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Abstract

Curriculum learning (CL) aims to improve
training by presenting data from “easy” to
“hard”, yet defining and measuring linguistic
difficulty remains an open challenge. We in-
vestigate whether human-curated simple lan-
guage can serve as an effective signal for CL.
Using the article-level labels from the Simple
Wikipedia corpus, we compare label-based cur-
ricula to competence-based strategies relying
on shallow heuristics. Our experiments with a
BERT-tiny model show that adding simple data
alone yields no clear benefit. However, structur-
ing it via a curriculum – especially when intro-
duced first – consistently improves perplexity,
particularly on simple language. In contrast,
competence-based curricula lead to no consis-
tent gains over random ordering, probably be-
cause they fail to effectively separate the two
classes. Our results suggest that human intu-
ition about linguistic difficulty can guide CL
for language model pre-training.

1 Introduction

The growing scale of language models (LMs) has
increased interest in training strategies that improve
efficiency and convergence. Curriculum learning
(CL), inspired by developmental psychology, is one
such approach. CL structures training by present-
ing examples in a sensible order – typically from
“easy” to “hard” (Elman, 1993; Bengio et al., 2009;
Wang et al., 2021). While intuitively compelling
and empirically useful in certain NLP tasks (Platan-
ios et al., 2019; Nagatsuka et al., 2021), its overall
impact on masked language model (MLM) pre-
training remains debated (Surkov et al., 2022).

A key challenge in CL is the definition of lin-
guistic difficulty. Unlike other domains, language
difficulty may arise from multiple dimensions –
such as syntax, semantics or context. In the ab-
sence of gold standards, prior work often relies on
shallow heuristics (Platanios et al., 2019; Ranaldi

Rarity Class Example

low SL She is the author of the Twilight
series.

low EL The history of poker is the sub-
ject of some debate.

high SL Today, most automotive diesels
are turbocharged.

high EL Pink Floyd watched The Beatles
recording Lovely Rita.

Table 1: Sentences showing examples of high and
low average word rarity for each class in the Simple
Wikipedia dataset (Kauchak, 2013).

et al., 2023). Yet, readability research suggests that
no single heuristic reliably captures linguistic com-
plexity (Battisti et al., 2020). In contrast, humans
intuitively consider multiple dimensions when sim-
plifying text. This motivates the central question
for this work: Can human-curated simple language
effectively guide CL for MLM pre-training?

To answer this question, we study CL strate-
gies based on article-level labels from the Simple
Wikipedia corpus (Coster and Kauchak, 2011) and
compare them to competence-based CL with shal-
low difficulty heuristics (Platanios et al., 2019),
using BERT-tiny for MLM pre-training. Our exper-
iments show that merely adding simple language
data to training yields no overall improvement.
Still, incorporating it through a label-based curricu-
lum consistently improves not only overall perplex-
ity but particularly the simple language perplexity.
This effect vanishes when reversed: training on
everyday language first is detrimental to learning,
underscoring the importance of example ordering.
Surprisingly, competence-based curricula show no
benefit over random ordering.

Further, we find that simple and everyday lan-
guage articles have similar vocabulary sizes and



high lexical and distributional overlap on the
chosen difficulty heuristics. This suggests that
competence-based CL fails here, because the
heuristics do not effectively separate the classes.
In contrast, the consistent gains from label-based
curricula imply that simple language encodes other
useful information, providing structure that bene-
fits pre-training when leveraged correctly. These
results suggest that simple language does indeed
help, when applied in a curriculum that makes use
of human intuition on linguistic difficulty.

2 Related Work

A common form of data-level CL orders the
data points according to a global difficulty mea-
sure. This approach has been applied to various
NLP tasks such as language modelling (Nagatsuka
et al., 2021; Ranaldi et al., 2023), machine transla-
tion (Platanios et al., 2019; Mohiuddin et al., 2022),
and questions answering (Liu et al., 2018) using
difficulty measures like input length (Nagatsuka
et al., 2021; Zaremba and Sutskever, 2015), word
rarity (Platanios et al., 2019), or domain similarity
(Mohiuddin et al., 2022). However, the choice of
metric is often intuitive and its overall effective-
ness remains debated, as the work by Surkov et al.
(2022) found that competence-based CL for MLM
offers little to no benefit.

A parallel line of work explores the benefits
of simplified language in neural network train-
ing. Mueller and Linzen (2023) show that pre-
training on simple language corpora strengthens the
syntactic inductive bias in encoder-decoder mod-
els. Huebner et al. (2021) demonstrate that child-
directed data facilitates grammar learning for down-
sized encoder-only models. Lucas et al. (2024) ex-
plore CL through a masking-based strategy, also
leveraging simplified language. While these stud-
ies focus on specific linguistic gains or efficiency
improvements, the role of simplified language in
global, data-level curriculum design remains un-
explored. We address this gap by investigating
whether editorially curated simple language – such
as that in Simple Wikipedia – can serve as an effec-
tive learning signal for CL, and how it compares to
commonly used difficulty heuristics.

3 Methodology

We use the following experimental setup to study
the effect of simple language in MLM pre-training.

Label # tokens # sentences

Simple (SL) 3, 395, 297 191, 318
Everyday (EL) 3, 796, 654 176, 019

Table 2: Dataset statistics for simple (SL) and everyday
(EL) language in the Simple Wikipedia corpus.

Dataset We employ the Simple Wikipedia
dataset (Coster and Kauchak, 2011), the most pop-
ular, freely available simple language corpus in
English. It consists of articles from the Simple
English Wikipedia in simple language (SL) and
their counterparts from the English Wikipedia in
everyday language (EL). Each sentence inherits the
article-level label (SL or EL), which may introduce
some label noise due to within-article variation
in sentence complexity. Table 2 compares both
classes regarding their respective number of tokens
and sentences.

Difficulty Heuristics For the competence-based
CL, we consider three shallow heuristics for text
difficulty: sentence length, word rarity, and the
Flesch Reading Ease (FRE) score (cf. Platanios
et al. (2019), Ranaldi et al. (2023)). Refer to Ap-
pendix B for the details. In addition to these, we
include a random baseline, where difficulty scores
are sampled uniformly to isolate the effect of data
ordering from the progressive data exposure.

Curriculum Strategies We compare two CL
paradigms. First, following Platanios et al. (2019),
we implement the competence-based curriculum
approach. We sort the training examples accord-
ing to the aforementioned difficulty measures and
gradually expand the training set as model com-
petence increases. The curriculum proceeds until
the entire dataset is included. We provide the full
implementation details in Appendix A.

Second, we implement two label-based curric-
ula using the SL/EL distinction. The sequential
strategy first trains on SL until convergence, then
continues training on EL. To mitigate potential for-
getting from fully replacing the training data, we
propose an incremental strategy: the model is first
trained on SL alone, then continues on the com-
bined SL+EL set, each phase until convergence.
We also include a reverse sequential strategy (first
on EL, then SL) as a control strategy.

Training Setup We train a BERT-tiny model
with two transformer layers of hidden size 128,



Strategy Perplexity SL Perplexity EL Perplexity # Updates

Baseline EL 69.25 ±4.04 59.50 ±4.38 81.78 ±4.85 658 667 ±113 192

Baseline SL+EL 69.61 ±4.87 64.15 ±5.05 76.46� ±5.28 665 333 ±102 111

Incremental 66.36 ±2.53 63.29 ±3.39 71.51� ±2.55 781 333 ±83 312

Sequential 65.31� ±4.19 57.83� ±4.52 74.39 ±4.91 781 333 ±122 292

Anti-Sequential 70.32 ±3.97 59.24 ±4.01 81.70� ±4.37 682 000 ±102 274

Length 69.05 ±4.15 63.84 ±4.12 76.37 ±4.46 672 667 ±71 760

Word Rarity 66.74 ±3.48 62.48 ±3.52 74.12 ±4.12 664 666 ±72 394

FRE 68.05 ±5.22 62.53 ±4.98 75.32 ±5.88 709 333 ±105 524

Random 68.07 ±4.92 63.08 ±4.95 75.21 ±5.40 679 333 ±105 388

Table 3: Performance of BERT-tiny across baseline and CL strategies. Perplexity is reported for the full dataset and
separately for the simple (SL) and everyday language (EL) subsets. Sequential label-based curriculum achieves best
overall and SL perplexity. No competence-based strategy shows consistent improvement over baselines. Reported
values are mean and standard deviations across 15 runs. � denotes significant changes.

two attention heads, an intermediate feed-forward
of size 512, a batch size of eight, and a learning rate
of 10−4. All models are trained until convergence,
with early stopping based on validation loss. All
experiments are repeated over 15 random seeds to
ensure statistical robustness.

Evaluation We evaluate model performance us-
ing overall perplexity as well as SL and EL subset
perplexities. This helps us assess general improve-
ments as well as register-specific gains. Our base-
lines include models trained with random sampling:
one on everyday language only (Baseline EL), the
other on a uniform mix (Baseline SL+EL).

4 Curriculum Learning Results

We summarise the final performance of the BERT-
tiny model across all training strategies in Table 3,
focusing on overall, SL, and EL perplexity, as
loss values are less informative. We compare
each strategy against a primary baseline (Baseline
SL+EL), trained on SL+EL using random data sam-
pling, with results averaged over 15 seeds. To
assess the statistical significance of our results,
we apply a one-sided Wilcoxon signed-rank test
for symmetric distributions, and a one-sided me-
dian bootstrap test otherwise. All p-values are ad-
justed using the Holm-Bonferroni method within
each experiment family (baseline, label-based CL,
competence-based CL), using α = 0.05 and direc-
tional hypotheses. Appendix C details the direc-
tional hypotheses and the corresponding adjusted
p-values.

Does merely adding simple language to the train-
ing data improve model performance? The re-
sults provide a clear but mixed answer. Comparing
Baseline SL+EL to Baseline EL, we see a signifi-
cant improvement in EL perplexity but no improve-
ment in neither overall nor SL perplexity.

Can simple language effectively guide CL? We
find clear evidence in favour of simple language
guiding CL – provided that the sampling strategy
is right. Among the label-based CL strategies, only
the sequential variant significantly improves overall
as well as SL perplexity – achieving the best scores
across all strategies. Incremental improves EL per-
plexity, but not overall performance. To show that
the improvements of the sequential strategy are not
accidental, we also test its anti strategy (i.e. start-
ing training on EL, then progressing with SL): it
performs similarly to Baseline EL and yields signif-
icantly worse EL perplexity than Baseline SL+EL.
Both incremental and sequential strategies require
more updates than Baseline SL+EL to reach these
improvements.

Are shallow text features sufficient to guide
competence-based CL? We have a negative an-
swer to this question. Across all three competence-
based difficulty measures, we observe no signifi-
cant improvement in perplexity compared to Base-
line SL+EL. The random strategy further suggests
that neither simply increasing the dataset size nor
imposing an order on shallow features leads to bet-
ter model performance.
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Figure 1: Distribution of sentence-level difficulty heuristics for SL and EL.
None of the heuristics cleanly separates the two classes.

SL EL

SL 100% 96.67%
EL 86.06% 100%

Table 4: Vocabulary overlap be-
tween classes. Over 80% of EL’s
vocabulary is also present in SL,
showing high lexical similarity.

5 Discussion

In this section we discuss the implications of the
results from the previous section with regards to
our three research questions.

Learning across registers: asymmetries and in-
terference The surprisingly strong performance
of Baseline EL on the SL subset suggests that EL
may implicitly cover much of the SL distribution,
possibly due to the compositionality of language.
However, simply adding SL to the randomly or-
dered training data does not improve overall per-
formance – and while it significantly improves EL
perplexity, it worsens performance on SL itself.
This asymmetry hints at a negative interference
effect as observed in multilingual model training
(Wang et al., 2020): though both classes stem from
the same language, they might be different enough
to cause gradient conflicts when used in the same
dataset. These findings emphasise that learning
patterns across language registers are not symmet-
ric, and underscore the importance of evaluating
perplexity for different subsets.

Structure matters: the effectiveness of label-
based curricula Models only benefit from SL
when introduced in a structured way. Sequential
label-based curricula, where training begins with
SL before using EL, consistently outperform other
strategies in overall and SL perplexity. This aligns
with the idea that simplified input can serve as a
scaffold, supporting the acquisition of more com-
plex patterns. While the effect mirrors principles
observed in human learning, the underlying reason
why structured exposure aids generalisation may
differ in MLM.

The limits of difficulty heuristics Competence-
based curricula using shallow difficulty heuristics
show no clear advantage over random strategies.
While this supports prior findings by Surkov et al.
(2022), our analysis offers further insight. Figure 1

shows histograms comparing the distribution of
shallow heuristics in SL and EL and Table 1 illus-
trates some examples. While it is plausible that EL
has samples at the “easy” extremes, as not every
sentence in everyday language is necessarily com-
plex, we also observe SL examples at the “complex”
extremes. Assuming that SL represents text that
is easier to understand for humans, this highlights
that the difficulty heuristics fail to meaningfully
separate the two classes.

Future Directions We find that while shallow
difficulty heuristics do not suffice to guide CL, the
information encoded in the language classes does.
Despite high lexical overlap and comparable size
(Tables 2 and 4), simple language may offer more
than surface-level simplicity. Prior work has shown
that both humans and neural models benefit from
regular, compositional input (Galke et al., 2024)
and simple language might reflect just that through
syntactic consistency or clearer discourse structure.
Future work could explore how such compositional
features manifest in simple language, and whether
they can be modelled or annotated as difficulty
signals – enabling broader and more effective CL
strategies in MLM pre-training.

6 Conclusion

We examined whether human-curated simple lan-
guage can guide CL in MLM pre-training. Our
results show that label-based curricula outperform
both random baselines and competence-based ap-
proaches relying on shallow difficulty heuristics.
While the two language classes show high lexical
and distributional overlap, their ordering – particu-
larly when first training on simple language before
moving to everyday language – leads to significant
gains in model performance. This suggests that
human intuition about linguistic difficulty provides
more effective structure for CL than traditional
surface-level heuristics.
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A Implementation Details

We provide our implementation details for the
competence-based CL strategy, where each training
sample is assigned a difficulty score and the dataset
is sorted accordingly. A predefined competence
function then controls the fraction of data avail-
able at each training step t, gradually increasing
the difficulty over time. Following Platanios et al.
(2019), we adopt the square-root based competence
function, which they found to be most effective:

csqrt(t) = min(1,

√
t(1− c20)

T
) ∈ [0, 1],

where c0 denotes the initial competence at t =
0 and T is the total number of steps in the CL
phase. In our experiments, we observed that shorter
competence phases tend to yield better results than
longer ones. We pick T = 50 000 and c0 = 0.05
as function parameters. The size of the training
dataset is updated every 5 000 steps depending on
the current function value.

B Difficulty Heuristics

In our work we consider three popular heuris-
tics to measure the difficulty of text for global,
data-level curriculum learning (cf. Platanios et al.
(2019) or Ranaldi et al. (2023)). Let S be a sen-
tence, represented by a finite sequence of words
(w1, w2, . . . , wm). The first heuristic, sentence
length, is defined by the number of words in the
sentence:

length(S) = |S|.

Next, we use the word rarity metric as proposed
by Platanios et al. (2019), but normalise it by the
number of words to remove its strong correlation
with the sentence length:

word rarity(S) = − 1

|S|
∑
w∈S

log

(
countc(w)

N

)
,

where N denotes the size of the vocabulary of the
corpus and countc(w) the number of times w ap-
peared in the corpus. Last, we present the Flesch
Reading Ease (FRE) score as defined by Flesch
(1948). It is designed to evaluate the readability of
text and to return a score between 0 and 100:

FRE(S) = 206.835−1.015×ASL−84.6×ASW,

where ASL denotes the average sentence length,
which is always the actual sentence length since we

Strategy PPL SL PPL EL PPL

Baseline
SL+EL

.445 (w) .996 (w) .004 (w)

Incremental .598 (b) 1.00 (w) .008 (w)
Sequential .019 (w) .001 (w) .126 (w)
Anti-
Sequential

.252 (b) 1.00 (w) .008 (w)

Length .890 (w) .977 (w) .899 (w)
Word Rarity .890 (b) .977 (w) .718 (w)
FRE .779 (w) .977 (w) .899 (w)
Random .779 (w) .977 (w) .899 (w)

Table 5: Adjusted p-values for all statistical tests for
the models’ performance on overall perplexity (PPL),
simple language perplexity (SL PPL), and everyday
language perplexity (EL PPL). We choose α = 0.05
and boldface all significant results. We further indicate
which one-sided test was run: (w) Wilcoxon signed-rank
test or (b) boostrap median test.

only evaluate single sentences, and ASW denotes
the average syllables per word. Since the FRE was
designed to evaluate text samples of 100 words,
we can encounter negative FRE scores which are
outside the originally defined range.

C Details on the Significance Tests

Table 5 reports the adjusted p-values for all strate-
gies, assessing their performance relative to rele-
vant baselines. For each comparison, we applied a
one-sided test based on our directional hypotheses:
(1) whether adding SL (Baseline SL+EL) improves
over the baseline trained with EL (Baseline EL);
(2) whether label-based curricula (Incremental and
Sequential) improve over the full baseline (Base-
line SL+EL); (3) whether Anti-Sequential hurts
performance compared to Baseline SL+EL; and
(4) whether competence-based strategies (Length,
Word Rarity, FRE, Random) improve over the Base-
line SL+EL.
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