Predictive Modeling of Human Developers’ Evaluative Judgment of
Generated Code as a Decision Process

Sergey Kovalchuk
Chebyshev Research Center
sergey.kovalchuk@huawei.com

Yanyu Li
ITMO University
268904@niuitmo.ru

Dmitry Fedrushkov
Chebyshev Research Center
fedrushkov.dmitriyl@huawei.com

Abstract

The paper presents early results in the devel-
opment of an approach to predictive modeling
of human developer perceiving of code gen-
erated in question-answering scenarios with
Large Language Model (LLM) applications.
The study is focused on building a model for
the description and prediction of human im-
plicit behavior during evaluative judgment of
generated code through evaluation of its con-
sistency, correctness, and usefulness as sub-
jective perceiving characteristics. We used
Markov Decision Process (MDP) as a basic
framework to describe the human developer
and his/her perceiving. We consider two ap-
proaches (regression-based and classification-
based) to identify MDP parameters so it can
be used as an “artificial” developer for human-
centered code evaluation. An experimental
evaluation of the proposed approach was per-
formed with survey data previously collected
for several code generation LLMs in a question-
answering scenario. The results show overall
good performance of the proposed model in
acceptance rate prediction (accuracy 0.82) and
give promising perspectives for further devel-
opment and application.

1 Introduction

Today, large language models (LLMs) are widely
applied in the practice of software development,
with both general-purpose solutions like ChatGPT
by OpenAl and solutions dedicated to code writing
such as CoPilot by Microsoft. One of the important
capabilities of LLMs is support of code genera-
tion in various scenarios (Lu et al., 2021; Zhong
et al., 2022): bug fixing, code completion, ques-
tion answering with code snippets, and many oth-
ers. Still, practical implementation of solutions for
these tasks reveals several fundamental issues re-
lated to the complexity of the software development
domain and the specificity of human developers as
solution users.

An important problem is the evaluation of the
solutions. A straightforward approach for LLM
output evaluation is linguistic metrics such as
BertScore, BLEU, and others. Complex seman-
tics and non-linearity of code structure lead to the
development of code-specific metrics such as Code-
BLEU (Ren et al., 2020), RUBY (Tran et al., 2019),
and others. Nevertheless, the real-world applica-
tion of such metrics shows significant limitation in
LLM evaluation (Evtikhiev et al., 2023). Another
approach is application of test-based evaluation of
generated code with such metrics as Pass @k (pass-
ing tests with k generated answers). Still, applica-
tion of such an approach remains limited due to the
lack of tests and limited applicability of automati-
cally generated tests to the real-world problem. The
problem significantly influences the performance
of LLMs in real-world complex projects, which is
clearly seen in modern project-based benchmarks
like SWE-bench (Jimenez et al., 2024), RepoBench
(Liu et al., 2024), CoderEval (Yu et al., 2023),
etc. The benchmarks show relatively weak per-
formance even for state-of-the-art solutions. One
of the best-known solutions for the evaluation prob-
lem is evaluation of LLMs with human-centered
metrics like acceptance rate (AR). More compli-
cated approaches may involve value, accuracy, and
other human-centered metrics (Dibia et al., 2023).
Still, involvement of human developers requires
significant time and effort, with the involvement of
multiple human users.

Another problem is proper understanding of real
human developers roles, needs, intents, and expec-
tations. The practical application and surveys of
the developers applying LLM-based solutions in
daily tasks reveal several important issues (Bird
et al., 2022; Ernst and Bavota, 2022; Liang et al.,
2023; Shi et al., 2024). Users often report a lack of
personalization, efforts needed to understand gen-
erated code, differences between code generated by
humans and by LLMs, etc. As a consequence, this

120

Proceedings of the Fourth Workshop on Bridging Human-Computer Interaction and Natural Language Processing (HCI+NLP), pages 120-128
November 9, 2025 ©2025 Association for Computational Linguistics

leads to limited trust of developers (Wang et al.,
2023), possible vulnerability in generated code
(Risse and Bohme, 2023), weak performance in
real-world issues (Jimenez et al., 2024), etc. On
the other hand, investigations on interaction with
CoPilot show that proper time to show suggestions
(Mozannar et al., 2023, 2022) and configuration
of interaction patterns (Wang et al., 2023) show
possible increases in the acceptance rate of sugges-
tions generated by considered intelligent assistants.
A key open problem here is understanding how
human developers perceive, comprehend, and eval-
uate code in proper context (Roehm et al., 2012).
Formal structuring of project context is currently
approached by many solutions (see, e.g., project-
specific benchmarks mentioned above). But the
context of the human mind in evaluative judgment
of code generated by both humans and machines is
weakly investigated.

Resolving the mentioned problems (human-level
evaluation of code and human developer internal
context representation) is limiting many directions
in the application of LLM to software development.
The list of directions benefiting from resolving the
problem includes training and fine-tuning LLM for
better code generation (e.g., with reinforcement
learning with human feedback, RLHF); building a
complete pipeline for software development (Hong
et al., 2023); improving human developer experi-
ence through better selection of available actions
in Al agents.

In the presented paper, we are focused on ap-
proaching the mentioned problems through mod-
eling of human developer perceiving of the code
obtained from generative LLM. With the data col-
lected in the previous developers’ survey, we’ve
modeled key perceiving characteristics that influ-
ence developers’ actions in code acceptance evalu-
ation. The approach is based on the idea of sequen-
tial decision on accepting or rejecting considered
information (code). Thus, the basic idea of hu-
man developer perceiving modeling is formulated
as a Markov Decision Process (MDP). The paper
presents early, still promising results of the ongoing
study in human developer perceiving modeling.

The remaining paper is structured as follows.
The next section briefly describes problem defini-
tion, background for this work, and data collection
for the experimental study. Following, Section 3
presents key elements of the proposed approach to
human developer modeling. Section 4 presents the
results of the experimental evaluation of the pro-

Question evaluation
Question

concatenate items of list "' with a space "

Answer
Suggested code:

oin([str(i) for i in 1])

Answer evaluation

Answer is consistent and readable ("l can understand")

Completely disagree Slightly disagree Neutral

Answer is correct for this question ("l agree”)

Completely disagree Slightly disagree Neutra

Answer is useful ("l will use")

Completely disagree Slightly disagree Neutral

Figure 1: Elements of user interface for evaluation of
code generated by LLM in question-answering scenario

posed approach. Finally, the last sections conclude
the paper and discuss possible further directions of
research.

2 Problem definition and background
works

The problem of a human developer perceiving the
code generated by an intelligent assistant (IA) such
as CoPilot usually considered within some scenario
(e.g. code completion, bug fixing, etc.). The de-
veloper posts a query to the IA and perceives the
answer. In some cases, the query is proactively
posted automatically, depending on the developer
activity. IA answers with a block of information
containing the answer, suggestions, explanation,
etc. Within our work, we are narrowing to the
scenario where the user asks a question in natu-
ral language to Al powered by LLM and expects
a piece of code as an answer. According to the
classification of the CodeXGLUE benchmark (Lu
et al., 2021), the problem is Text-to-Code genera-
tion. The goal is to build a model for predicting a
human developer’s subjective evaluation and final
AR for code generated with LLM as an answer.
The examples of practical problems being solved
in such a way may be widely found in online fo-
rums where users ask questions to resolve some
programming issues. One of the most popular
forums for the software development domain is
StackOverflow! (SO) which is also widely used

"https://stackoverflow.com/

121

https://stackoverflow.com/

as an original source for training and evaluation
of LLMs. A common pattern for such questions
is “how to...” (use API, implement algorithm, fix
bug, etc.) where an expected answer is a piece of
code. As aresult, SO is widely adopted as a source
for datasets and benchmarks building in Text-to-
Code problem investigation: see, e.g., such datasets
as CoNalLa (Yin et al., 2018), StaQC (Yao et al.,
2018), SO-DS (Heyman and Cutsem, 2020), etc.

Within our previous study (Kovalchuk et al.,
2022), we used the data originating from SO and
containing queries to fine-tune and evaluate LLMs.
We used two datasets for that purpose. First, we
collected 42k pairs of questions (text) and answers
(code) from SO in “conceptual” and “API usage’
classes (according to (Beyer et al., 2020)) with an-
swers shown as short code snippets in the Python
programming language. Second, we used the pub-
licly available CoNala dataset (Yin et al., 2018)
with 2379 entries of similar structure. We used the
datasets for fine-tuning of several LLMs (CodeGen,
GPT) for further evaluation. Both queries and an-
swers collected in the dataset were relatively short:
the average lengths of queries and answers were
214 and 154 characters, respectively.

Next, we performed a survey with human de-
velopers evaluating the code generated by the fine-
tuned models. We considered a set of seven differ-
ent models applied to two datasets. Also, for refer-
ence, we considered answers generated by CoPilot
as a reference industrial solution.

The survey was structured as a sequential evalu-
ation of randomly selected pairs of questions (text)
and answers (code). Figure 1 shows elements of
the user web interface developed for this survey.
The evaluation was performed with three criteria
inspired by the theory of planned behavior (Ajzen,
1991) and includes evaluation of the following sub-
jective perceiving characteristics:

B

* The general consistency of the code (whether
the code is readable/understandable). The
scale is considered to reflect how well the user
understands the answer.

* The subjective correctness of the answer with
respect to the proposed question. The scale
is considered to reflect the user’s agreement
with the answer.

* The usefulness of the provided answer. The
scale is considered to reflect the user’s ex-
pected intention to use.

The selection of metrics reflects key categories
of metrics for subjective evaluation of data quality
according to (Wang and Strong, 1996): accuracy of
data, relevancy of data, and representation of data,
except for accessibility of data, which is beyond
the considered scenario.

The evaluation was performed with a 5-level
Likert scale (from —2 to +2). We collected the
evaluations for 614 question-answer pairs from 42
developers of different levels, including MSc stu-
dents in computer science, Al, and mathematical
modeling, as well as junior, middle, and senior
software developers (mainly working in the area of
machine learning, data science). More details on
dataset collection, methodology, obtained scores,
and dataset analysis can be found here (Kovalchuk
et al., 2022).

The analysis of the previously collected data
showed that the human-centered metrics are weakly
correlated with the linguistic metrics (including
code-specific metrics) like BertScore, CodeBLEU,
Ruby, etc. On the other hand, the collected metrics
are well interconnected and may be considered as
filters toward code acceptance. Seeing this empiri-
cal evidence as a motivation example, we focused
on the development of a dynamic model of internal
perceiving, evaluative judgment, and acceptance
of software code, which is described in the next
section.

3 Modeling human developer perceiving
process

We propose the following conceptual approach for
modeling human developer code perceiving (see
Figure 2). The basic interaction loop involves a
human developer posting a query to a code gener-
ation model, which answers with a code snippet.
We use query @ and code context C' as arguments
that describe the external context of user decisions
on answer accepting. In our experiment, () is a
natural language request with a short description
of a problem to be resolved with generated code,
C'is code generated by LLM as an answer to the
query and perceived by a user. Next, we consider
user-specific information, which may include user
profile, code repositories or artifacts authored by
the user, personal skills, etc. The idea is to iden-
tify robust groups of users with similar perceiving
behavior. We can use such information for identifi-
cation of user personality, groups of similar users
(e.g., via clustering (Kovalchuk and Ireddy, 2024)).

122

Human """"""""""""""""""
developer .
Pid V (N\
C, . ;
oD O<—{ Model control :
e model Cs :
i o T i E
' Query '
E § Acceptance :
Q’C Oo"/é%") predFi)ction
: Internal context T Y :
, . e .. — 1
' identification '
B B) 5
; % MPD :
! Developer's Code %, % parametrization !
; profile repository fo—, Multi-dimensional ~ \- < J .
1 ! context representation :
o ':::::::::: Feedback collection —

Figure 2: Human developer perceiving modeling with mixed context involvement

The size of such a group can vary from a single user
(ultimate personalization) to large communities of
groups working in the same area (e.g., “front-end
developers”). Here, we see human-related charac-
teristics H as representation of internal context. H
can be considered as a way of flexible model per-
sonalization, where we can select different levels
of model generalization (personal model per each
developer, group level developer, or general model
for a wider group of developers).

Next, we use Q x C x H as an input to the
perceiving model identification. The model can be
used to predict AR, which, in turn, can be applied
to control the code generation model in different
ways. We can consider at least three such ways:
filtering of the code generation model ¢; can be
used to block unwanted and weak suggestions, im-
proving overall user satisfaction of IA use; filtering
of queries cy can additionally reduce the compu-
tational resource load, as running LLLMs multiple
times may be costly; internal code generation con-
trol c3 may be applied directly during sequential
code generation by blocking or re-weighting candi-
date tokens.

Additionally, we can consider offline procedures
involved in the approach. First, we consider hu-
man feedback as an important source for model
identification and parametrization. Second, the re-
sult model can be used for evaluation of generated
code as an “artificial developer” assessing code and
providing human feedback to the model (e.g., in

the RLHF framework), which may enable signifi-
cant scaling of the training/fine-tuning process with
limited involvement of real human developers.

3.1 Decision process modeling

Within the presented work, we propose considering
the human developer’s perceiving of the code as
a sequential MDP. In particular, we define three
states where decisions are made {S¢, S4, Sy},
two terminating states { R, A} for rejecting the pro-
posed code and accepting it, respectively, and two
service states {Start, Finish}. The action space
A = stop, cont at each decision state includes two
options with deterministic consequent transitions,
namely, stopping the evaluation with following re-
jection and continuation of evaluation. The order of
decision states is selected according to analysis of

127 —— Train loss
Val loss

1.0

0.8 4

Loss

0.6

0.4 4

T T
0 20 40 60 80 100
Epoch

Figure 3: RGR model training

123

- 0.42 B .
0.525 - —— Train loss —— Train loss 0.40 | —— Train loss
Val loss 0.40 4 Val loss Val loss
0.500 -
0.38 4 0.35 4
0.475 | 0.36 1
0.30 4
[} w1 W
@ 0.450 \ 4 0.34 4 @
5 \/\ 5 5
0.425 \/\ 0.32 4 0.25 4
0.30 4
0.400 - A /) / 0.20 1
0.28 4 / v
0.375 A
0.26 4 0.15 1
T T T T T T T T T T T T T T T T T 7
0 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25

Epoch

Epoch Epoch

Figure 4: CLS models training for states {S¢, Sa, Su}

previously collected data evaluation code for con-
sistency/understanding (S¢), agreeing/correctness
(S4), and intention to use (Sy).

In this study, we are focused on the identifica-
tion of the model that can be applied to the evalua-
tion of generated code. We can consider the prob-
lem of learning from the demonstrated behavior
of a human expert, which is widely resolved with
the inverse reinforcement learning (IRL) approach
(Arora and Doshi, 2021) aimed at the identification
of reward function Ry from expert demonstration.
In our case, we want R (and corresponding policy
7 inferred from the obtained reward) to be context-
dependent, i.e., defined over the parameter space
QxCxH.

To identify the process with Likert scale based
surveys, we define the switching threshold T'h such
that observed action is with L(s) evaluation for
state s will interpret as:

if L(s) < Th

otherwise

Geont

With this approach, we can transfer survey results
into trajectories available for identification of re-
ward function and corresponding policy in IRL
fashion.

We are considering the effectiveness of two basic
approaches to parameterizing MDP with obtained
trajectories. The first approach is regression-based
learning (RGR). We consider a task of learning a
regression function R:QxC x H — R such that
R(s) ~ L(s). The inferred policy will be the selec-
tion of actions according to the rules ao (s, R(s)).
The second approach is classification-based pol-
icy as a classification problem at each decision
state (CLS). Here we learn a classification function
7(s) : @ x C x H — A with direct inference of

action probability as a class.

3.2 Model identification with available data

First, we need to select a proper threshold T'h to
interpret our data. Table 1 shows the relative num-
ber of actions Ay, in the observed trajectories
depending on the threshold. We consider Th = 0
as the main scenario also showing the most bal-
anced action representation over trajectories. Still,
we also consider other options Th € {—1,0, 1,2}
(here T'h = —2 is omitted as no asy,y, actions were
observed).

Table 1: Portion of a.,,; decision depending on thresh-
old Th

Th Sc Sa Su
-1 0.7818 0.6059 0.5863
0 0.6808 0.5000 0.5049
1 03453 0.2199 0.2248
2 02036 0.1156 0.0993

For both RGR and CLS approaches, we’ve
implemented the machine learning solutions
with a simple artificial neural network with
one dense layer (128 neurons). In the RGR
model, the output layer consists of 3 values for
{L(S¢),L(S4),L(Sv)}. In the CLS model, out-
put layer depicts probabilities over {astop, Geont }
set (models were trained separately for each deci-
sion state).

An important aspect of this experimental study
is the influence of extended context with consid-
eration of human personality. In the experiments,
we consider three context spaces defined as embed-
dings in space R"V. Q and C were defined as with
embeddings obtained using the CodeBERT model
by Microsoft (Feng et al., 2020) (N = 768). H

124

100

100

0.95 4 0951 — COH

0.90 1 0.90 1
0.85 4 0.85 4
0.80 1 : 0.80

0.75 1 0.75 1

Action (S¢), accuracy

Action (54), accuracy

0.70 7 0.70 1

0.65 4 0.65 4

0.60

100

0.95{ — COH
CH
0901 — cQ
—c

0.85 4

0.80 1

0.75 4

Action (Sy), accuracy

0.70 4

0.65 +

T T T T T T 0.60
-1.0 -05 0.0 0.5 10 15 2.0

Scere threshold

T T T
-1.0 -05 00

Scere threshold

T T T T 0.60
0.5 10 15 2.0

T T T T T
-1.0 -05 0.0 0.5 1.0 15 2.0
Score threshold

Figure 5: RGR model evaluation with different context embedding space E for states {S¢, Sa, Sy}

100 1.00

E E
0.95 - — coH 0.95 { — CQH
CH CH
0.90 A — 0.90{ — cQ
\ — C — C
0.85 - 0.85 -
0.80 1 / 0807

0.75 7 0.75 7

Action (Sc), accuracy
Action (54), accuracy

0.70 1 0.70 1

0.65 1 0.65 1

0.60

1.00

0.95 4

0.90 4

0.85 4

0.80 4

0.75 7

Action (Sy), accuracy

0.70 4

0.65 4

0.60

T T T T T T T T T
-1.0 -05 00 0.5 10 15 2.0 -1.0 -05 0.0

Score threshold

Score threshold

0.60

T T T T T T T T
0.5 10 15 20 -1.0 -05 00 0.5 L0 15 2.0

Score threshold

Figure 6: CLS model evaluation with different context embedding space E for states {S¢, Sa, Sy}

was encoded as one-hot embeddings for the users
who participated in the survey (N = 42). We run
the experiments with different combinations of em-
beddings E, namely C' x @ x H (all of them),
C x H,C x @, C (denoted as experiments CQH,
CH, CQ, and C, respectively).

The loss function was selected as mean absolute
error (MAE) for the RGR model and cross-entropy
for CLS model. Figure 3 and Figure 4 shows train-
ing process for RGR and CLS models correspond-
ingly. We selected the number of epochs for model
training as 50 and 20 for RGR and CLS models,
respectively, to get relatively stable validation loss
without further decreasing.

For evaluation of MDP model performance, we
performed 5-fold cross-validation with available
survey data. The following two metrics were se-
lected with averaging across the folds: accuracy
of action prediction Acc(s) in each decision state
according to the classifier in the CLS model and
according to ap(s, L) rules for the RGR model;
accuracy of complete AR prediction Acc(AR) es-
timated as correct prediction of reaching the termi-
nating state in { R, A} set.

4 Experimental evaluation results

4.1 Context influence analysis

The evaluation results for Th = 0 (the main sce-
nario) are shown in Table 2. It can be seen that
inclusion of H significantly increases the perfor-
mance of both models in most of the states. The
most significant increase is observed in action pre-
diction in the consistency state (S¢), which can
be interpreted as the state most influenced by the
personal view of the user to the idea of code “con-
sistency”. For example, some users reported that
the generated code included a correct answer but
also contained syntactic errors, which leads to con-
fusion in consistency evaluation. Comparison of
RGR and CLS models shows significant outper-
forming of CLS compared to the RGR model. Al-
though the RGR model provides more information
(continuous space referring to the Likert scale), the
provided accuracy is lower. E.g., it leads to an in-
crease in AR prediction (Acc(AR)) by 20% (from
0.6889 to 0.8289).

Figures 5, 6, and 7 show evaluation of the devel-
oped models with different values of T'h. Although
the achieved accuracy is even higher, the main rea-

125

QO
—_—
o =
v o
[=]
0
o
I

o
1]
[=]
[w]
o

Acceptance rate, accuracy
o o o o o ;
=) ~ ~ o =]
] o v o v
L L L | L |

T T T T T
-1.0 -05 0.0 0.5 1.0 15 2.0
Score threshold

o

~

w
L

Acceptance rate, accuracy
o o f
[e2] @
(=] w
L L L
\ o

o

~

[=]
|

0.60

T T T T T T T
-1.0 -05 0.0 0.5 1.0 15 2.0
Score threshold

Figure 7: RGR (a) and CLS (b) model evaluation with
different context embedding space E for AR

Table 2: Performance of the models with T"h = 0

E Acc(+)
Sc Sa Su AR

Model: RGR
CQH | 0.6889 0.6824 0.6709 0.6889
CH | 0.6794 0.6678 0.6531 0.6794
CQ | 0.6189 0.6613 0.6662 0.6189
C 0.6173 0.6564 0.6727 0.6173

Model: CLS
CQH | 0.8289 0.7737 0.7670 0.8289
CH | 0.7851 0.7802 0.7899 0.7850
CQ | 0.7069 0.7182 0.7312 0.7069
C 0.7378 0.6987 0.7263 0.7378

son may be class imbalance. Also, all the observed
tendencies are kept as well.

4.2 Code generation

One of the important parts of the model applica-
tion is controlling code generation and model fine-
tuning in order to increase result AR. While the
previous experiments show good performance and
can be further applied in filtering of LLM output
(mentioned as c; control in Figure 2), deeper model
control requires evaluation of generated informa-

tion in advance (see control c3 in Figure 2). For
preliminary analysis of the applicability of our ap-
proach, we performed an experiment in the eval-
uation of code during the generation process. We
used the CodeGen model by SalesForces (Nijkamp
et al., 2023) and evaluated the proposed model with
a reduced number of tokens. Figure 8 shows the
prediction of the perceiving characteristics. We
see that the MAE and STDe (standard deviation of
error) of the prediction error obtained by the RGR
model reached stable values approximately with 50
tokens, while the generated code in our examples
may reach 100 or more tokens (with a considered
limit of generation of 256 tokens). This evidence
allows us to evaluate positively the applicability of
the model in early detection of possible result re-
jecting by the human developer and stop or re-run
generation.

5 Conclusion and future works

The paper presents early results in the investigation
of human developer perceiving of code generated
by LLM as an answer to an explicit or implicit
query. With the MDP-based model, we showed
higher performance in predicting acceptance of

— C
A
— U
110
L
< 105 1
=
1.00 4
0.95 -

s s 75
Generated code length, tokens

T T T T T
100 125 150 175 200

STDe
I
cr o

25 50 75 100 125 150 175 200

Generated code length, tokens

Figure 8: Prediction performance with a reduced num-
ber of tokens for states {S¢, S4, Sy}

126

generated code by human developers. We see the
results as promising evidence in the prospective
application of structured human perceiving models
with implicit internal context involved in the mod-
eling. Moreover, the development of such models
may be actively involved in practical application
for LLM control. Additionally, we believe that the
approach is generalizable and could be applied to
different scenarios and various problem domains
where the implicit internal context of an expert
plays a role.

We see several directions for further develop-
ment of the model and approach in general. First,
we consider further development of the proposed
approach and detailed investigation of methodolog-
ical basis we used. For example, we are planning
to extend and reconfigure the set of metrics we
are using for more detailed representation of di-
verse metrics considered in the area of subjective
information evaluation (Wang and Strong, 1996;
Pipino et al., 2002). Also, we are aimed at the
development of more detailed and structured repre-
sentation of cognitive state and transfers between
those states to extend the proposed basic sequential
model. Within the experimental study, we are go-
ing to consider more realistic scenarios of human
developer behavior with newly collected datasets
or existing project-level datasets like (Mozannar
et al., 2024; Chi et al., 2025). We are planning
to perform more detailed analysis of internal con-
text embedding space with possible dimensional
reduction. For example, we can assess similarity
between human developers and try to train a model
for unobserved developers with a certain level of
personalization. Next, we want to implement the
mentioned control scenarios in order to increase
LLM human-centered performance. In particular,
the developed model can be considered as a “critic”
model in the actor-critic machine learning approach
in LLM (Gorbatovski and Kovalchuk, 2024). Fi-
nally, we want to evaluate more existing methods
from the IRL field in order to identify parameters
of the proposed MDP.

References

Icek Ajzen. 1991. The theory of planned behavior.
Organizational Behavior and Human Decision Pro-
cesses, 50(2):179-211. Theories of Cognitive Self-
Regulation.

Saurabh Arora and Prashant Doshi. 2021. A survey of

inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297:103500.

Stefanie Beyer, Christian Macho, Massimiliano
Di Penta, and Martin Pinzger. 2020. What kind
of questions do developers ask on stack overflow?
a comparison of automated approaches to classify
posts into question categories. Empirical Software
Engineering, 25:2258-2301.

Christian Bird, Denae Ford, Thomas Zimmermann,
Nicole Forsgren, Eirini Kalliamvakou, Travis Low-
dermilk, and Idan Gazit. 2022. Taking flight
with copilot: Early insights and opportunities
of ai-powered pair-programming tools. Queue,
20(6):35-57.

Wayne Chi, Valerie Chen, Anastasios Nikolas An-
gelopoulos, Wei-Lin Chiang, Aditya Mittal, Naman
Jain, Tianjun Zhang, Ion Stoica, Chris Donahue,
and Ameet Talwalkar. 2025. Copilot arena: A plat-
form for code Ilm evaluation in the wild. Preprint,
arXiv:2502.09328.

Victor Dibia, Adam Fourney, Gagan Bansal, Forough
Poursabzi-Sangdeh, Han Liu, and Saleema Amershi.
2023. Aligning offline metrics and human judgments
of value for code generation models. In Findings of
the Association for Computational Linguistics: ACL
2023, pages 8516-8528, Toronto, Canada. Associa-
tion for Computational Linguistics.

Neil A. Ernst and Gabriele Bavota. 2022. Ai-driven
development is here: Should you worry? IEEE
Software, 39(2):106—-110.

Mikhail Evtikhiev, Egor Bogomolov, Yaroslav Sokolov,
and Timofey Bryksin. 2023. Out of the bleu: how
should we assess quality of the code generation mod-
els? Journal of Systems and Software, 203:111741.

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and natu-
ral languages. arXiv preprint.

Alexey Gorbatovski and Sergey Kovalchuk. 2024. Re-
inforcement learning for question answering in pro-
gramming domain using public community scoring
as a human feedback. In Proceedings of the 23rd
International Conference on Autonomous Agents and
Multiagent Systems, AAMAS 24, page 2294-2296,
Richland, SC. International Foundation for Au-
tonomous Agents and Multiagent Systems.

Geert Heyman and Tom Van Cutsem. 2020. Neural
code search revisited: Enhancing code snippet re-
trieval through natural language intent. Preprint,
arXiv:2008.12193.

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng
Cheng, Ceyao Zhang, Zili Wang, Steven Ka Shing
Yau, Zijuan Lin, Liyang Zhou, Chenyu Ran, Lingfeng
Xiao, and Chenglin Wu. 2023. Metagpt: Meta pro-
gramming for multi-agent collaborative framework.
Preprint, arXiv:2308.00352.

127

https://doi.org/10.1016/0749-5978(91)90020-T
https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1016/j.artint.2021.103500
https://doi.org/10.1145/3582083
https://doi.org/10.1145/3582083
https://doi.org/10.1145/3582083
https://arxiv.org/abs/2502.09328
https://arxiv.org/abs/2502.09328
https://doi.org/10.18653/v1/2023.findings-acl.540
https://doi.org/10.18653/v1/2023.findings-acl.540
https://doi.org/10.1109/ms.2021.3133805
https://doi.org/10.1109/ms.2021.3133805
https://doi.org/10.48550/ARXIV.2002.08155
https://doi.org/10.48550/ARXIV.2002.08155
https://doi.org/10.48550/ARXIV.2002.08155
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2008.12193
https://arxiv.org/abs/2308.00352
https://arxiv.org/abs/2308.00352

Carlos E Jimenez, John Yang, Alexander Wettig,
Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. 2024. SWE-bench: Can language mod-
els resolve real-world github issues? In The Twelfth
International Conference on Learning Representa-
tions.

Sergey Kovalchuk and Ashish Tara Shivakumar Ireddy.
2024. Prediction of users perceptional state for
human-centric decision support systems in complex
domains through implicit cognitive state modeling.
In Proceedings of the Annual Meeting of the Cogni-
tive Science Society, volume 46, pages 3257-3264.

Sergey Kovalchuk, Vadim Lomshakov, and Artem Aliev.
2022. Human perceiving behavior modeling in eval-
uation of code generation models. In Proceedings of
the Second Workshop on Natural Language Genera-
tion, Evaluation, and Metrics (GEM), pages 287-294,
Abu Dhabi, United Arab Emirates (Hybrid). Associa-
tion for Computational Linguistics.

Jenny T Liang, Chenyang Yang, and Brad A Myers.
2023. A large-scale survey on the usability of ai
programming assistants: Successes and challenges.
In 2024 IEEE/ACM 46th International Conference on
Software Engineering (ICSE), pages 605-617. IEEE
Computer Society.

Tianyang Liu, Canwen Xu, and Julian McAuley. 2024.
Repobench: Benchmarking repository-level code
auto-completion systems.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, and 1 others.
2021. Codexglue: A machine learning benchmark
dataset for code understanding and generation. arXiv
preprint arXiv:2102.04664.

Hussein Mozannar, Gagan Bansal, Adam Fourney, and
Eric Horvitz. 2022. Reading between the lines: Mod-
eling user behavior and costs in ai-assisted program-
ming. arXiv preprint.

Hussein Mozannar, Gagan Bansal, Adam Fourney, and
Eric Horvitz. 2023. When to show a suggestion? inte-
grating human feedback in ai-assisted programming.
arXiv preprint.

Hussein Mozannar, Valerie Chen, Mohammed Alsobay,
Subhro Das, Sebastian Zhao, Dennis Wei, Manish
Nagireddy, Prasanna Sattigeri, Ameet Talwalkar, and
David Sontag. 2024. The realhumaneval: Evaluating
large language models’ abilities to support program-
mers. Preprint, arXiv:2404.02806.

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan
Wang, Yingbo Zhou, Silvio Savarese, and Caiming
Xiong. 2023. Codegen: An open large language
model for code with multi-turn program synthesis.
ICLR.

Leo L. Pipino, Yang W. Lee, and Richard Y. Wang.
2002. Data quality assessment. Communications of
the ACM, 45(4):211-218.

Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu,
Duyu Tang, Neel Sundaresan, Ming Zhou, Ambrosio
Blanco, and Shuai Ma. 2020. Codebleu: a method
for automatic evaluation of code synthesis. arXiv
preprint arXiv:2009.10297.

Niklas Risse and Marcel Bohme. 2023. Limits of ma-
chine learning for automatic vulnerability detection.
arXiv preprint arXiv:2306.17193.

Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and
Walid Maalej. 2012. How do professional developers
comprehend software? In 2012 34th International
Conference on Software Engineering (ICSE), pages
255-265. ISSN: 1558-1225.

Yuling Shi, Hongyu Zhang, Chengcheng Wan, and Xi-
aodong Gu. 2024. Between lines of code: Unraveling
the distinct patterns of machine and human program-
mers. Preprint, arXiv:2401.06461.

Ngoc Tran, Hieu Tran, Son Nguyen, Hoan Nguyen,
and Tien Nguyen. 2019. Does BLEU Score Work
for Code Migration? 1In 2019 IEEE/ACM 27th
International Conference on Program Comprehen-
sion (ICPC), pages 165—176, Montreal, QC, Canada.
IEEE.

Richard Y. Wang and Diane M. Strong. 1996. Be-
yond accuracy: What data quality means to data
consumers. Journal of Management Information Sys-
tems, 12(4):5-33.

Ruotong Wang, Ruijia Cheng, Denae Ford, and Thomas
Zimmermann. 2023. Investigating and designing
for trust in ai-powered code generation tools. arXiv
preprint arXiv:2305.11248.

Ziyu Yao, Daniel S. Weld, Wei-Peng Chen, and Huan
Sun. 2018. Staqc: A systematically mined question-
code dataset from stack overflow. In Proceedings of
the 2018 World Wide Web Conference on World Wide
Web - WWW 18, WWW ’18, page 1693-1703. ACM
Press.

Pengcheng Yin, Bowen Deng, Edgar Chen, Bogdan
Vasilescu, and Graham Neubig. 2018. Learning to
mine aligned code and natural language pairs from
stack overflow. In Proceedings of the 15th interna-
tional conference on mining software repositories,

pages 476—486.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,
and Tao Xie. 2023. CoderEval: A Benchmark of
Pragmatic Code Generation with Generative Pre-
trained Models. ArXiv:2302.00288 [cs].

Maosheng Zhong, Gen Liu, Hongwei Li, Jiangling
Kuang, Jinshan Zeng, and Mingwen Wang. 2022.
Codegen-test: An automatic code generation model
integrating program test information. arXiv preprint
arXiv:2202.07612.

128

https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://escholarship.org/uc/item/02t0z53n
https://escholarship.org/uc/item/02t0z53n
https://escholarship.org/uc/item/02t0z53n
https://doi.org/10.18653/v1/2022.gem-1.24
https://doi.org/10.18653/v1/2022.gem-1.24
https://arxiv.org/abs/2306.03091
https://arxiv.org/abs/2306.03091
https://doi.org/10.48550/ARXIV.2210.14306
https://doi.org/10.48550/ARXIV.2210.14306
https://doi.org/10.48550/ARXIV.2210.14306
https://doi.org/10.48550/ARXIV.2306.04930
https://doi.org/10.48550/ARXIV.2306.04930
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://arxiv.org/abs/2404.02806
https://doi.org/10.1145/505248.506010
https://doi.org/10.1109/ICSE.2012.6227188
https://doi.org/10.1109/ICSE.2012.6227188
https://arxiv.org/abs/2401.06461
https://arxiv.org/abs/2401.06461
https://arxiv.org/abs/2401.06461
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.1109/ICPC.2019.00034
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1080/07421222.1996.11518099
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3178876.3186081
https://doi.org/10.1145/3597503.3623322
https://doi.org/10.1145/3597503.3623322
https://doi.org/10.1145/3597503.3623322

