.292

10% noise

KGC + LLM_sim 0.404 0.346 0.431 0.510 0.183 0.122 0.206 0.302
KGC 0.363 0.317 0.396 0.435 0.174 0.116 0.192 0.293
KGC + CAGED 0.351 0.295 0.381 0.450 0.168 0.115 0.185 0.276
KGC + GPT2 0.338 0.396 0.370 0.404 0.171 0.115 0.188 0.286
KGC + LLM_sim without context 0.370 0.312 0.401 0.473 0.175 0.117 0.196 0.294
KGC + LLM_sim detection 0.390 0.333 0.421 0.487 0.170 0.115 0.187 0.284

20% noise

KGC + LLM_sim 0.376 0.318 0.407 0.481 0.178 0.120 0.201 0.306
KGC 0.290 0.246 0.324 0.358 0.141 0.109 0.152 0.201
KGC + CAGED 0.294 0.241 0.327 0.382 0.167 0.116 0.185 0.273
KGC + GPT2 0.321 0.271 0.356 0.401 0.167 0.114 0.184 0.278
KGC + LLM_sim without context 0.335 0.280 0.367 0.429 0.169 0.115 0.188 0.281
KGC + LLM_sim detection 0.343 0.289 0.375 0.434 0.166 0.113 0.185 0.277

30% noise

KGC + LLM_sim 0.370 0.312 0.391 0.463 0.177 0.119 0.199 0.295

Table 4: Performance KGC task for WN18RR and FB15k-237 datasets with different noise conditions

Finally, as the noise ratio increases, the overall
model performance declines. Nevertheless, the
performance of LLMs remains relatively stable,
further demonstrating their robustness in handling
noisy datasets.

5.2 Result for Noise Refinement

Table 3 presents the results of both evaluations. The
results suggest that our refinement method effec-
tively refines triples to a certain extent. Notably, the
manual inspection scores are slightly higher than
those of correctness, likely due to dataset incom-
pleteness. This implies that the model may predict
correct triples that do not appear in the original
dataset, resulting in some cases being marked as
incorrect even if they are accurate.

5.3 Result and Analysis for KGC Task

The experimental results offer key insights into
the impact of dataset noise on downstream KGC
tasks. As expected, increased noise ratios corre-
late with greater performance degradation in KGC.
However, an intriguing exception occurred in the
FB15k-237 dataset with 10% noise: the dataset
with noise (i.e., KGC) performed better than the
data where the noise is detected and corrected. This
outcome may be attributed to the relatively small
proportion of noise within a large dataset, suggest-
ing that the KGC model can still perform better
due to the abundance of correct data.

Additionally, Tables 2 and 4 show a clear rela-

tionship that higher noise detection accuracy leads
to better KGC performance. This highlights the im-
portance of effective noise detection in improving
downstream task accuracy. When the noise detec-
tion method is imperfect, filtering out noisy data
results in a reduction in the number of good data
samples, reducing the effectiveness of the model.

Our LLM_sim method also demonstrated distinct
effects under varying noise levels. In the low-noise
WN18RR dataset, while it achieved slightly bet-
ter results than the LLM_sim without context but
did not surpass LLM_sim detection. However, in
high-noise conditions, LLM_sim significantly im-
proved performance, demonstrating its value in
noise-heavy scenarios.

Finally, our refinement method showed a sub-
stantial positive effect on the FB15k-237 dataset,
likely due to the LLM’s reliance on factual concepts
(in FB15k-237) rather than purely semantic con-
tent (in WN18RR). This preference for fact-based
knowledge enables LLMs to perform particularly
well on datasets that prioritize factual correctness.

6 Conclusion

The results confirmed that our proposed LLM_sim
method significantly enhanced KG reliability, ben-
efiting downstream tasks such as KGC. These find-
ings underscored the broader potential of LLMs for
KG-specific tasks by detecting and refining noise in
dynamic, evolving KGs. The demonstrated robust-
ness of LLMs in high-noise settings highlighted



86

their applicability to real-world scenarios where
KGs are frequently updated.

Moving forward, we plan to refine our methods
to enhance noise detection and refinement capabili-
ties, aiming for improved robustness and adaptabil-
ity across diverse datasets.

7 Limitations

While our method achieved promising results on
the WN18RR and FB15k-237 datasets, we have
not yet tested it on real-world datasets. Addition-
ally, our approach is limited by the difficulty of
rigorously evaluating refined triples, a common
challenge in practical KG applications. As a result,
some limitations remain in fully identifying and
removing all noise.
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