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Abstract

Eye movement analysis has become an es-
sential tool for studying cognitive processes
in reading, serving both psycholinguistic re-
search and natural language processing appli-
cations aimed at enhancing language model
performance. However, the scarcity of eye-
tracking data and its limited generalizability
constrain data-driven approaches. Synthetic
scanpath generation offers a potential solution
to these limitations. While recent advances in
scanpath generation show promise, current lit-
erature lacks systematic evaluation frameworks
that comprehensively assess models’ ability to
reproduce natural reading gaze patterns. Ex-
isting studies often focus on isolated metrics
rather than holistic evaluation of cognitive plau-
sibility. This study presents a systematic eval-
uation of contemporary scanpath generation
models, assessing their capacity to replicate
natural reading behavior through comprehen-
sive scanpath analysis. We demonstrate that
while synthetic scanpath models successfully
reproduce basic gaze patterns, significant lim-
itations persist in capturing part-of-speech de-
pendent gaze features and reading behaviors.
Our cross-dataset comparison reveals perfor-
mance degradation in three key areas: general-
ization across text domains, processing of long
sentences, and reproduction of psycholinguis-
tic effects. These findings underscore the need
for more robust evaluation protocols and model
architectures that better account for psycholin-
guistic complexity. Through detailed analysis
of fixation sequences, durations, and reading
patterns, we identify concrete pathways for de-
veloping more cognitively plausible scanpath
generation models.

1 Introduction

Eye movements during reading reflect readers’ at-
tention (Rayner, 1998), processing difficulty, and
information integration (Rayner, 2009; Clifton
et al., 2016). Thus, eye-tracking data provides a

rich source of insights into human language pro-
cessing. Models derived from gaze data not only
shed light on attention and comprehension but also
have practical applications in readability estima-
tion (Klein et al., 2025), educational technology
(da Silva Soares Jr et al., 2023), and cognitively
plausible NLP (Barrett et al., 2018). However, the
utility of such data is constrained by its limited
availability. Synthetic data generation has emerged
as a critical solution across domains, particularly
for enhancing deep learning models in data-scarce
scenarios. Recently, eye-tracking models for read-
ing have gained traction in machine learning re-
search.

Studies suggest that cognitive models like E-
Z Reader (Reichle et al., 2003), which simulate
gaze patterns during reading, can improve language
models in standard NLP tasks (Sood et al., 2020).
Modern approaches follow two key paradigms: Pre-
dicting aggregated eye-tracking features (e.g., fixa-
tion durations) (Li and Rudzicz, 2021; Hollenstein
et al., 2021; Srivastava, 2022); Generating scan-
paths—temporal sequences of word fixations with
durations (Deng et al., 2023b; Khurana et al., 2023;
Bolliger et al., 2025). For instance, Lopez-Cardona
et al. (2024) used a gaze feature prediction model
(Li and Rudzicz, 2021) to train a reward model
by concatenating predicted eye-tracking features
with contextual embeddings. Evaluations on the
OASST1 and Helpsteer2 datasets showed signif-
icant accuracy improvements over baselines. By
generating scanpaths, these models can addition-
ally compute reading-related gaze features, thereby
increasing their utility. Scanpaths enable modeling
of gaze phenomena such as refixations (repeated
word fixations) and regressive saccades (backward
eye movements). The latter has drawn increasing
attention, as it not only enhances the performance
of established models like E-Z Reader (Reichle
et al., 2003) and SWIFT (Engbert et al., 2002) but
also shows promise for downstream NLP applica-
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tions.
Despite progress, existing studies lack a compre-

hensive analysis of generated scanpaths and stan-
dardized evaluation metrics. For example: Deng
et al. (2023b) proposed Eyettention, evaluated us-
ing Normalized Levenshtein Distance (NLD) (Lev-
enshtein, 1966). However, NLD ignores fixation
durations, lacks spatial sensitivity, and has lim-
ited interpretability. Eyettention has been applied
to improve NLP task performance on the GLUE
benchmark (Wang et al., 2019) by reordering text to
mimic natural reading patterns (Deng et al., 2023a,
2024; Kiegeland et al., 2024). Khurana et al. (2023)
introduced ScanTextGAN, employing both NLD
and MultiMatch (Jarodzka et al., 2010). Yet, Küm-
merer and Bethge (2021) demonstrated that Multi-
Match can favor incorrect models over ground truth.
ScanTextGAN’s integration of predicted scanpaths
(via LSTM and multi-head attention) improved
performance on GLUE, sentiment analysis, and
sarcasm detection (Mishra et al., 2016). Bolliger
et al. (2023) developed ScanDL later extended to
ScanDL 2.0 (Bolliger et al., 2025), using two sep-
arate models for fixation sequences and durations.
They use ScaSim (von der Malsburg and Vasishth,
2011), a metric penalizing spatial/temporal devia-
tions between fixations. While ScaSim addresses
NLD’s limitations, their reproducibility analysis
excluded fixation durations, and no comparison
was made against randomly generated scanpaths
for ScaSim or gaze features.

This work synthesizes prior research on scan-
path generation models and addresses their limita-
tions. Our contributions are: 1) A unified evalu-
ation framework for scanpath generation models,
covering critical gaze properties. 2) Quantitative
benchmarking of publicly available models using
this framework. 3) Analysis of scanpath generation
models weaknesses to guide future improvements.

2 Methodology

The core task involves predicting a complete
scanpath representation S = ⟨s1, ..., sn⟩, where
each point si consists of both fixation positions
F = ⟨f1, ..., fn⟩ and corresponding durations
D = ⟨d1, ..., dn⟩, given an input sentence W =
⟨w1, ..., wm⟩. Here, each fixation position fi cor-
responds to the index j (where 1 ≤ j ≤ m) of
the fixated word wj in the sentence. Contemporary
models demonstrate the capability to generate di-
verse scanpaths for identical text inputs, effectively

simulating individual differences in reading pat-
terns among human subjects. Our analysis focuses
on publicly available implementations of three ex-
isting approaches.

The E-Z Reader model1 implements a cogni-
tive architecture that incorporates multiple psy-
cholinguistic variables including lexical frequency,
word predictability, and integration time parame-
ters. This framework provides a comprehensive
computational account of the interaction between
perceptual, cognitive, and oculomotor processes
during reading, explicitly modeling the mecha-
nisms underlying saccade programming and ex-
ecution that produce characteristic eye movement
patterns.

Eyettention2 adopts a probabilistic approach
to predict subsequent fixation locations through
the conditional distribution P (fi|W, s1, ..., si−1),
where the model considers both the textual input W
and the preceding scanpath segment ⟨s1, ..., si−1⟩
that includes landing position information. During
inference, the model utilizes only the fixation posi-
tion component of this history. The model architec-
ture employs parallel processing streams: A Word-
Sequence Encoder leveraging BERT embeddings
(Devlin et al., 2019) with word-level aggregation,
enhanced through bidirectional LSTM processing
and supplemented with explicit word length fea-
tures; A Fixation-Sequence Encoder implemented
as a unidirectional LSTM that processes concate-
nated representations of fixation word embeddings,
normalized duration values, and within-word land-
ing positions. These parallel representations are in-
tegrated through a cross-attention mechanism, with
final predictions generated by a ReLU-activated
fully-connected decoder network. The model pro-
duces scanpaths through iterative sampling from a
probability distribution over possible saccade tar-
gets, including both progressive (forward) and re-
gressive (backward) movements within the range
−M + 1, ...,M (where M denotes maximum sen-
tence length), plus an additional end-of-scanpath
marker class, resulting in a 2M + 1-dimensional
output space. Training optimizes the mean negative
log-likelihood objective.

ScanDL 2.03 introduces a modular architec-
ture comprising two specialized components: The
ScanDL Module implements a discrete diffusion
sequence-to-sequence model for sequence genera-

1https://github.com/jakdot/ezreader-python
2https://github.com/aeye-lab/Eyettention
3https://github.com/DiLi-Lab/ScanDL-2.0
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Dataset # Uniuqe sentence # Readers Sentence length # Samples

CELER 5486 69 up to 22 ∼10.7k
ZuCO 700 12 3-62 ∼8.4k

Table 1: Summary of the eye-tracking while reading datasets.

tion, transforming input text (represented through
word indices, BERT embeddings, and positional en-
codings) into realistic fixation sequences through
iterative noise addition and denoising via trans-
former encoder; The Fixation Duration Module em-
ploys a transformer-based sequence-to-sequence
architecture to predict temporal durations for fixa-
tions, using GPT-2-derived contextual embeddings
that are dynamically reordered according to the
scanpath. The ScanDL Module’s training incor-
porates both variational lower bound (VLB) opti-
mization and mean squared error minimization be-
tween predicted and ground truth embeddings. The
Fixation Duration Module utilizes a 12-layer trans-
former encoder with self-attention mechanisms, fol-
lowed by ReLU-activated fully-connected layers,
trained via mean squared error minimization on
duration predictions. This decoupled architecture
permits independent training and deployment of
each module, offering significant flexibility in prac-
tical applications.

3 Experiments

3.1 Datasets

The models were trained using the CELER dataset.
The CELER dataset includes eye-tracking while
reading data from 69 readers for 5,486 sentences.
Each participant in CELER read 156 newswire
sentences from the Wall Street Journal. Of these,
78 sentences were common to all readers, while
the remaining 78 were unique to each individual
reader. The maximum sentence length is 22 words.
The CELER dataset contains approximately 10,700
samples.

For additional verification, the ZuCO dataset
(Laurinavichyute et al., 2019) was used. The
ZuCO dataset includes eye-tracking while read-
ing data from 12 readers for 400 sentences from
movie reviews (positive, negative or neutral) and
300 Wikipedia sentences with specific relations.
The sentence length ranges from 3 to 62 words.
The ZuCO dataset contains approximately 8,400
samples. Table 1 presents a summary of the eye-
tracking datasets used in this study.

The CELER dataset was divided into 5 folds and

a test set, following a new reader/new sentence split.
Each fold and the test set included approximately
11-12 readers and 13 sentences. Unique sentences
were used only in the training set. The same split
was used for all models. Metrics for Within-Dataset
Evaluation (Section 3.4) were calculated on the test
set. Metrics for Cross-Dataset Evaluation (Section
3.5) were calculated on the entire ZuCO dataset.

3.2 Metrics

As mentioned earlier, the ScaSim metric (von
der Malsburg and Vasishth, 2011), specifically de-
signed for quantitative assessment of differences
between scanpaths, represents the preferred choice.
Following (Bolliger et al., 2025), we configured
ScaSim Base for a constant y-coordinate and com-
puted two normalized versions: ScaSim Fix (nor-
malized by the number of fixations in both scan-
paths) and ScaSim Dur (normalized by the total du-
ration of all fixations). To evaluate the reproducibil-
ity of gaze features based on predictions, we calcu-
lated the mean absolute error (MAE) and Pearson
correlation coefficient (PCC). We examined 23 dis-
tinct gaze features capturing various eye movement
characteristics: fixation duration, reading time, sac-
cade amplitude, fixation count, regressions, and
word skipping. The complete list and description
of features appears in Appendix A. The MAE and
PCC metrics were applied to features computed
in three processing modes: without aggregation
(Base), word aggregation across readers (Word),
and sentence aggregation across readers and sen-
tences (Sent). All feature values were normalized
to a 0-100 scale. For improved readability, we re-
port prediction accuracy as 100−MAE in all ex-
perimental results. We additionally employed Nor-
malized Levenshtein Distance (NLD) to assess fixa-
tion sequence similarity. The Levenshtein distance
was normalized by the maximum sequence length:
NLD = LD(S1, S2)/max(|S1|, |S2|). All re-
ported metrics represent averages across models
trained on the 5 folds.

To assess the models’ ability to replicate human-
like gaze behavior, we analyzed their capacity to
reproduce established psycholinguistic phenom-
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ena. We evaluated correlations between gaze fea-
tures and three key predictors: word length, sur-
prisal (computed using GPT-2 base (Radford et al.,
2019)), and lexical frequency (obtained via the
wordfreq library4). Furthermore, we investigated
part-of-speech effects on gaze distribution using the
NLTK library5, calculating average gaze features
per grammatical category. The analysis focused on
six core measures: first-pass reading time (FPRT),
re-reading time (RRT), total fixation time (TFT),
first-pass fixation count (FPFC), first-pass regres-
sion (FPReg), and skipping rate (SR). These word-
aggregated features capture fundamental reading
patterns: word processing time, fixation frequency,
word skipping probability, and regression likeli-
hood.

Model comparisons employed two human base-
lines: Human Shuffled (shuffled test set scanpaths)
and Human Train-Val (random scanpaths from 5-
fold readers). The Human Shuffled baseline reveals
differences in gaze patterns among random read-
ers within the test sample. However, word- and
sentence-level aggregated metrics become unavail-
able for this mode, as gaze features are calculated
across all readers from the test set. To address this
gap in evaluation, the Human Train-Val baseline
is employed. In this case, for each fold, a random
set of readers is selected, matching the number of
readers in the test set. Regarding the remaining met-
rics, both Human Shuffled and Human Train-Val
demonstrate variations in metrics depending on the
reader set. The Human Train-Val baseline enables
MAE/PCC comparison for reader-averaged gaze
features. We also included two random baselines:
Uniform Fixations - random uniform fixation po-
sitions with dataset-derived scanpath lengths; Ran-
dom Saccades - random saccades ranging from -1
to +2 words, terminating at sentence end. The prob-
ability of saccades of length -1 and 0 is 13%, and
the probability of direct saccades of length 1 and 2
is 37%. Both random baselines generated fixation
durations from normal distributions parameterized
by training data statistics. The objective of eval-
uating random predictions is to demonstrate that
the generated gaze sequences from models are not
random and differ significantly from random pre-
dictions. Furthermore, such evaluation can estab-
lish a baseline of adequacy for generative models.
For metrics that provide an indirect assessment of

4https://github.com/rspeer/wordfreq
5https://github.com/nltk/nltk

quality, evaluation on random predictions can shed
light on the utility of the metric itself.

3.3 Gaze model

The E-Z Reader model requires three key word pa-
rameters to be specified: frequency, predictability,
and integration time. The lexical frequency values
were obtained using the wordfreq library6. Pre-
dictability values were derived using GPT-2 base
(Radford et al., 2019). The integration time pa-
rameter was set to the average value of 25 ms as
reported in (Reichle and Sheridan, 2015).

Since ScanDL 2.0 comprises two independent
models - the ScanDL Module and Fixation Dura-
tion Module - we analyze them separately in this
study. For clarity, we refer to the ScanDL Module
simply as ScanDL, and the Fixation Duration Mod-
ule as Scan2Dur. Notably, Scan2Dur is also applied
to enhance the predictions of the Eyettention model.
This approach combines the fixation position pre-
dictions from both Eyettention and ScanDL with
duration predictions from Scan2Dur. For model im-
plementation, we used the original code published
in the respective papers for Eyettention, ScanDL
and Scan2Dur. The only modifications made in-
volved adapting the training and testing samples to
our experimental setup while maintaining all other
parameters and architectural choices as specified
in the original implementations. ScanDL also was
chosen as the reference model since it achieves
the strongest overall performance in the available
studies.

3.4 Within-Dataset Evaluation

The results are presented in Table 2. It should
be noted that significant improvements in metrics
compared to Human Baselines may indicate insuf-
ficient diversity in generated scanpaths rather than
superior performance. However, in this case, the
differences are not substantial. Moreover, it would
be incorrect to claim that generation models surpass
human performance, as eye movements represent a
natural cognitive process.

The metrics show that Human Train-Val and
Human Shuffled demonstrate minor differences,
suggesting that even small samples of readers can
exhibit noticeable variations in gaze patterns. For
the NLD metric, both E-Z Reader and ScanDL
outperform Human Train-Val and show compara-
ble results, though further analysis reveals signifi-

6https://github.com/rspeer/wordfreq
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NLD ScaSim MAE PCC

Base Dur Fix Base Word Sent Base Word Sent

Random Uniform 0.86↑ 3615↑ 0.52↑ 111.80↑ 79.30↓ 72.24↓ 24.76↓ 0.13↓ 0.25↓ 0.68↑
Random Saccades 0.66↑ 2872↑ 0.45↑ 96.77 83.20↓ 82.85↓ 72.45↑ 0.00↓ 0.00↓ -0.06↓
E-Z reader 0.58 3705↑ 0.47↑ 146.77↑ 84.76↓ 79.80↓ 45.37↓ 0.10↓ 0.33↓ 0.20
Eyettention 0.65↑ 2544↑ 0.45 84.27 84.55↓ 84.83 61.36↑ 0.11↓ 0.44↓ 0.55
ScanDL 0.58* 2395* 0.44* 85.45* 86.43* 84.94* 54.45* 0.16* 0.50* 0.44*
Human Train-Val 0.60 2689↑ 0.42↓ 92.20 85.95 88.84↑ 73.35↑ 0.20↑ 0.71↑ 0.80↑
Human Shuffled 0.56↓ 2814↑ 0.39 86.76↑ 86.47 - - 0.23↑ - -

Table 2: Metrics for the predicted scanpaths on the CELER dataset. To assess statistical reliability, we conducted
paired t-tests (p<0.05) on metric values across folds, using ScanDL as the reference model. Significant differences
are indicated with ↑/↓, where ↑ denotes an increase and ↓ a decrease relative to ScanDL (marked with *)

Figure 1: Pearson correlation coefficient between word features and gaze features on CELER dataset.

cant differences in their performance. The ScanDL
model achieves the best results for ScaSim, ScaSim
Fix, and MAE metrics, while Human Baselines
remain superior for other metrics. The Eyetten-
tion model shows performance similar to ScanDL
with minor variations: ScanDL leads in MAE Base,
both models are comparable in MAE word, while
Eyettention leads in MAE sent. However, Eyetten-
tion underperforms in NLD. Compared to Human
Baselines, both Eyettention and ScanDL show no-
ticeable gaps in PCC and MAE Sent metrics, with
smaller differences in MAE Word, and only Eye-
ttention trailing in MAE Base. The E-Z Reader
model underperforms in all metrics except NLD
and MAE Base.

The Random Saccades baseline performs worse
than ScanDL and Eyettention across most metrics,
with PCC approaching zero, yet shows comparable
results for ScaSim Dur and MAE. While Random

Fixations generally underperforms, it achieves re-
sults similar to the main models in PCC Base and
PCC Sent. These observations demonstrate that
relying on individual metrics may lead to incor-
rect model evaluations. Considering all metrics
collectively, both ScanDL and Eyettention show
the closest alignment with Human Baselines, with
ScanDL performing slightly better. However, all
models demonstrate challenges in accurately repro-
ducing gaze features, highlighting the importance
of considering multiple gaze feature metrics. De-
tailed metrics for individual features are provided
in Appendix B.

Figure 1 presents PCC values between word fea-
tures and gaze characteristics. The plot shows
that Random Models demonstrate near-zero cor-
relations. Among the evaluated models, ScanDL
shows the closest alignment with Human Baselines,
while E-Z Reader and Eyettention show varying
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Figure 2: Mean gaze features with respect to POS tagging for CELER dataset.

NLD ScaSim MAE PCC

Base Dur Fix Base Word Sent Base Word Sent

Random Uniform 0.90↑ 4479.38↑ 0.66↑ 106.93↑ 84.18↓ 82.11↓ 66.51↓ 0.10↑ 0.20↑ 0.52↑
Random Saccades 0.70 4052.95↑ 0.57↑ 94.81↑ 84.42↓ 83.00↓ 67.52↓ 0.01↓ 0.04↓ -0.05↓
E-Z reader 0.64↓ 10061.06↑ 0.66↑ 266.74↑ 80.16↓ 65.36↓ 16.91↓ 0.06↓ 0.15↓ 0.08↓
Eyettention 0.74↑ 2609.36↑ 0.54 66.68 85.93↓ 85.98 82.76↑ 0.04↓ 0.13↓ 0.32
ScanDL 0.70* 2285.85* 0.52* 66.24* 87.20* 85.88* 80.78* 0.07* 0.18* 0.33*
Human Train-Val 0.66↓ 2515.39↑ 0.46↓ 53.04↓ 88.02↑ 90.48↑ 85.95↑ 0.22↑ 0.60↑ 0.58↑
Human Shuffled 0.52↓ 1674.67↓ 0.37↓ 41.15↓ 90.73↑ - - 0.34↑ - -

Table 3: Metrics for the predicted scanpaths on the ZuCO dataset. To assess statistical reliability, we conducted
paired t-tests (p<0.05) on metric values across folds, using ScanDL as the reference model. Significant differences
are indicated with ↑/↓, where ↑ denotes an increase and ↓ a decrease relative to ScanDL (marked with *)

degrees of approximation to human performance.
Figure 2 displays average gaze features by part

of speech. The results indicate that E-Z Reader
shows the largest deviations from Human Base-
lines. While ScanDL and Eyettention often pro-
duce results closer to human baselines, they still
fail to fully reproduce the characteristic differences
in gaze patterns across grammatical categories.

Despite its shortcomings, E-Z reader shows good
results for the NLD metric and the analysis of psy-
cholinguistic predictors and parts of speech based
on FPFC and SR gaze features.

3.5 Cross-Dataset Evaluation

The results are presented in Table 3. The metrics
for Human Train-Val and Human Shuffled show
greater differences compared to the CELER dataset,
confirming our earlier observations. While the E-
Z reader model outperforms Human Train-Val on
the NLD metric, it demonstrates inferior perfor-

mance on most other metrics. Random Saccades
achieves better NLD scores than ScanDL and Eye-
ttention, but underperforms on all other metrics.
ScanDL and Eyettention show performance rela-
tive to Human Baselines similar to their results on
the CELER dataset, but exhibit more noticeable
shortcomings in NLD and PCC metrics. Random
Fixations underperforms compared to ScanDL and
Eyettention on most metrics but achieves better
PCC scores. For PCC Base and PCC word, this
results from limitations in ScanDL and Eyettention,
while for PCC Sent it stems from using averaged
human data for scanpath generation.

Figure 3 displays the PCC between word fea-
tures and gaze characteristics. Among the evalu-
ated models, ScanDL again shows the closest align-
ment with Human Baselines, though with more
pronounced differences in some cases. The E-Z
reader and Eyettention models demonstrate weaker
performance in this analysis.
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Figure 3: Pearson correlation coefficient between word features and gaze features on ZuCO dataset.

Figure 4: Mean gaze features with respect to POS tagging for ZuCO dataset.

Figure 4 presents average gaze features by part of
speech. The deviations of E-Z reader have become
much more substantial compared to the CELER
dataset. Otherwise, the results remain comparable
to those obtained for CELER.

As with the CELER dataset, E-Z reader shows
good performance for the NLD metric and in an-
alyzing psycholinguistic predictors and part-of-
speech effects for the FPFC and SR gaze features.
The model’s primary limitation remains its inabil-
ity to accurately reproduce regressions and fixation
durations.

4 Conclusions

This study systematically evaluates contemporary
approaches to scanpath generation and comprehen-
sively compares their capabilities and limitations
against authentic human gaze patterns. Our analy-
sis of two distinct eye-tracking datasets reveals sev-
eral important patterns that advance our understand-
ing of current modeling paradigms. The ScanDL
model for fixation sequence generation combined
with the Fixation Duration Module proves to be the
most robust among evaluated models, demonstrat-
ing consistent performance across multiple evalu-
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ation metrics while maintaining reasonable prox-
imity to the Human Baseline. However, even this
model shows notable deficiencies in reproducing
certain aspects of natural gaze behavior, particu-
larly when evaluated on a new dataset containing
longer sentences of different domains. The primary
limitation is insufficiently accurate reproduction
of gaze features, especially in correlation metrics.
The model also fails to fully capture part-of-speech-
dependent variations in gaze patterns, particularly
for re-reading time. While it performs well in
assessing psycholinguistic predictors for Within-
Dataset Evaluation, its performance degrades in
Cross-Dataset Evaluation.

Eyettention represents an alternative approach
that achieves competitive results. Although it
matches ScanDL on several key metrics, it under-
performs in overall evaluation. When evaluated
with the Fixation Duration Module, Eyettention
shows deterioration in gaze latency-based features
compared to ScanDL. This outcome highlights the
importance of fixation sequence quality for the Fix-
ation Duration Module’s performance. The E-Z
Reader model, representing more traditional cogni-
tive modeling approaches, demonstrates an interest-
ing performance dichotomy. It performs similarly
to ScanDL in Within-Dataset Evaluation of fixa-
tion sequences regarding similarity, word skipping,
and fixation counts, and outperforms ScanDL in
Cross-Dataset Evaluation. However, E-Z Reader
shows significant difficulties with more complex
gaze phenomena like regressions and fixation du-
ration modeling. Initially, the E-Z Reader model
accepts parameters derived empirically, which com-
plicates its application for generating synthetic data.
Consequently, the use of averaged and simulated
parameters inevitably leads to a degradation in the
quality of the generated gaze sequences. This pat-
tern suggests that while symbolic cognitive mod-
els retain value for certain theoretical applications,
they may require substantial enhancement to com-
pete with data-driven approaches in practical im-
plementations.

Comparative dataset analysis yields particularly
valuable insights. The increased performance vari-
ability observed in the ZuCO dataset, with its more
diverse text domains and longer sentences, under-
scores a critical challenge in gaze modeling - the
need for systems capable of generalizing across
different text types. This finding has important
implications for practical applications, suggesting
that future models will need to incorporate more

diverse text domains. The persistent gap between
model performance and human baselines across
both datasets, particularly in correlation metrics,
points to fundamental limitations in how current
architectures represent the cognitive processes un-
derlying reading.

ScanDL was chosen as the reference model since
it achieves the strongest overall performance. The
results show that ScanDL significantly outperforms
other models and random baselines on most met-
rics. However, some metrics highlight weaknesses
of the model: for example, gaze feature metrics
aggregated at the sentence level are significantly
worse than those of other models. Compared to
the Human baseline, ScanDL generally performs
significantly worse, indicating the need for further
modifications of scanpath generation models.

Several promising directions for improving scan-
path generation systems emerge from these results.
Integrating multi-task learning objectives could
help bridge the gap between gaze prediction and
higher-level language understanding. Incorporat-
ing psycholinguistic and other features may en-
hance models’ ability to capture nuances of reading
behavior. Developing more comprehensive evalua-
tion protocols, particularly those assessing models’
capacity to reproduce known psycholinguistic phe-
nomena across text domains, could drive significant
improvements in model architectures and training
approaches.

Limitations

While this study provides a thorough examination
of contemporary approaches to scanpath genera-
tion, several limitations must be acknowledged
that both contextualize our findings and indicate
important directions for future research. The ex-
clusive focus on English-language datasets, while
providing controlled comparison points, inevitably
limits the generalizability of our conclusions. It
is well-established that reading behaviors and eye
movement patterns vary significantly across writing
systems and linguistic structures: from alphabetic
systems like English to logographic systems like
Chinese or right-to-left scripts like Arabic. Future
work should prioritize multilingual evaluation to de-
termine whether the observed patterns hold across
different languages and whether certain architec-
tural approaches demonstrate particular advantages
for specific writing systems.

The nature of our evaluation datasets, despite
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their careful construction, imposes certain limita-
tions. Both CELER and ZuCO, despite their differ-
ences, consist predominantly of formal written lan-
guage samples. This leaves open questions about
how current models would perform with more infor-
mal or interactive text types, such as social media
content or real-world reading scenarios where vi-
sual layout and task demands play important roles.
The controlled laboratory conditions in which the
eye-tracking data were collected may also limit
applicability to more natural reading environments.

Our evaluation does not account for potential
scaling effects, as we maintained fixed dataset sizes
across experiments. Future work should examine
how increasing training data volume impacts the
reproduction of psycholinguistic gaze patterns. The
question of which model characteristics influence
the cognitively plausible reproduction of specific
gaze properties remains open. A detailed analysis
of this issue will facilitate a deeper understanding
of gaze generation models and lay the theoretical
groundwork for future models.

Our evaluation framework, while comprehen-
sive, inevitably emphasizes certain aspects of gaze
behavior over others. Current metrics focus pri-
marily on low-level temporal and spatial patterns
of eye movements. While this provides important
quantitative benchmarks, they may not fully cap-
ture higher-level cognitive aspects of reading, such
as comprehension monitoring or cross-sentence in-
formation integration. The development of more
sophisticated evaluation protocols that account for
these parameters remains an important challenge
for the field.

Acknowledgments

The study was supported by the Ministry of Eco-
nomic Development of the Russian Federation
(agreement No. 139-10-2025-034 dd. 19.06.2025,
IGK 000000C313925P4D0002).

References
Maria Barrett, Joachim Bingel, Nora Hollenstein, Marek

Rei, and Anders Søgaard. 2018. Sequence classifi-
cation with human attention. In Proceedings of the
22nd conference on computational natural language
learning, pages 302–312.

Lena Bolliger, David Reich, Patrick Haller, Deborah
Jakobi, Paul Prasse, and Lena Jäger. 2023. ScanDL:
A diffusion model for generating synthetic scanpaths
on texts. In Proceedings of the 2023 Conference

on Empirical Methods in Natural Language Process-
ing, pages 15513–15538, Singapore. Association for
Computational Linguistics.

Lena S. Bolliger, David R. Reich, and Lena A. Jäger.
2025. Scandl 2.0: A generative model of eye move-
ments in reading synthesizing scanpaths and fixation
durations. Proc. ACM Hum.-Comput. Interact., 9(3).

Charles Clifton, Fernanda Ferreira, John M. Henderson,
Albrecht W. Inhoff, Simon P. Liversedge, Erik D.
Reichle, and Elizabeth R. Schotter. 2016. Eye move-
ments in reading and information processing: Keith
rayner’s 40year legacy. Journal of Memory and Lan-
guage, 86:1–19.

da Silva Soares Jr, Raimundo, Oku, Amanda Yumi
Ambriola, Barreto Cândida da Silva Ferreira, and
Sato João Ricardo. 2023. Exploring the potential of
eye tracking on personalized learning and real-time
feedback in modern education. Progress in Brain
Research, 282:49–70.

Shuwen Deng, Paul Prasse, David Reich, Tobias Schef-
fer, and Lena Jäger. 2023a. Pre-trained language
models augmented with synthetic scanpaths for nat-
ural language understanding. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 6500–6507, Singapore.
Association for Computational Linguistics.

Shuwen Deng, Paul Prasse, David Reich, Tobias Schef-
fer, and Lena Jäger. 2024. Fine-tuning pre-trained
language models with gaze supervision. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short Pa-
pers), pages 217–224, Bangkok, Thailand. Associa-
tion for Computational Linguistics.

Shuwen Deng, David R. Reich, Paul Prasse, Patrick
Haller, Tobias Scheffer, and Lena A. Jäger. 2023b.
Eyettention: An attention-based dual-sequence
model for predicting human scanpaths during reading.
7(ETRA).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ralf Engbert, André Longtin, and Reinhold Kliegl. 2002.
A dynamical model of saccade generation in read-
ing based on spatially distributed lexical processing.
Vision Research, 42(5):621–636.

Nora Hollenstein, Federico Pirovano, Ce Zhang, Lena
Jäger, and Lisa Beinborn. 2021. Multilingual lan-
guage models predict human reading behavior. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,

156

https://doi.org/10.18653/v1/2023.emnlp-main.960
https://doi.org/10.18653/v1/2023.emnlp-main.960
https://doi.org/10.18653/v1/2023.emnlp-main.960
https://doi.org/10.1145/3725830
https://doi.org/10.1145/3725830
https://doi.org/10.1145/3725830
https://doi.org/10.1016/j.jml.2015.07.004
https://doi.org/10.1016/j.jml.2015.07.004
https://doi.org/10.1016/j.jml.2015.07.004
https://doi.org/10.18653/v1/2023.emnlp-main.400
https://doi.org/10.18653/v1/2023.emnlp-main.400
https://doi.org/10.18653/v1/2023.emnlp-main.400
https://doi.org/10.18653/v1/2024.acl-short.21
https://doi.org/10.18653/v1/2024.acl-short.21
https://doi.org/10.1145/3591131
https://doi.org/10.1145/3591131
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/S0042-6989(01)00301-7
https://doi.org/10.1016/S0042-6989(01)00301-7
https://doi.org/10.18653/v1/2021.naacl-main.10
https://doi.org/10.18653/v1/2021.naacl-main.10


pages 106–123, Online. Association for Computa-
tional Linguistics.

Halszka Jarodzka, Kenneth Holmqvist, and Marcus Nys-
tröm. 2010. A vector-based, multidimensional scan-
path similarity measure. In Proceedings of the 2010
Symposium on Eye-Tracking Research & Applica-
tions, ETRA ’10, page 211–218, New York, NY,
USA. Association for Computing Machinery.

Varun Khurana, Yaman Kumar, Nora Hollenstein, Ra-
jesh Kumar, and Balaji Krishnamurthy. 2023. Syn-
thesizing human gaze feedback for improved NLP
performance. In Proceedings of the 17th Conference
of the European Chapter of the Association for Com-
putational Linguistics, pages 1895–1908, Dubrovnik,
Croatia. Association for Computational Linguistics.

Samuel Kiegeland, David Robert Reich, Ryan Cotterell,
Lena Ann Jäger, and Ethan Wilcox. 2024. The pupil
becomes the master: Eye-tracking feedback for tun-
ing LLMs. In ICML 2024 Workshop on LLMs and
Cognition.

Keren Gruteke Klein, Shachar Frenkel, Omer Shubi,
and Yevgeni Berzak. 2025. Eye tracking based cog-
nitive evaluation of automatic readability assessment
measures. arXiv preprint arXiv:2502.11150.

Matthias Kümmerer and Matthias Bethge. 2021. State-
of-the-art in human scanpath prediction. Preprint,
arXiv:2102.12239.

Anna K. Laurinavichyute, Irina A. Sekerina, Svetlana
Alexeeva, Kristine Bagdasaryan, and Reinhold Kliegl.
2019. Russian sentence corpus: Benchmark mea-
sures of eye movements in reading in russian. Behav-
ior Research Methods, 51(3):1161–1178.

Vladimir Iosifovich Levenshtein. 1966. Binary codes
capable of correcting deletions, insertions and re-
versals. Soviet Physics Doklady, 10(8):707–710.
Doklady Akademii Nauk SSSR, V163 No4 845-848
1965.

Bai Li and Frank Rudzicz. 2021. TorontoCL at CMCL
2021 shared task: RoBERTa with multi-stage fine-
tuning for eye-tracking prediction. In Proceedings of
the Workshop on Cognitive Modeling and Computa-
tional Linguistics, pages 85–89, Online. Association
for Computational Linguistics.

Angela Lopez-Cardona, Carlos Segura, Alexandros
Karatzoglou, Sergi Abadal, and Ioannis Arapakis.
2024. Seeing eye to ai: Human alignment via gaze-
based response rewards for large language models.
Preprint, arXiv:2410.01532.

Abhijit Mishra, Diptesh Kanojia, and Pushpak Bhat-
tacharyya. 2016. Predicting readers’ sarcasm under-
standability by modeling gaze behavior. Proceedings
of the AAAI Conference on Artificial Intelligence,
30(1).

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

K Rayner. 1998. Eye movements in reading and infor-
mation processing: 20 years of research. Psychol
Bull, 124(3):372–422.

Keith Rayner. 2009. The thirty fifth sir frederick bartlett
lecture: Eye movements and attention during read-
ing, scene perception, and visual search. quarterly
journal of experimental psychology, 62, 1457-1506.
Quarterly journal of experimental psychology (2006),
62:1457–506.

Erik Reichle and Heather Sheridan. 2015. E-z reader:
An overview of the model and two recent applica-
tions. Oxford handbook of reading, pages 277–292.

Erik D. Reichle, Keith Rayner, and Alexander Pollatsek.
2003. The e-z reader model of eye-movement control
in reading: Comparisons to other models. Behavioral
and Brain Sciences, 26(4):445–476.

Ekta Sood, Simon Tannert, Philipp Mueller, and An-
dreas Bulling. 2020. Improving natural language
processing tasks with human gaze-guided neural at-
tention. In Advances in Neural Information Process-
ing Systems, volume 33, pages 6327–6341. Curran
Associates, Inc.

Harshvardhan Srivastava. 2022. Poirot at CMCL 2022
shared task: Zero shot crosslingual eye-tracking data
prediction using multilingual transformer models. In
Proceedings of the Workshop on Cognitive Model-
ing and Computational Linguistics, pages 102–107,
Dublin, Ireland. Association for Computational Lin-
guistics.

Titus von der Malsburg and Shravan Vasishth. 2011.
What is the scanpath signature of syntactic reanaly-
sis? Journal of Memory and Language, 65(2):109–
127.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. Preprint,
arXiv:1804.07461.

A Gaze features nomenclature

Below is a list of gaze features that were used for
the calculation:

FFD - first-fixation duration
SFD - single-fixation duration
FD - first duration
FPRT - first-pass reading time
FRT - first-reading time
TFT - total-fixation time
RRT - re-reading time
RPDinc - inclusive regression-path duration
RPDexc - exclusive regression-path duration
RBRT - right-bounded reading time
Fix - fixation (binary)
SR - skipping rate (binary)

157

https://doi.org/10.1145/1743666.1743718
https://doi.org/10.1145/1743666.1743718
https://doi.org/10.18653/v1/2023.eacl-main.139
https://doi.org/10.18653/v1/2023.eacl-main.139
https://doi.org/10.18653/v1/2023.eacl-main.139
https://openreview.net/forum?id=8oLUcBgKua
https://openreview.net/forum?id=8oLUcBgKua
https://openreview.net/forum?id=8oLUcBgKua
https://arxiv.org/abs/2102.12239
https://arxiv.org/abs/2102.12239
https://doi.org/10.3758/s13428-018-1051-6
https://doi.org/10.3758/s13428-018-1051-6
https://doi.org/10.18653/v1/2021.cmcl-1.9
https://doi.org/10.18653/v1/2021.cmcl-1.9
https://doi.org/10.18653/v1/2021.cmcl-1.9
https://arxiv.org/abs/2410.01532
https://arxiv.org/abs/2410.01532
https://doi.org/10.1609/aaai.v30i1.9884
https://doi.org/10.1609/aaai.v30i1.9884
https://doi.org/10.1080/17470210902816461
https://doi.org/10.1080/17470210902816461
https://doi.org/10.1080/17470210902816461
https://doi.org/10.1080/17470210902816461
https://doi.org/10.1017/S0140525X03000104
https://doi.org/10.1017/S0140525X03000104
https://proceedings.neurips.cc/paper_files/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/460191c72f67e90150a093b4585e7eb4-Paper.pdf
https://doi.org/10.18653/v1/2022.cmcl-1.11
https://doi.org/10.18653/v1/2022.cmcl-1.11
https://doi.org/10.18653/v1/2022.cmcl-1.11
https://doi.org/10.1016/j.jml.2011.02.004
https://doi.org/10.1016/j.jml.2011.02.004
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461


FPF - first-pass fixation (binary)
RR - re-reading (binary)
FReg - first regression (binary)
FPReg - first-pass regression (binary)
TRCout - total count of outgoing regressions
TRCin - total count of incoming regressions
SLin - incoming saccade length
SLout - outgoing saccade length
FFC - first fixation count
FPFC - first-pass fixation count
TFC - total fixation count

B Gaze features metrics

Table 4 presents MAE Word metrics for the
CELER dataset for all gaze features.

Table 5 presents PCC Word metrics for the
CELER dataset for all gaze features.

Table 6 presents MAE Word metrics for the
ZUCO dataset for all gaze features.

Table 7 presents PCC Word metrics for the
ZUCO dataset for all gaze features.

In the tables presented below, the Human column
corresponds to the Human Train-Val baseline.
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Random
Uniform Saccades E-Z reader Eyettention ScanDL Human

FD 80.62 80.31 61.18 78.59 77.35 86.10
FFC 83.90 83.46 85.98 87.58 87.67 90.15
FFD 62.79 78.63 66.45 78.11 79.02 85.28
FPF 47.80 73.10 81.28 79.77 82.80 84.69
FPFC 70.14 82.23 86.97 86.36 87.87 89.50
FPRT 70.30 81.24 73.24 81.96 82.97 87.59
FPReg 87.21 85.77 86.87 88.89 88.94 91.71
FRT 82.57 82.22 68.60 82.16 81.79 88.11
FReg 73.84 84.38 83.65 85.52 87.18 89.52
Fix 77.27 76.38 79.88 82.68 82.76 86.85
RBRT 76.22 84.02 80.46 85.21 85.64 89.97
RPDexc 88.96 93.22 93.71 94.59 94.73 95.69
RPDinc 84.82 89.80 90.16 91.23 90.81 93.68
RR 60.48 76.55 65.43 79.30 73.94 82.87
RRT 69.87 83.57 76.75 85.86 82.71 88.82
SFD 63.81 78.82 59.87 77.01 77.63 82.45
SLin 42.47 88.14 90.94 88.89 90.79 90.79
SLout 78.15 92.29 92.05 93.47 92.86 93.84
SR 48.30 73.37 81.28 80.04 82.87 84.69
TFC 83.97 82.95 82.84 87.12 85.84 90.53
TFT 83.38 82.15 78.14 82.80 80.70 89.23
TRCin 75.85 88.54 87.37 88.49 89.10 91.31
TRCout 68.77 84.34 84.36 85.45 87.62 90.04

Table 4: MAE for the predicted gaze features on the CELER dataset.
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Random
Uniform Saccades E-Z reader Eyettention ScanDL Human

FD 0.09 -0.02 0.35 0.36 0.51 0.67
FFC 0.12 -0.08 0.66 0.55 0.70 0.81
FFD 0.06 -0.04 0.43 0.41 0.53 0.69
FPF -0.04 -0.11 0.69 0.57 0.72 0.80
FPFC -0.00 -0.13 0.68 0.58 0.71 0.82
FPRT 0.07 -0.07 0.46 0.46 0.60 0.74
FPReg 0.57 0.05 0.13 0.52 0.41 0.71
FRT 0.11 -0.04 0.38 0.43 0.59 0.73
FReg 0.36 0.04 0.13 0.43 0.41 0.65
Fix 0.11 -0.09 0.68 0.50 0.69 0.80
RBRT 0.13 -0.06 0.45 0.44 0.57 0.77
RPDexc 0.86 0.01 0.20 0.33 0.18 0.71
RPDinc 0.69 -0.04 0.41 0.26 0.18 0.73
RR 0.30 0.05 -0.09 0.30 0.23 0.60
RRT 0.34 0.03 -0.03 0.31 0.24 0.65
SFD 0.04 0.02 0.23 0.22 0.43 0.51
SLin 0.16 -0.10 0.48 0.35 0.54 0.61
SLout 0.51 0.57 0.52 0.75 0.63 0.73
SR -0.04 -0.14 0.69 0.57 0.72 0.80
TFC 0.25 -0.05 0.60 0.55 0.64 0.84
TFT 0.23 -0.02 0.30 0.50 0.60 0.81
TRCin 0.44 0.11 -0.12 0.32 0.21 0.57
TRCout 0.41 0.04 0.10 0.44 0.40 0.66

Table 5: PCC for the predicted gaze features on the CELER dataset.
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Random
Uniform Saccades E-Z reader Eyettention ScanDL Human

FD 71.70 64.49 -39.97 76.87 77.01 89.33
FFC 94.65 94.42 95.32 94.60 94.03 96.29
FFD 81.15 64.01 -0.36 76.39 75.74 89.89
FPF 58.42 69.86 72.21 68.07 65.52 80.75
FPFC 86.90 89.29 90.99 89.83 88.96 93.11
FPRT 86.57 74.85 23.88 83.74 82.97 92.25
FPReg 87.99 84.79 88.71 87.14 87.92 87.78
FRT 89.44 85.04 37.55 90.45 90.31 95.13
FReg 72.68 82.25 84.71 82.12 84.65 83.20
Fix 72.15 72.85 75.46 69.92 66.91 82.21
RBRT 88.67 79.32 45.14 87.27 87.07 93.20
RPDexc 92.41 96.92 92.26 97.73 98.15 97.21
RPDinc 90.92 92.99 81.31 95.26 95.55 96.17
RR 66.62 77.39 74.47 77.79 77.64 77.43
RRT 78.73 90.02 73.65 93.68 94.10 92.12
SFD 82.60 65.93 8.15 77.08 77.69 89.19
SLin 86.80 97.06 97.17 96.50 96.76 96.83
SLout 90.50 97.48 97.36 97.16 97.22 97.53
SR 58.73 69.38 72.21 68.84 65.69 80.75
TFC 93.17 92.81 94.35 93.14 93.19 94.04
TFT 85.69 83.91 51.63 90.34 91.26 92.90
TRCin 86.78 92.22 93.67 92.06 93.73 92.21
TRCout 85.31 91.75 93.33 91.67 93.23 91.54

Table 6: MAE for the predicted gaze features on the ZuCO dataset.
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Random
Uniform Saccades E-Z reader Eyettention ScanDL Human

FD 0.05 0.01 0.03 0.11 0.22 0.59
FFC 0.07 0.02 0.50 0.20 0.34 0.70
FFD 0.17 0.02 0.06 -0.02 0.05 0.62
FPF 0.16 0.04 0.33 0.05 0.13 0.65
FPFC 0.15 0.03 0.45 0.13 0.23 0.68
FPRT 0.17 0.02 0.07 0.05 0.15 0.68
FPReg 0.45 0.03 0.05 0.22 0.17 0.58
FRT 0.06 0.00 0.04 0.16 0.28 0.68
FReg 0.18 0.02 0.04 0.15 0.16 0.53
Fix 0.06 0.02 0.42 0.15 0.28 0.65
RBRT 0.21 0.03 0.07 0.08 0.17 0.69
RPDexc 0.49 0.02 0.00 0.12 0.07 0.53
RPDinc 0.46 0.03 0.03 0.05 0.04 0.61
RR 0.16 0.03 -0.02 0.15 0.18 0.47
RRT 0.18 0.01 0.00 0.20 0.22 0.55
SFD 0.14 0.02 0.04 -0.0907 -0.04 0.45
SLin 0.24 0.07 0.24 0.08 0.11 0.37
SLout 0.31 0.33 0.31 0.34 0.25 0.66
SR 0.16 0.05 0.33 0.06 0.13 0.65
TFC 0.15 0.02 0.49 0.24 0.40 0.72
TFT 0.13 0.01 0.03 0.25 0.38 0.72
TRCin 0.30 0.04 -0.04 0.15 0.16 0.54
TRCout 0.21 0.01 0.04 0.16 0.15 0.56

Table 7: PCC for the predicted gaze features on the ZuCO dataset.
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