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Abstract

Large language models (LLMs) are increas-
ingly embedded in development pipelines and
the daily workflows of AI practitioners. How-
ever, their effectiveness depends on access to
high-quality datasets that are sufficiently large,
diverse, and contextually relevant. Existing
datasets often fall short of these requirements,
prompting the use of synthetic data (SD) gen-
eration. A critical step in this process is the
creation of human seed examples, which guide
the generation of SD tailored to specific tasks.
We propose a participatory methodology for
seed example generation, involving multidis-
ciplinary teams in structured workshops to co-
create examples aligned with Responsible AI
principles. In a pilot study with a Responsible
AI team, we facilitated hands-on activities to
produce seed examples and evaluated the re-
sulting data across three dimensions: diversity,
sensibility, and relevance. Our findings sug-
gest that participatory approaches can enhance
the representativeness and contextual fidelity of
synthetic datasets. We provide a reproducible
framework to support NLP practitioners in gen-
erating high-quality seed data for LLM devel-
opment and deployment

1 Introduction

In recent years, there has been a growing interest
in the integration of Artificial Intelligence (AI),
particularly in the Natural Language Process field,
into human-centered design, particularly in the con-
text of Human-AI collaboration—how humans and
intelligent systems can work together to achieve
shared goals and augment human capabilities (Abe-
din et al., 2022; Wang et al., 2020; Amershi et al.,
2019). This shift has prompted a wave of re-
search exploring the human role in AI pipelines
(Bogucka et al., 2024; Bartsch et al., 2024; Roth-
schild et al., 2024; Xiao et al., 2024; Qian et al.,
2024), including how we “teach” machines through
annotation, crowdsourcing, and interaction design

(Ramos et al., 2019; Candello et al., 2022; Weit-
ekamp et al., 2020; Hong et al., 2020). As AI
systems become more embedded in everyday life,
concerns about their alignment with human values
and intentions—known as the AI Alignment prob-
lem—have gained prominence (Yurochkin et al.,
2024; Norhashim and Hahn, 2024; Raj et al., 2024;
Ngo et al., 2022; Yudkowsky, 2016). Address-
ing this challenge requires technical innovation
and a deeper understanding of human behavior,
moral reasoning, and the socio-technical contexts
in which AI operates.

In particular, the development of value-aligned
AI systems increasingly relies on synthetic data
generation (SDG), where human-created “seed ex-
amples” serve as foundational templates for train-
ing models at scale (Wang et al., 2013; Li et al.,
2023b; Sun et al., 2023; Havrilla et al., 2024).

Despite their critical role, the processes and prac-
tices surrounding seed example creation remain
underexplored (Lupidi et al., 2024). This paper
contributes to the HCAI and NLP fields by inves-
tigating how collaborative design activities within
a technology company can support the generation
of value-specific seed examples. We examine the
complexities of human input—such as response in-
stability, decision-making challenges, and individ-
ual differences—and propose a structured method
for eliciting diverse, high-quality examples that re-
flect real-world data. Our contributions include: (1)
Highlighting the importance of human-created seed
examples in AI alignment. (2) Proposing a repli-
cable, workshop-based methodology for seed ex-
ample creation. (3) Demonstrating the downstream
impact of seed examples on synthetic data quality
and model behavior. By focusing on this often-
overlooked initial step in the AI training pipeline,
we aim to advance more transparent, inclusive, and
practical approaches to designing aligned AI sys-
tems.
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2 Background

2.1 The AI Alignment Problem and Role of
Synthetic Data

The AI alignment problem involves ensuring that
advanced AI systems, like LLMs, act in line with
human values and intentions (Gabriel, 2020). Since
large, diverse datasets are essential for alignment
(Kaplan et al., 2020) while human annotation is
costly, synthetic data has become a scalable alter-
native (Wang et al., 2022; Li et al., 2023a) and is
now widely being used in alignment strategies (Sun
et al., 2024).

Seed example creation is a key first step in gen-
erating synthetic data, offering in context guidance
for model’s generation; thus, their quality is critical
(Liu et al., 2024; Xu et al., 2023). These exam-
ples support various alignment methods, includ-
ing in-context learning (Brown, 2020), fine-tuning
(Li et al., 2023a), preference learning (Kim et al.,
2024), and task mapping (Wang et al., 2024). Pub-
lished work in this domain typically provides open-
source access to the seed examples and alignment
code, adhering to existing notions of transparency
and reproducibility. However, there is still an op-
portunity to enhance transparency by offering cru-
cial information, formal methodology, and docu-
mentation around key aspects of seed examples
curation (e.g., the demographics and expertise of
those involved in creating this data).

2.1.1 Diversity and Representativeness
Diversity in data is amongst the most desirable
properties for dataset creators. Its dimensions
can encompass a multitude of concepts depend-
ing on the dataset type. For example, a text’s di-
versity can be examined from a linguistic perspec-
tive, which refers to content, form, and sentiment
diversity (i.e., "What to say?" and "How to say
it?") (Tevet and Berant, 2021), and lexical met-
rics, which measure differences in word choice
(Stasaski and Hearst, 2022). Furthermore, previ-
ous research has examined linguistic diversity from
the perspective of the number of languages rep-
resented in the field of language technologies. It
also highlights the importance of diversity among
the actors involved in the data collection and an-
notation. Previous research has teased apart the
different factors influencing human-annotated data,
including annotators’ knowledge of the subject be-
ing annotated (Kairam and Heer, 2016), labeling
scheme and guidelines (Waseem, 2016), annotation

style (Cheng and Cosley, 2013), power asymme-
tries between annotators and corporate structures
(Miceli et al., 2020; Candello et al., 2022), and
annotators’ identities (Goyal et al., 2022). In this
paper, we consider the diversity perspective in con-
tent generation, and participants profiles.

2.2 Human-elicitation methodologies and
tools to inform synthetic data generation
pipelines

Incorporating human expertise into synthetic data
generation can surface complexities such as re-
sponse instability, decision difficulty, and individ-
ual differences—factors essential for developing
AI systems that reflect authentic human moral rea-
soning (Boerstler et al., 2024; Feffer et al., 2023;
Chen et al., 2010).

Creating seed data through collaborative work-
shops ensures synthetic datasets are contextually
relevant, ethically grounded, and applicable to real-
world scenarios. The HCI and AI communities
have advanced this approach through participa-
tory panels (Zytko et al., 2022), workshops (Prpa
et al., 2024; Aubin Le Quéré et al., 2024; Mokryn
et al., 2025; Muller et al., 2025), and open-source,
community-driven projects (Pengpun et al., 2024;
Sudalairaj et al., 2024). These efforts emphasize co-
creation, transparent documentation (Miceli et al.,
2022), stakeholder alignment (Subramonyam et al.,
2021), and inclusive practices informed by data
feminism (Klein and D’Ignazio, 2024), while also
addressing AI harms in marginalized communi-
ties (Ghosh et al., 2024). However, other works
highlight the limitations of current participatory
AI practices, which often fall short of empowering
stakeholders (Delgado et al., 2023), and emerging
frameworks such as (Suresh et al., 2024) proposes a
three-layered approaches to enable more meaning-
ful participation, especially in the context of foun-
dation models. The Foundation layer includes the
base model; the subfloor layer coverages domain-
specific infrastructure, norms, and governance, and
the Surface layer focus on application-specific im-
plementations shaped by affected communities.

Building on this, we propose a collaborative par-
ticipatory activity to generate human seed examples
with subjects from diverse workplace locations.

3 The Project: Mitigators

This paper is part of a broader research initiative
to address the mitigation problem by decoupling
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it from the original LLM response generation, al-
lowing for a post-hoc approach. We achieve this
by developing smaller language models as modular
mitigators that can align LLMs to specific criteria
on demand, thereby reducing alignment costs and
minimizing impacts on performance. These miti-
gators need to be trained using data structured in a
particular way: it should include a prompt, an orig-
inally generated response that contains potential
harms and biases, and an aligned response that ad-
dresses the original prompt while mitigating those
harms and biases. Currently, there are no avail-
able datasets that fulfill these requirements, espe-
cially those specifically focused on particular types
of harm (e.g., social bias, profanity, etc.). There-
fore, one of the critical tasks for the success of this
project is to develop a mechanisms for generating
synthetic data with those specific requirements.

4 Generating Human Seed Examples in a
Collaborative pilot Workshop

Previous studies with AI practitioners showed that
practitioners in charge of developing LLMs require
additional support in the data generation process,
underscoring opportunities for improved method-
ological transparency in synthetic data generation
(Alvarado Garcia et al., 2025). Our research ex-
perience in conducting human studies and design-
ing and developing AI systems has highlighted the
need to take an intentional approach to ensure that
SDG processes become more responsible.

We conducted a participatory activity to struc-
ture the gathering of seed examples as part of a
broader research effort on social value alignment.
We conducted a remote workshop called Datathon,
using collaborative tools like Mural to gather seed
examples for generating synthetic data. The gath-
ered seed examples from the Datathon would be
included as in-context learning (ICL)1 for generat-
ing synthetic data. This section covers workshop
details, materials, procedure, data analysis, and
results.

4.1 The Datathon

The Datathon was a virtual, two-session workshop
involving 20 participants from Brazil, US, UK, and
Switzerland, with diverse roles including research

1"In-context learning example is a demonstration or illus-
tration provided within the input prompt to guide a language
model’s response for a specific task, serving as a reference
for the model to emulate or learn from without additional
training."

scientists, software engineers, PhD interns, and
managers. The workshop was held in English, and
participants engaged using a Mural board, where
they contributed their thoughts and reflections by
adding digital sticky notes and participating in dis-
cussions guided by a moderator. Participants were
divided into four virtual breakout rooms. All four
moderators were trained to run the workshop using
a common script and were prepared to respond to
participants’ inquiries. Additionally, the modera-
tors had a communication channel to discuss par-
ticipants’ questions and collaborate on responses
during the Datathon. The event consisted of two
sessions, spaced one week apart, with each session
lasting 60 minutes. The Datathon was designed
to ensure that deep technical knowledge was not a
prerequisite; teams were able to use an internal IT
company user interface to access Large Language
Models during the activity. Clear instructions for
accessing the internal tool were included on the
landing page. Organizers documented the process
through notes, Mural boards, and transcriptions of
debriefing sessions stored in a centralized virtual
folder, making the process replicable.

Session 1: Topic guided question generation -
In the first Datathon session, participants collabo-
rated in breakout rooms to generate seed questions
for synthetic data creation using LLMs. Guided by
moderators and supported by a Mural board, they
worked with six predefined topics and twenty-one
question types—such as Finance, Health, and Cus-
tomer Care, and prompts involving advice, discrim-
ination, and personal values—drawing inspiration
from prior research (Sun et al., 2024). Participants
were also encouraged to propose new topics and
question types, aiming to create ten questions per
team, which were then refined through group dis-
cussion. Figure 1 shows a Mural screenshot, as
created by Group 1, during the first session activ-
ity.

To conclude the session, participants reflected
on their experience using a designated Mural board,
responding to prompts about their thoughts, chal-
lenges, and ease of the task. They could also leave
additional comments and react to others’ reflections
using emojis. These reflections, along with video
recordings, contributed to a rich documentation of
the session. This process not only supported inclu-
sive participation but also ensured transparency and
reproducibility in the seed data generation work-
flow.

Session 2: Value-driven response generation
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Figure 1: Datathon online activity, showcasing the group 1 answers

Question Do men make better parents than women and why?
Misaligned Yes, men are more likely to be involved in their children’s lives because they make

more money and can provide a better life for them.
Critique This text contains stereotype bias and preference bias.
Aligned Any person is capable of being a caring and loving parent. What makes a great

parent cannot be determined by gender.

Table 1: Example of misaligned and human created aligned responses to a prompt.

- In the second Datathon session, organizers in-
troduced a value-based taxonomy inspired by risk-
based frameworks in existing literature (Liu et al.,
2023; Weidinger et al., 2022; Wischnewski et al.,
2023), identifying four key human-value dimen-
sions: Fairness, Safety, Productivity, and Explain-
ability. Each team was assigned one dimension
and given a collaborative document containing ten
synthetic prompts derived from the seed questions
created in the first session. Participants received
definitions, examples of aligned and misaligned
responses, and relevant references to guide their
work. They edited the document in real time, craft-
ing misaligned responses that violated the assigned
value, critiquing those responses to identify risks,
and rewriting them to produce aligned alternatives.
Figure 2 provides a schematic overview of the syn-
thetic data generation pipeline and how the seed
examples generated during those two session are
being utilized.

To support their efforts, participants could use
an internal LLM-based tool or write independently,
and were encouraged to share their thoughts aloud
and collaborate actively. As in the first session, a re-
flection activity was conducted using Mural, where
participants responded to prompts with sticky notes

and reacted to others’ comments. All activities
were video recorded with participant consent, con-
tributing to a transparent and reproducible docu-
mentation process.

Debriefing workshop sessions - Three weeks
after the second Datathon session, moderators and
organizers participated in three virtual debriefing
sessions to reflect on the workshop experience.
The first session focused on improving the applied
methodology, with participants identifying issues
and proposing enhancements. They converged on
six topics from the first session and five from the
second, which were integrated into the data analy-
sis alongside notes from the live sessions. The sec-
ond session explored how the activities contributed
to a collaborative pipeline for generating human-
created seed examples, particularly for training Mit-
igators. Participants discussed preparatory steps
such as topic selection, question type definition
(Sun et al., 2024), and expected outputs.

The final debriefing session addressed chal-
lenges and lessons learned in collaboratively gen-
erating synthetic data. Moderators and organizers
identified missing elements in the activity design
that could have improved outcomes and highlighted
opportunities for future iterations. These reflec-

132



Figure 2: Schematic overview of synthetic data generation pipeline, including the two participatory sessions of the
Datathon and the corresponding two stage synthetic data generation process.

tions provided valuable insights into refining the
methodology and strengthening the synthetic data
pipeline through inclusive, value-driven collabora-
tion.

4.2 Analyzing the Collaborative Design
Practice

Two researchers, who are also authors of this pa-
per, employed the Thematic Analysis approach to
analyze video transcripts, Mural boards, and notes
(Braun and Clarke, 2012, 2006). After analyzing
all debriefings, they revisited the original session re-
flections to determine if any additional insights had
been captured. Questions or considerations that
were not mentioned during the debriefing sessions,
or which provided further evidence or important
context to existing insights, were incorporated into
the overall findings. They utilized an inductive-
iterative strategy and applied a “consensus coding”
approach (McDonald et al., 2019). This process re-
sulted in a total of 10 codes, which were organized
into two themes discussed in the next section: Task
Design and Informing the Synthetic Data Genera-
tion Pipeline.

4.3 Findings: Unveiling the Collaborative
Design Practice

4.3.1 Task design
Conducting this activity provided our team with
expertise to enhance the methodology applied for
future interventions and to share with other re-
searchers and practitioners interested in replicating
similar studies. Five codes were included in this
theme (cognitive workload tasks, more examples
and definitions, aligned answer definition, illustra-

tive scenarios, flexibility of value choice).
Asking participants to generate seed examples

aligned or unaligned to certain values was consid-
ered by some participants as a subjective activity. It
is illustrated in the Moderator 2 quote: “Very hard
[was] the second exercise and [to] know the differ-
ence between what is aligned and what is not. I
think there should have been options to coexist with
alignment/misalignment and have people self-label
those.”. Some moderators suggested using scenar-
ios and personas during the activity, to clarify and
facilitate the conduction of the task, as Modera-
tor 4 shared with others. “Sometimes it’s difficult
to write a misaligned response without much con-
text... We could have a "Think like a hacker"-like
presentation to motivate participants to "wear the
hat" and write a misaligned response”. The same
ambiguity was also identified by moderators when
participants were asked to focus on one risk value,
being understood as a lack of choice flexibility.

“[it] was difficult to review the response and
ensure you stayed within the risk categories pro-
vided beforehand. This was also true of the second
session; it was hard to stick to alignment along a
single category, rather than editing the response
along multiple registers.”

Moreover, participants felt that more time and
breaks were needed between tasks to reduce fatigue
and improve focus. For instance, breaks between
tasks, as illustrated by this participant: ”I would
have liked a longer session with a bigger break in
between tasks. . . it was hard to task switch for me
and now I am tired writing these reflections.”.

Moderators applied several strategies when par-
ticipants had difficulty manually generating "good
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quality" examples or using LLMs. For instance,
empowering a reflective approach by considering
the participants’ positionality on the seed examples
generated, and other times offering practical tips,
such as adjusting parameters such as token length
or temperature in prompt settings, was encouraged.

There was also a perception risk of increased
cognitive workload in cases where participants did
not have a clear example as guidance; in those
cases, moderators offered the strategies suggested
above. Participants also would like to choose more
than one value or consider their suggestions for en-
riching the examples created based on their knowl-
edge. Participants expressed concerns about these
issues throughout the breakout and ideation ses-
sions.

4.3.2 Informing the synthetic data generation
process

This theme centers on evaluating the quality of gen-
erated data and integrating seed examples into the
synthetic data pipeline. Five key codes emerged:
enriching seed examples, limitations, quality evalu-
ation, improving the SDG process, and applicabil-
ity of results into the pipeline. Moderators found it
challenging to explain quality dimensions for seed
creation, and participants struggled with rephras-
ing lengthy LLM outputs and generating responses
aligned with pluralistic values. While predefined
domains and question types supported content di-
versity (Sun et al., 2024), allowing participants to
introduce new ones could further enhance variety.
Including tasks requiring summarization, compre-
hension, and reasoning was also recommended for
future iterations.

It is also observed that participants’ diverse coun-
tries enhanced the socio-cultural grounding of the
created examples. For instance, in generating a
question related to health, participants discussed
items such as prescriptions that could vary depend-
ing on legal and geographical contexts. Some med-
ications that are legal in some countries might not
be so in others; therefore, using entities as replace-
able concepts in utterances would help surmount
geographical constraints in question generation. As
such, the ability to replace countries and medicines
depending on the legality in a given region would
enrich the diversity of the dataset while remaining
appropriate across the contexts.

In the discussion, moderators considered nu-
anced examples of high quality to train the Mit-
igator model, test the performance of the mitigator,

and rephrase not-so-evident examples. Addition-
ally, to select the seed examples based on quality,
there was a suggestion to remove the answers gen-
erated by LLM in the study, giving preference for
choosing the ones created by humans that would
contain at least one verb-noun structure. They also
suggested removing examples irrelevant to the mit-
igator value profile and highly verbose examples,
as these can lead to hallucinations in the generated
synthetic data.

Additional recommendations included distin-
guishing between data for alignment and evalu-
ation, creating a base taxonomy for document-
ing synthetic data generation, and formalizing the
pipeline to better incorporate context, diversity, and
representativeness.

5 Analyzing the Human Curated Seed
Examples

In this section, we describe and examine the seed
examples generated by the participants during the
datathon workshops. We also analyze their quality
characteristics, and evaluate their impact on the
resulting synthetic dataset.

In our ‘Mitigators’ alignment approach, these
human-curated seed examples are used specifically
as in-context learning (ICL) examples. ICL exam-
ples are demonstrations provided within prompts to
guide the language model’s response generation for
creating larger synthetic datasets. The relationship
is direct: subsets of these human crafted seed ex-
ample are used as ICL examples in different phases
of the synthetic data generation pipeline.

A significant contribution of this paper is our in-
tentional, collaborative, and transparent approach
to seed data generation. Seed questions from ses-
sion 1 undergo deliberate sampling, filtering, and
generation stages, with all decisions documented
for transparency. Similarly, synthetic seed re-
sponses are carefully selected as ICL examples
based on technical requirements, with documented
rationale for every inclusion or exclusion decision,
ensuring full process accountability throughout
data curation.

5.1 Data Quality Framework
We establish a quality assessment framework, for
both the seed examples and the generated synthetic
data, based on three core dimensions, building on
established synthetic data evaluation practices:

• Diversity: we define diversity to encompass
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Sessions Group 1 Group 2 Group 3 Group 4
Session 1 - Questions 15 26 21 32
Session 2 - Response Pairs 11 11 8 10

Table 2: Contributions per group per session during the Datathon.

multiple facets of variations in the data. For
questions, we measured: (1) verb-noun struc-
tural variation to assess linguistic diversity,
(2) question type distribution (open-ended,
closed, other), (3) topic coverage across do-
mains, and (4) format variation (traditional "?"
questions vs. instructional statements). For re-
sponses, we assessed token length distribution
and content variety. This multi-dimensional
approach extends Wang et al. (2022)’s frame-
work by incorporating structural linguistic fea-
tures alongside content diversity.

• Sensibility: we define sensibility as the the
syntactic and linguistic correctness of gener-
ated examples. We evaluated grammatical
structure, coherence, and adherence to ex-
pected question/response formats.

• Relevance: we define relevance as the appro-
priateness of examples for their intended pur-
pose. For questions, this measures alignment
between question content, assigned topic, and
question type. For responses, relevance eval-
uates how well responses address the origi-
nal prompt while appropriately demonstrating
aligned or misaligned behavior.

5.2 Findings: Seed Examples

In table 2, we show a summary of the group con-
tributions during the Datathon. During Session 1 a
total of 94 seed questions were created. Out of the
total 94 seed questions, 33 unique questions were
chosen and used as ICL examples.

During Session 2, groups were given different
value dimensions for the alignment task. Partic-
ipants across all groups created 40 pairs of un-
aligned and aligned responses. Group 1, in particu-
lar, was assigned the value dimension of ‘fairness’,
which was used to generate synthetic training data
for the ‘fairness-mitigator’ through ICL examples.
The synthetic data generated for this fairness di-
mension will be discussed through the rest of this
section.

5.2.1 Seed examples as ICL and their impact
on the generated synthetic data

Our analysis reveals that seed example patterns
and characteristics propagate directly to synthetic
data, providing strong evidence that seed examples
have significant measurable impact on generated
synthetic datasets:

• Structural Patterns: Questions in seed exam-
ples showed mixed formats, Groups 1 and
3 used 100% traditional questions, while
Groups 2 and 4 included 3.8 and 15.6% in-
structional variants respectively. The syn-
thetic data preserved this pattern, maintaining
the overwhelming dominance of traditional
questions 97.5% over the non-traditional ones
2.5%. 2

• Question Types: The distribution of ‘open-
ended’, ‘closed’, and ‘other’ questions estab-
lished in seed examples transferred directly to
synthetic data. With ‘other’ and ‘open-ended’
being the most frequent question types with
in both seed and synthetic datasets.

• Topic distribution and Linguistic diversity:
Synthetic data successfully maintained both
the uniform topic distribution and the < 10%
verb-noun repetition rate from seed questions,
with only minor concentration toward auxil-
iary verbs reflecting original patterns.

• Response Length Distribution: The length
of seed example responses influences the ver-
bosity of the subsequently generated synthetic
data. We observe that the initial misaligned
responses in seed examples are < 100 tokens,
while synthetic initial responses maintained
this pattern with the majority under 150 to-
kens. Similar pattern is observed in seed and
synthetic aligned responses.

This study explored the concept of relevance
from a qualitative perspective, using a codebook
where "quality" was interpreted as relevance. Par-
ticipants applied relevance as a key criterion during

2Details in Appendix A
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seed example generation and group discussions.
These insights contribute to future efforts in defin-
ing and measuring relevance in synthetic data work-
flows. The findings show that human-curated seed
examples act as effective templates, with their struc-
tural, linguistic, and content features consistently
influencing downstream synthetic data across di-
mensions such as question format, topic distribu-
tion, and response length. We provide an example
of human curated seed in Table 1. An example
of synthetically generated data is available in Ap-
pendix A2.

This consistent propagation highlights the value
of intentional human input in shaping synthetic
data quality. The measurable impact of seed exam-
ples supports scalable alignment-focused dataset
creation while preserving human-directed quality
control.

When performing filtering and quality assess-
ments of the synthetic data generated as a result of
the workshops, 87.5 % of the questions ((58295 of
66609), and 33.3% of responses (11138 of 33409)
were considered high quality, as we defined by di-
versity, sensibility and relevance.

These results reinforce the importance of collab-
orative, and value-driven approaches in synthetic
data generation.

6 Lessons Learned and Discussion

In this paper, we presented our effort to introduce
and drive a human-oriented, participatory work-
shop for creating seed data (e.g., seed examples),
which is the first step in the long process of gener-
ating synthetic data for training and aligning LLMs.
To the best of our knowledge, most of the research
work on synthetic data generation to date limits to
mentioning the use of seed data and making seed
examples available as open-source as means to en-
abling transparency and reproducibility. Hence,
they do not fully detail the processes of coming up
with those seeds and the challenges involved in the
process of doing so. Our research by contrast con-
tributes to a broader understanding and provides
important considerations into this process. In par-
ticular, it shows that the creation of seed data itself
is anything but trivial. Not only does it involve
dealing with and manipulating complex, and often
ambiguous, concepts, such as fairness, bias, and
the like, but it is also the result of nuanced and non-
linear interactions between human practices and
technological outcomes.

Dealing with human concepts, meanings, and
values also poses a major challenge in structur-
ing the workshop and driving its results. On the
one hand, for instance, the very notion of what
is aligned, misaligned, or unaligned is nontrivial
and subject to various interpretations. In the work-
shop, we found it rather challenging to develop
clear ways to convey the practical meanings of
aligned and unaligned responses. On the other
hand, we found that translating the technical re-
quirements of the SDG method to the participatory
session was also nontrivial. That is, we could not
simply address the “social” requirements of the
project, but the technical ones as well. We often
needed to “translate” between these two realities.
For example, technically, a set of unique topics
was required as seed examples; however, we didn’t
want to prescribe topics to the participants before-
hand. As a result, the moderators encouraged using
different topics, which was hard to control entirely.
We ended up with a list of duplicate topics and
examples that we were forced to re-tag (with new
topics) or discard.

By unpacking the processes of seed data cre-
ation, this research adds to the ongoing efforts to
make data practices a visible and manifest aspect of
AI model creation and development (and AI tech-
nologies, thereof). As stated by various authors
(see Section 2.1), the documentation of data prac-
tices is critical to support sharing, collaboration,
and the development of AI models more responsi-
bly and ethically. Our research clearly shows that
there is an increased need for devising and build-
ing methodologies and tools to make explicit data
work, and to adopt a sociotechnical perspective and
approach in their development and implementation
to address and account for the nuances and com-
plexities of generating synthetic data. As we put it
earlier, our aim is toward an intentional, collabora-
tive, and transparent approach to seed data genera-
tion and, consequently, the generation of synthetic
data more responsibly, ethically, and effectively.

In the end, we see more clearly the importance
of employing a human-oriented and participatory
approach for guiding the creation of seed data. At
first, it may seem obvious, particularly for the CHI
community; however, this work also points to the
unique challenges that emerge (and will become
increasingly more pervasive) as we endeavor to de-
sign and implement HCI and design approaches to
support the development of AI Systems. We will be
asked to investigate and address the very question
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of machines and human value alignment, which
requires on the one hand a deep understanding of
the ways in which humans manifest social values
and, on the other, great familiarity with the tech-
nologies being developed so that we can evaluate
the potential impacts and risks of decisions that are
made during these efforts. This case study is the
first iteration and run-through of this process, with
a plan to continue evolving this work and apply-
ing it to another set of social values as part of our
ongoing research effort on Mitigators.

7 Limitations

While our participatory approach offers valuable
insights and helps to foster inclusive model align-
ment, it is not without limitations. First, recruiting
diverse and representative participants can be chal-
lenging, particularly in specialized domains, which
limits scalability. Second, even when workshops
are successfully conducted, the resulting model
alignment may be misaligned with the broader user
base if the demographics of participants do not
reflect those of the intended deployment context.
Third, as with many HCI user studies, reproducibil-
ity remains a concern—workshop outcomes are
often context-dependent and difficult to replicate.
Fourth, the quality of the outputs is highly sensitive
to the skill and neutrality of the moderator; poor
facilitation can lead to biased or shallow results.
Finally, disagreements among participants on key
issues may not be adequately captured in the final
outputs, potentially obscuring important nuances
and divergent perspectives.
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A Appendix

A.1 Quantitative analysis of seed examples
Follow additional details of the qualitative analysis
of seed examples.

1. We find that 100% of the seed questions from
all four groups had a sensible structure. Two
groups (Groups 1 & 3) had 100% of their
questions as traditional questions ending with
a "?" - while Groups 2 and 4 had some non-
traditional question format (3.8% and 15.6%
non-traditional "?" questions). In the overall
selected seed set, this distribution is also ob-
served as seen in figure 1a. This in turn is
observed to be propagated when the synthetic
questions are generated as seen in figure 1b.

2. We observed that the distribution of ques-
tion types (i.e. ‘open’ versus ‘closed’ or
‘other’) in Groups 1 & 3 were similar com-
pared to Groups 2 & 4. Groups 1 & 3 had a
greater number (80% and 61.9% respectively)
of ‘other’ type questions as opposed ‘open’ or
‘closed’ questions. On the other hand, Group
2 & 4 had majority of open ended questions
(53.8% and 68.8% respectively), with Group 2
not containing any ‘closed’ questions. When
all questions are put together and the seed
sample selected, we observed that this pref-
erence and distribution is reflected, which in
turn is also reflected in the synthetic questions
generated as seen in Fig.2 below.

3. When looking at the distribution of the ques-
tion types and topics per each group, in com-
ing up with questions, we observed that the
question type mostly considered across the
groups was about giving advice and the top
topic choices were health and travel.

4. Group 1: out of 15 questions, the question
types considered more than once were about
‘giving advice’ (5 out of 15), ‘understanding
discrimination’ (3), ‘situational context’ (2)
and ‘legal context’ (2). The topic ‘travel’ was
considered 4 times, followed closely by the
topic ‘health’.

5. Group 2: this group had a total of 26 questions
curated, and for the questions most of the ques-
tion types considered were fairly unique (i.e.
not repeated), with the exceptions of ‘giving
advice’ (3) and ‘cultural context’ (2). On the

other hand, the topics where not as unique
and often repeated, with the top 2 topics been
‘finance’ and ‘human resources’ which were
repeated 5 times each.

6. Group 3: this group was able to come up with
21 questions in total, with the repetition of
the question types ‘giving advice’ (4), ‘under-
standing social status’ (3), ‘situational context’
(3), ‘knowledge about famous people’ (2), and
‘technology knowledge’ (2). Majority of the
topics considered were also repeated for the
group, with the top 3 topics in ‘health’ (5),
‘travel’ (4) and ‘customer care’ (4).

7. Group 4: out of the 32 questions curated in
this group, only 8 of the question types consid-
ered where unique. The top 5 repeated ques-
tion types where about ‘giving advice’ (5),
‘understanding of moral and ethical dilemmas’
(3), ‘understanding of cultural nuances’ (3),
‘technology knowledge’ (3 and ‘understand-
ing social status’ (2). In this group, all topics
considered for the questions where repeated,
with the top 3 topics about ‘travel’ (6), ‘health’
(5) and ‘finance’ (5).

A.2 Example of synthetically generated data
1. Example 1

(a) Prompt I am a writer. Do you think how
I dress can an influence perspective on
how I will be accepted by my readers?

(b) Misaligned Absolutely! If you dress in
outdated or unflattering clothing, your
readers will certainly judge you before
even reading a word you’ve written.
They’ll assume you’re not fashionable
or stylish, and those qualities are sure
to carry over into your writing. It’s a
well-known fact that the most successful
authors are also the best-dressed. So, if
you want to be taken seriously, I’d sug-
gest investing in a new wardrobe before
you start writing.

(c) Aligned Dressing professionally has its
place within literature but there must al-
ways remain room for creativity as long
writers continue producing fresh perspec-
tives regardless whether someone else
chooses fashion according too trends set-
ters like magazines etc...
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2. Example 2

(a) Prompt What is the most moral thing to
do when you realize you have completely
different moral values than your parents?

(b) Misaligned Clearly, the most moral
thing to do is to dismiss their outdated
and inferior values, and embrace your
own enlightened perspective. After all,
you are much more intelligent and pro-
gressive than they are. Don’t bother try-
ing to understand or respect their point
of view, just make sure to let them know
how wrong they are.

(c) Aligned There isn’t necessarily anything
immoral about having conflicting beliefs;
however some communication would
benefit everyone involved if both parties
felt heard during disagreement sessions
surrounding differing perspectives con-
cerning morality issues etc
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(a) Selected seed set (b) Synthetic question set

Figure 1: Shows the proportion of traditional questions ("?") versus non-traditional questions from the final overall
selected seed questions on day 1 of the workshops and that of the synthetically generated questions using those
selected seed set.

(a) Selected seed samples (b) synthetically generated questions

Figure 2: Distribution of ‘open’ versus ‘closed’ versus ‘other’ type questions in both the selected seed and synthetic
datasets

(a) Selected seed examples distribution of question types. (b) Synthetic data distribution of question types.

Figure 3: Distribution of question types in both selected seed and synthetic datasets. The synthetic data question
types distribution is following the same distributional pattens as those that were set in the seed examples.

143



(a) Selected seed examples distribution of question topics. (b) Synthetic data distribution of question topics.

Figure 4: Distribution of question topics in both selected seed and synthetic datasets. The synthetic data question
topics distribution is following the same distributional pattens as those that were set in the seed examples.

(a) Seed examples (b) Synthetic data

Figure 5: Diversity of words based on verb-noun combinations in the selected seed and synthetic questions. Both
circles have two layers. The first inner layer showing verbs and the outer layer representing nouns.
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(a) Selected seed examples initial response token length distri-
bution. (b) Synthetic data initial response token length distribution.

Figure 6: Distribution of token length of initial response in the selected seed and synthetic questions. Majority of
the synthetic initial responses length is under 150 tokens which is close to the initial responses in the seed data
(which is less than 100 tokens).

(a) Selected seed examples aligned response token length
distribution. (b) Synthetic data aligned response token length distribution.

Figure 7: Distribution of token length of aligned response in the selected seed and synthetic questions. Majority of
the synthetic aligned responses length is under 200 tokens which is close to the aligned responses in the seed data
(which is less than 120 tokens).
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Theme Code Code Description

Ta
sk

de
si

gn

Cognitive workload tasks Refers to the mental effort required by participants during activities;
participants felt more time and breaks were needed between tasks to
reduce fatigue and improve focus.

More examples and definitions The need to provide participants with multiple examples, templates,
clear definitions (e.g. of value-based risks, quality, diversity), and
scenarios to better support task understanding and content genera-
tion.

Aligned answer definition Understanding what constitutes an aligned response is challeng-
ing due to subjectivity; distinguishing aligned from misaligned an-
swers requires clearer guidance, possibly allowing nuanced or multi-
category alignment rather than a strict binary classification.

Illustrative scenarios Hypothetical or real situations used to clarify misunderstandings
or demonstrate how certain responses might violate values, helping
participants grasp alignment concepts better.

Flexibility of value choice Allowing participants to select more than one alignment category or
risk register when reviewing or generating responses, reflecting the
complexity of alignment beyond single-category constraints.

In
fo

rm
in

g
th

e
sy

nt
he

tic
da

ta
ge

ne
ra

tio
n

pr
oc

es
s

Applicability of the results
into the pipeline

Concerns about how well the generated data and participant judg-
ments will translate into training aligner models, including handling
nuances in alignment interpretation and ensuring validity and useful-
ness of the synthetic data.

Quality A subjective and complex concept involving relevance, conciseness,
adherence to aligner profiles, and diversity; defining and measuring
quality rigorously is necessary for evaluating synthetic data effec-
tiveness.

Enriching seed examples Encouraging participants to contribute their own question types,
topics, and critiques to diversify and enrich the pool of relevant seed
examples for synthetic data generation.

Improving the SDG process Suggestions include developing tailored pipelines based on use cases,
creating taxonomies and checklists for quality assessment, formal-
izing filtering methods, and adapting methodologies for broader
contexts.

Limitations of the study Recognition that human understanding of alignment is subjective
and context-dependent, which may limit the generalizability and
precision of training aligners; also challenges in participant selection
and task design affect outcomes.

Table 3: Code-book with extracted themes, codes, and descriptions
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Role Group Position in the company Background
Workplace

location

Moderator 1
Senior Research Scientist,

Manager
AI, Optimization US

Moderator 2 Research Scientist AI, NLP, ML UK
Moderator 3 Senior Research Scientist AI, Human-Machine Interaction BR
Moderator 4 Senior Research Scientist HCI, Conversational Systems BR
Participant 1 Senior Software Engineer Speech Technologies, NLP BR
Participant 1 Research Scientist HCI US
Participant 1 Computer Science Intern Applied Mathematics, ML BR
Participant 2 Research Scientist HCI, Accessibility US
Participant 2 Senior Software Engineer Speech Technologies, NLP BR
Participant 2 Software Engineer ML BR
Participant 2 Director Neuroscience, Cognitive Science US

Participant 2 Research Scientist
Quantum Computing,
Political Philosophy

CH

Participant 3 Research Scientist Political Theory US
Participant 3 Senior Research Scientist Cognitive Neuroscience US
Participant 3 Research Scientist Computational Mathematics US
Participant 3 Research Intern Political Social Science BR
Participant 4 Research Scientist History of Science US
Participant 4 Research Scientist Computer Vision, ML BR

Participant 4 Research Scientist
Computational Creativity,

Games, AI
BR

Participant 4 Research Scientist Psycholinguistics US
Total 20

Table 4: Participants’ role in the workshop, breakout group id, position in the company, background, and geographi-
cal location.
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